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Abstract

In computer vision and image analysis, image registration between 2D projec-
tions and a 3D image that achieves high accuracy and near real-time computa-
tion is challenging. In this paper, we propose a novel method that can rapidly
detect an object’s 3D rigid motion or deformation from a 2D projection im-
age or a small set thereof. The method is called CLARET (Correction via
Limited-Angle Residues in External Beam Therapy) and consists of two stages:
registration preceded by shape space and regression learning. In the registration
stage, linear operators are used to iteratively estimate the motion/deformation
parameters based on the current intensity residue between the target projec-
tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated
3D image. The method determines the linear operators via a two-step learn-
ing process. First, it builds a low-order parametric model of the image re-
gion’s motion/deformation shape space from its prior 3D images. Second, using
learning-time samples produced from the 3D images, it formulates the relation-
ships between the model parameters and the co-varying 2D projection intensity
residues by multi-scale linear regressions. The calculated multi-scale regression
matrices yield the coarse-to-fine linear operators used in estimating the model
parameters from the 2D projection intensity residues in the registration. The
method’s application to Image-guided Radiation Therapy (IGRT ) requires only
a few seconds and yields good results in localizing a tumor under rigid motion
in the head and neck and under respiratory deformation in the lung, using one
treatment-time imaging 2D projection or a small set thereof.
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1. Introduction

In a variety of situations of image-guided therapy in medicine, a 2D/3D geo-
metric transformation is required to relate a 3D image of the patient used in
planning the treatment with a set of 2D images acquired at treatment time
(Markelj et al. [1]). Current 2D/3D registration methods (Russakoff et al.
[2, 3], Khamene et al. [4], Munbodh et al. [5]) find the transformation that
optimizes an objective function consisting of an image matching term and a
regularization term. As a fast optimization often requires many evaluations of
the function’s Jacobian, optimization-based registration methods without fur-
ther parallelization are structurally slow unless often unrealistically accurate
initialization is provided. With GPU parallelization recent optimization-based
2D/3D registration methods are able to localize the tumor within one second
assuming rigid patient motion (Furtado et al. [6], Gendrin et al. [7]) or non-rigid
motion (Li et al. [8, 9]). However, the mismatch in the registration dimension-
ality often introduces a non-convex objective function which is prone to opti-
mization solutions that are caught in local minima (i.e., non-global solutions)
with normally available initializations. In order to avoid local minima and to
reduce the registration time, Li et al. [8, 9] adopted a bootstrap-like approach
where optimizations were initialized by registration results from previous time
points. Their optimizations were fully-implemented on high-end GPUs and ob-
tained sub-second speed. Other methods have used neural networks to model
rigid (Banks and Hodge [10], Freire et al. [11], Zhang et al. [12]), or non-rigid
transformations (Wachowiak et al. [13]) and to achieve efficient computation at
registration time. However, to the best of our knowledge, there is no general
framework that supports both rigid and non-rigid 2D/3D registration. We have
sought a learning-based framework that is fast, general to both types of registra-
tion, robust to normally available initializations, and not based on optimization.

In this paper, we describe the methodology of our general learning-based frame-
work that was initially presented in Chou et al. [14] for rigid registration and
Chou et al. [15] for non-rigid registration, respectively. Steininger et al. [16] sub-
sequently presented a similar approach for rigid registration. In a way similar
to the face alignment algorithm AAM (Active Appearance Model) by Cootes
et al. [17] and the efficient tracking scheme by Jurie and Dhome [18], we seek a
linear operator M, calculated by linear regression, that when iteratively applied
to intensity differences (residue) R between digitally-reconstructed radiographs
(DRRs), i.e., projections, of the currently estimated 3D image and the measured
2D images, yields the update of the estimated transformation parameters ∆Ĉ
that reduce the residue.

∆Ĉ = M ·R (1.1)

The registration process in eq. 1.1 requires no optimizations; therefore it can
support efficient registration. Different from the AAM, our linear operator
M estimates the 3D transformation parameters from 2D projection intensity
residues R for the 2D/3D registration.
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The paper is organized as follows. First, we describe our 2D/3D registration
framework and our efficient approximation of the shape parameters C in sec-
tion 2. In section 3, we describe how we obtain low-order parameterization for
rigid motion and for a deformation shape space. In section 4, we describe our
regression learning to calculate the linear operator M and an efficient multi-
scale learning scheme. In section 5, we describe how we generate commensurate
projection intensities to support our regression estimation. In section 6, we de-
scribe the experimental setup and clinical context of our medical application.
In section 7, we present our registration results and compare them to those of
an optimization-based method. In section 8, we discuss our rigid and non-rigid
registration results.

2. 2D/3D Registration

We first describe the general framework of our 2D/3D image registration method.
Second, we describe our approach for efficient registration within this frame-
work.

2.1. General 2D/3D Registration

The goal of the 2D/3D registration is to match a transformed 3D grey-scale
source image to a set of target 2D projections Ψ. We denote the projection
intensity at pixel location x = (x1, x2) and projection angle θ as Ψ(x; θ). The
registration is formulated as an iterative process. Let I denote the 3D source
image and I(t) denote the 3D image at iteration t. The estimated 3D image
region’s motion/deformation parameters Ĉ(t) define a geometric transformation
T (Ĉ(t)) in a shape space determined from the 3D images. The Ĉ(t) are calcu-
lated by the estimated parameter updates ∆Ĉ(t) (eq. 2.1) obtained from the
projection intensity residues R between the target 2D projections Ψ(x; θ) and
the computed projections P(x, I(t− 1); θ) of the transformed 3D source image
at iteration t−1 (eq. 2.2). After parameter estimation in each iteration, an im-
age transformation (eq. 2.3) is required in order to produce updated computed
projections for the parameter estimation in the next iteration.

{
Ĉ(0) = 0

Ĉ(t) = Ĉ(t− 1) + ∆Ĉ(t)
(2.1)

R[Ψ(x; θ),P(x, I(t− 1); θ)] = Ψ(x; θ)−P(x, I(t− 1); θ) (2.2)


I(t) = I(0) ◦ T (Ĉ(t))

I(0) = I

T (0) = Id

(2.3)
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Id is the identity transformation. The projection operator P is formulated by
a simulation of the imaging process. For example, in the medical literature, to
simulate a 3D image’s x-ray projections from its 3D volume (DRRs), we use
ray-casting to compute the photon attenuation through a given imaging
geometry (Figure 2.1). We note that although eq 2.2 indicates a simple
subtraction of the projection of the 3D image from the target projection, in
actual clinical application one must apply additional processing to account for
x-ray scatter in the target projection. This will be explained further in section
5.

Figure 2.1: An x-ray projection is simulated by ray-casting on a 3D image volume. The
dashed lines and arrows indicate the ray directions.

One way to obtain the estimated parameter updates ∆Ĉ(t) is by optimizing
a measure ρ of the concatenated intensity residue R† with respect to the pa-
rameter updates ∆C. The concatenated intensity residues R†, defined as the
concatenation over all of the projection angles θ of the residues Rθ: R† =
(Rθ1 ,Rθ2 , · · · ,RθΓ).

∆Ĉ(t) = arg
∆C

min
∥∥∥R†[Ψ(x),P(x, I(0) ◦ T (Ĉ(t− 1) + ∆C))]

∥∥∥
ρ

(2.4)

Without parallelization, iterative computations to carry out this optimization
are structurally slow. Moreover, the optimization may easily converge to a local
minimum since the energy functional in eq. 2.4 is not convex. See section 7.2.3
for the detailed evaluation of the optimization-based approach.

2.2. Efficient Linear Approximation of ∆C

We propose an alternative method to calculate ∆C using multi-scale linear
operators M. At each iteration of the registration, our method estimates the
motion/deformation parameter updates ∆Ĉ(t) by applying a linear operator
Ms of scale s to the current concatenated intensity residue R†. That is,

∆Ĉ(t) = R†[Ψ(x),P(x, I(t− 1))] ·Ms, where s = 1, 2, · · · , S; t = 1, 2, · · · , tmax
(2.5)
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Typically, S = 4 and tmax ≤ 10 are satisfactory. The computation in eq. 2.5
involves only matrix multiplications by Ms, computation of the projections P,
and subtractions (eq. 2.2). This makes the registration structurally fast. The
calculation of the multi-scale linear operators M involves a machine learning
process described in detail in section 4. Due to the leveragable advantage of the
machine learning process and the fast linear operation, our proposed method
shows a more robust and faster registration than the optimization-based ap-
proach. See section 7.2.3 for the comparisons.

3. Shape Space Modeling

Our method limits the motion/deformation to a shape space. To allow M to
be accurately learned, we require a low-order parametrization C of this shape
space. We describe the shape space calculation for rigid motions and for non-
rigid deformations in section 3.1 and 3.2 respectively.

3.1. Rigid Motion Modeling

Rigid motions are modeled explicitly as the variation in the Euler’s six dimen-
sional rigid space:

C = (tx, ty, tz, rx, ry, rz) (3.1)

where tx, ty, tz are the translation amounts in cm along the world’s coordinate
axes x, y, z, respectively; and rx, ry, rz are the rotations in degrees (◦) about
the image center, around the world coordinate axes x, y, and z, in succession.

3.2. Deformation Modeling

Like others (Liu et al. [19], Li et al. [9]), we model deformations as a linear com-
bination of a set of basis deformations calculated through principal component
analysis (PCA). In our target problem, a cyclically varying set of 3D images {Jτ
over time τ} are available at pre-registration learning time. From these a mean
image J̄ and a set of deformations φτ between Jτ and J̄ can be computed. The
basis deformations are chosen to be the primary eigenmodes of the PCA of the
φτ . The computed mean image J̄ will be used as the reference mean image I
throughout this paper.

3.2.1. Deformation Shape Space and Mean Image Generation

In order to model the deformation space realistically, our method computes
a Fréchet mean image J via an LDDMM (Large Deformation Diffeomorphic
Metric Mapping) framework (Beg et al. [20]) from the cyclically varying set of
3D images {Jτ over time τ}. The Fréchet mean, as well as the diffeomorphic
deformations φ from the mean to each image Jτ , are computed using a fluid-flow
distance metric dfluid (Lorenzen et al. [21]):

J = arg
J
min

N∑
τ=1

dfluid(J, Jτ )2 (3.2)
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= arg
J
min

(
N∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

α2

ˆ
Ω

||J(φ−1
τ (x))− Jτ (x)||2dx

)
(3.3)

where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is
the fluid-flow velocity field for the image Jτ in flow time γ , α is the weighting
variable on the image dissimilarity, and φτ (x) describes the deformation at the

pixel location x: φτ (x) = x+
´ 1

0
vτ,γ(x)dγ.

The mean image J and the deformations φτ are calculated by gradient descent
optimization. The set {φτ over τ} can be used to generate the deformation
shape space by the following statistical analysis.

3.2.2. Statistical Analysis

Starting with the diffeomorphic deformation set {φτ}, our method uses PCA
to find a set of linear deformation basis functions φipc. The scores λiτ (basis

function weights) for each φipc yield φτ in terms of these basis functions.

φτ = φ+

N∑
i=1

λiτ · φipc (3.4)

We choose a subset of n eigenmodes that capture 95% of the total variation.
Then we let the n basis function weights λi form the n-dimensional parameter-
ization C.

C = (c1, c2, · · · , cn) (3.5)

= (λ1, λ2, · · · , λn) (3.6)

4. Machine Learning

From the motion/deformation shape space we calculate linear operators M that
correlate coarse-to-fine sampled model parameters C with the corresponding
projection intensity residue vectors R. We describe our regression learning
to calculate the linear operators M in section 4.1 and an efficient multi-scale
learning strategy in section 4.2.

4.1. Residues to Model Parameters Regression Learning

As detailed in section 4.2 we select a collection of model parameters {Cκ over
cases κ} for learning. Each case is formed by a selection of parameter settings.
The training uses deviations from the reference image, such that ∆C = Cκ.
Linear regression is used to correlate the selected modeled parameters Cκ in
the κth case with the co-varying projection intensity residue set {Rκ,θ over the
projection angles θ}. Rκ,θ(x) is computed as the intensity difference at pixel
location x = (x1, x2) between the projection at angle θ of the mean image I (or
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an untransformed 3D image for the rigid case) and the projection of the image
I ◦ T (Cκ) transformed with the sampled model parameter Cκ:

Rκ,θ(x) = P(x, I ◦ T (Cκ); θ)−P(x, I; θ) (4.1)

We concatenate the residues at each projection angle to formulate a residue set
in a vector R†κ = (Rκ,θ1 ,Rκ,θ2 , · · · ,Rκ,θΓ) and build a linear regression for all
cases κ = 1, 2, · · · ,K: 

C1

C2

...
CK

 ≈


R†1
R†2
...

R†K

 ·M (4.2)

The regression matrix M that gives the best estimation of the linear operators
per parameter scale is computed via a pseudo-inverse:

M = (R†ᵀR†)−1R†ᵀC (4.3)

4.2. Multi-scale Learning

To provide adequate regression learning, C must be sufficiently sampled to
capture all the shape variations. However, the direct implementation requires
an exponential time computation. Instead, we have designed an efficient scheme
that learns the model parameters from large to small scales, 1 to S, to yield S
scale-related regression matrices M1,M2, · · · ,MS . At the sth scale of learning,
each model parameter ci is collected from the combinations of ±3σi · (S − s +
1)/S and 0 where σi is the standard deviation of the basis function weights λi

observed at pre-registration time. In the registration stage the calculated multi-
scale linear operators are applied sequentially, from M1 to MS , to give new
estimations of the model parameters from large to small scale. After evaluating
the estimation accuracy for target examples of both the rigid and non-rigid
types, we found that four scales of learning (S = 4) produced sufficiently dense
samples in C to achieve the required registration accuracy.

5. Commensurate Projection Intensity Generation

X-ray scatter is a significant contribution to the cone-beam CT projections.
However, the regression estimators M are not invariant to the projection inten-
sity variations caused by x-ray scatter. Therefore, our method uses a normal-
ization filter (section 5.1) and a subsequent histogram matching scheme (section
5.2) to generate commensurate intensities between learning-time computed pro-
jections and registration-time target projections.
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5.1. Local Gaussian Normalization

To account for variations caused by x-ray scatter, we perform a 2D Gaussian-
weighted normalization for each pixel in the learning projections (Figure 5.1
(d)) and the target projections (Figure 5.1 (b)). To calculate the normalized
value Ψ′(x; θ) at pixel location x = (x1, x2) and projection angle θ, we subtract
a Gaussian-weighted spatial mean µ′(x1, x2) from the raw pixel value Ψ(x1, x2)
and divide it by a Gaussian-weighted standard deviation σ′(x1, x2).

Ψ′(x1, x2) =
Ψ(x1, x2)− µ′(x1, x2)

σ′(x1, x2)
(5.1)

µ′(x1, x2) =

∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ·Ψ(ξ, η)]

(2A+ 1)× (2B + 1)
(5.2)

σ′(x1, x2) =

(∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ·Ψ(ξ, η)− µ′(x1, x2)]

2

(2A+ 1)× (2B + 1)

) 1
2

(5.3)

where 2A + 1 and 2B + 1, respectively, are the number of columns and rows
in the averaging window centered at (x1, x2); the function G is a zero mean
Gaussian distribution with a standard deviation w. We choose A, B, and w
to be a few pixels to perform a local Gaussian-weighted normalization for our
target problem (see section 6).

5.2. Histogram Matching

In order to correct the intensity spectrum differences between the normalized
learning projection Ψ′learning and the normalized target projection Ψ′target, a
function Fω of intensity to achieve non-linear cumulative histogram matching
within a region of interest ω is applied. To avoid having background pixels
in the histogram, the region ω is determined as that pixel set whose intensity
values are larger than the mean value in the projection. That is, Fω is defined
by

Fω(Hf (Ψ′target)) ≈ Hf (Ψ′learning) (5.4)

whereHf is the cumulative histogram profiling function. The histogram matched
intensities Ψ?

target (Figure 5.1 (c)) are calculated through the mapping:

Ψ?
target = Ψ′target ◦ Fω (5.5)

6. Experimental Setup and Clinical Context

We describe the experimental setups for evaluating the method and provide
some clinical context. Our target problem is IGRT (Image-guided Radiation
Therapy). There the 3D image I is the planning CT (Computed Tomography),
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(a) (b) (c) (d)

Figure 5.1: (a) A raw Cone-Beam CT (CBCT) projection (target projection), (b) a local
Gaussian normalized CBCT projection (normalized target projection), (c) histogram matched
CBCT projection (normalized and histogram matched target projection) and (d) a local Gaus-
sian normalized DRR of a Fréchet mean CT (learning projection) from a lung dataset. As
shown in the images, after normalization and histogram matching, the intensity contrast in
the target projection becomes closer to that in the learning projection.

and the target projection images Ψ are treatment-time imaging kV projections.
In particular, the kV projections are produced by 1) a rotational CBCT (Cone-
beam CT) imager or 2) a stationary NST (Nanotube Stationary Tomosynthesis)
imager specified in Maltz et al. [22]. Our method’s application to IGRT, referred
to as Correction via Limited-Angle Residues in External Beam Therapy, or
CLARET (Chou et al. [14, 15]), has shown promise in registering the planning
CT to the treatment-time imaging projections. We describe the two treatment
imaging geometries in section 6.1 and CLARET’s application to head-and-neck
IGRT and lung IGRT in sections 6.2 and 6.3, respectively.

6.1. Treatment Imaging Geometry

6.1.1. Cone-beam CT (CBCT)

A CBCT is a rotational imaging system with a single radiation source and
a planar detector, which are mounted on a medical linear accelerator. This
pair rotates by an angle of up to 2π during IGRT, taking projection images Ψ
during traversal (Figure 6.1 (a)). A limited-angle rotation provides a shortened
imaging time and lowered imaging dose. For example, a 5◦ rotation takes ∼ 1
second. In our application, CBCT projections were acquired in a half-fan mode.
Half-fan mode means that the imaging panel (40 cm width by 30 cm height,
source-to-panel distance 150 cm) is laterally offset 16 cm to increase the CBCT
reconstruction diameter to 46 cm. The method’s linear operators are trained for
projection angles over 360 degrees at 1 degree intervals beforehand at planning
time. At treatment time the method chooses the linear operator that is closest
to the current projection angle.

6.1.2. Nanotube Stationary Tomosynthesis (NST)

An NST is a stationary imaging system mounted on a medical linear accelera-
tor that can perform imaging without interfering with treatment delivery. As
illustrated in Figure 6.1 (b), it consists of an arrangement of radiation sources
arrayed around the treatment portal, together with a planar detector. The
geometry thus is fixed and known beforehand. Firing the sources in sequence
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produces a sequence of projection images at different orientations. Each projec-
tion image requires ∼ 200 ms.

(a) (b)

Figure 6.1: (a) Short arc CBCT geometry: rotational imaging system depicting a 30◦arc. The
image detector is laterally offset for half-fan acquisition. (b) The NST geometry: stationary
sources array with angle θ = 22.42◦

6.2. Head-and-neck IGRT

In head-and-neck IGRT, the geometric differences of the skull between plan-
ning time and treatment time can be represented by a rigid transformation.
Therefore, in the pre-registration learning, CLARET samples clinically feasible
variations (±2 cm, ±5◦) in the Euler’s 6-space C to capture the treatment-time
patient’s motions. With a single planning CT I of the patient, the computed
learning projections P(x, I ◦ T (C); θ) are generated by transformation of the
feasible variations T (C) and projection from a given angle θ of the transformed
3D volume I ◦ T (C).

In the registration, CLARET iteratively applies S multi-scale linear operators
M1 to MS to estimate the rigid transformation from the 2D intensity residues
formed by the difference between the normalized target projections Ψ? and the
normalized projections computed from the currently estimated rigid transfor-
mation applied to the planning-time 3D image.

6.3. Lung IGRT

A consideration in lung IGRT is that respiratory motion introduces non-rigid
transformations. In the pre-registration learning stage, a set of 10-phase RCCTs
(Respiratory-correlated CTs) collected at planning time serve as the cyclically
varying 3D images {Jτ over the phase τ}. This image set is used to generate
the deformation shape space C. From these RCCTs, a Fréchet mean image J
and its deformations φτ to the corresponding images Jτ are calculated via an
LDDMM framework. Figure 6.2 (c) shows an example respiratory Fréchet mean
image. The deformation basis functions φpc are then generated by PCA on the
deformation set {φτ over phase τ}. Liu et al. [19] have shown that a shape space
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(a) (b) (c)

Figure 6.2: (a) Respiratory-correlated CT at the End-Expiration (EE) phase (b) RCCT at the
End-Inspiration (EI) phase and (c) Fréchet mean CT generated via the Large Deformation
Diffeomorphic Metric Mapping framework from the RCCT dataset.

with three eigenmodes adequately captures 95% respiratory variations experi-
enced at treatment time. Figure 6.3 shows the first two principal deformation
basis functions.

(a) (b)

Figure 6.3: The (a) first and (b) second principal deformation basis functions analyzed from a
lung RCCT dataset. Colored lines indicate heated body spectrum presentations of the defor-
mation magnitudes. As shown in the images, the first principal motion consists of anterior-
posterior expansion and contraction of the lung, and the second principal motion is along

the superior-inferior direction.
−→
X : Left to Right (LR);

−→
Y : Anterior to Posterior (AP);

−→
Z :

Superior to Inferior (SI).

To generate feasible variations in the deformation space C for learning the
linear operator M, CLARET samples the largest scale of parameters by three
standard deviations of the basis function weights derived from the RCCT image
set. From the Fréchet mean image the computed projections P(x, I ◦ T (C); θ)
are generated by 1) transformation based on the feasible variations T (C) and
2) projection from a given angle θ to the transformed 3D volume I ◦ T (C).

Just prior to treatment, the Fréchet mean image obtained at planning time is
rigidly registered to the CBCT for correcting patient position. During treatment
with planar imaging, CLARET iteratively applies S multi-scale linear operators,
from M1 to MS to estimate the weights C on the basis functions φpc from
current 2D intensity residues. The residues are formed by the difference between
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the normalized and histogram matched target projections Ψ? (Figure 5.1 (c))
and the normalized projections (Figure 5.1 (d)) computed from the presently
estimated deformation applied to the Fréchet mean image.

7. Experiments and Results

We show CLARET’s rigid registration and non-rigid registration results in sec-
tions 7.1 and 7.2, respectively. In particular, we tested the rigid registration
using the NST imaging system for the head-and-neck IGRT and tested the non-
rigid registration using projection images from CBCT scans acquired with the
rotational imaging system lung intratreatment IGRT. In section 7.2.3 we com-
pare the registration accuracy and efficiency of CLARET and an optimization-
based approach.

7.1. Rigid Registration Results

We tested CLARET’s rigid registration by synthetic treatment-time projections
and by real phantom projections, as described in sections 7.1.1 and 7.1.2, re-
spectively. The registration quality was measured by the mean absolute error
(MAE ) and mean target registration error (mTRE ). The MAE in any of the
parameters of C is the mean, over the test cases, of the absolute error in that
parameter. The mTRE for a test case is the mean displacement error, over all
voxels in a 16×16×16 cm3 bounding box (the probable tumor region) centered
on the pharynx in the planning CT I.

mTRE(I) =
1

χ

χ∑
i=1

‖I(yi) ◦ T (Ctrue)− I(yi) ◦ T (Cest)‖2 (7.1)

where χ is the number of pixels in the probable tumor region, yi = (y1, y2, y3)
is the tuple of the ith voxel position, and Ctrue, Cest are the true and the
estimated transformation parameters, respectively.

7.1.1. Synthetic Treatment Projections

We used noise-added DRRs (digitally reconstructed radiographs) of target CTs
as the synthetic treatment-time projections. The DRRs (Figure 7.1(a)) were
generated to simulate the NST projections with dimension 128× 128 and pixel
spacing 3.2 mm (Figure 2.1). The target CTs were transformed from the pa-
tient’s planning CT by taking normally distributed random samples of the trans-
lation and rotation parameters within the clinical extent: ±2 cm and ±5◦, re-
spectively. The planning CTs have a voxel size of 1.2 mm lateral, 1.2 mm
anterior-posterior, and 3.0 mm superior-inferior. The number of imaging posi-
tions was varied to find the minimum number with sub-CT-voxel accuracy in
terms of mTRE.

Zero mean, constant standard deviation Gaussian noise was added to the DRRs
to generate the synthetic projections. The standard deviation of the noise was

12



chosen to be 0.2 × (mean bony intensity - mean soft tissue intensity). This
noise level is far higher than that produced in the NST system. An example
synthetic projection is shown in Figure 7.1(b).

(a) (b) (c)

Figure 7.1: (a) A raw DRR from a x-ray source in the NST (b) DRR with Gaussian noise
added (c) the NST geometry of two opposing x-ray sources

We first studied how many projection images are needed for CLARET’s learning
to obtain sub-voxel accuracy. The results on 30 synthetic test cases of a head-
and-neck dataset, displayed in Figure 7.2(a), show that two projection images
are sufficient to achieve sub-CT-voxel accuracy. Figure 7.2(a) also shows the
method’s accuracy improves with more projections. However, we note that re-
dundant projections may contribute error in the parameter estimation. There-
fore, the 4-projection geometry (Figure 7.2(a)), which used the middle x-ray
source on each imaging bank, produced the sufficient and necessary number of
projections to capture the simulated rigid motions. Figure 7.1(c) shows the
geometry of the two opposing x-ray sources that generated the two projection
images in the study. We note that the choice of opposing sources is such that
the maximum angle between images ( 22.5 degrees) is formed with the NST
system.

An analysis of the effect of the number of scales on multi-scale learning (section
4.2) shows that increasing the number of scales reduces the registration errors
(Figure 7.2(b)).

Table 1 shows the statistics of the errors in each rigid parameter from 90 syn-
thetic test cases generated from three patients’ planning CTs (30 cases for each
CT). The CLARET registration used only the two opposing NST projection
images (Figure 7.1(c)).

(mm; ◦) Tx Ty Tz Rx Ry Rz mTRE

MAE 0.094 0.302 0.262 0.1489 0.0248 0.1540 0.524
SD 0.085 0.211 0.715 0.1093 0.0174 0.2824 0.728

Table 1: Mean absolute errors (MAE) and standard deviation (SD) of the absolute errors of
the six rigid parameters obtained from 90 synthetic test cases in which CLARET registration
used two synthetic NST projection images.
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(a) (b)

Figure 7.2: Boxplot results of errors in varying (a) the number of projections used and (b)
the number of scales used for CLARET’s rigid registration. Red dots are the outliers. In (a),
projections of equally-spaced sources were used.

7.1.2. Real Treatment Projections

We tested CLARET’s rigid registration on a head phantom dataset. NST pro-
jections (dimension: 1024× 1024; pixel spacing: 0.4 mm) of the head phantom
were downsampled to dimension 128× 128 with a pixel spacing of 3.2 mm (Fig-
ure 7.3(a)). The dimension of the planning CT is 512 × 512 × 96 with a voxel
size of 3.43 mm3. The ground truth was obtained by rigidly registering all 52
NST projections to the planning CT by the l-BFGS optimization (Nocedal [23])
of the similarity metric in projection space.1 The initial mTRE over the head
region is 51.8 mm. With 4-scale learning (S = 4), CLARET obtained a sub-
voxel accuracy of 3.32 mm using only two projections in 5.81 seconds. It was
computed on a 16-core laptop GPU (NVIDIA GeForce 9400m) where the paral-
lelization is limited. A factor of 32 speed-up ( 0.18 seconds per registration) can
be expected when using a 512-core GPU. As shown in Figure 7.3(b) and 7.3(c),
CLARET accuracy improves with increased number of projections and scales in
the multi-scale learning process. The registration time is approximately linear
with the number of projections used.

7.2. Non-rigid Registration Results

We tested CLARET’s non-rigid registration with synthetic and real patient
cone-beam projections, as described in sections 7.2.1 and 7.2.2, respectively.
RCCT datasets (CT dimension 512×512×120; voxel size 1 mm lateral × 1 mm
anterior-posterior × 2.5 mm superior-inferior) were generated with an 8-slice
scanner (LightSpeed, GE Medical Systems) by acquiring multiple CT images
for a complete respiratory cycle at each couch position while recording patient

1Results in Frederick et al. [24] suggests that 2D/3D registration accuracy is higher than
limited-angle-reconstructed-3D/3D registration accuracy for the NST geometry.
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(a) (b) (c)

Figure 7.3: (a) One of the testing NST projection of a head phantom. (b) Time plots and (c)
error plots of CLARET’s registrations on a real head-and-neck phantom dataset. Registrations
were accelerated on a 16-core laptop GPU (NVIDIA GeForce 9400m).

respiration (Real-time Position Management System, Varian Medical Systems).
The CT projections were retrospectively sorted (GE Advantage 4D) to produce
3D images at 10 different respiratory phases.

7.2.1. Synthetic Treatment Projections

We used DRRs of the target CTs as the synthetic treatment-time projections.
The DRRs were generated to simulate projections from a rotating kV imag-
ing system (section 6.1.1) mounted on the gantry of the medical accelerator
(TrueBeam, Varian Medical Systems). The target CTs were deformed from the
patient’s Fréchet mean CT by taking normally distributed random samples of
the coefficients of the first three PCA-derived deformation eigenmodes of the
patient’s RCCT dataset (section 3.2).

For each of the 10 CLARET registrations, we used a single simulated coronal
projection (dimension 128× 96; pixel spacing 3.10 mm) at angle 14.18◦ (Figure
5.1(d)) as input. (Future studies will investigate the effect of this pixel spacing
on the registration quality.) The registration quality was then evaluated by
measuring the 3D tumor centroid difference between the CLARET-estimated
CT and the target CT. 3D tumor centroids were calculated from active contour
(geodesic snake) segmentations (Yushkevich et al. [25]). As shown in Table 2,
after registration CLARET reduces more than 85% of the centroid error.

Case # 1 2 3 4 5 6 7 8 9 10

Before 8.2 21.3 21.8 20.1 9.9 10.2 10.9 15.7 14.9 19.9
After 1.3 0.8 1.5 3.3 0.8 1.3 0.5 1.6 2.1 2.7

Table 2: 3D tumor centroid error (mm) before and after CLARET’s registration for the 10
randomly generated test cases.

We studied CLARET’s registration quality in terms of average DVF (Displace-
ment Vector Field) error over all cases and all CT voxels versus different angular
spacings used in learning. Registrations using two projections with four differ-
ent angle separations were tested by 30 randomly generated test cases. Figure

15



7.4(a) shows that the average DVF error reduces with appropriately large an-
gular separations. However, tumor motion or respiratory motion may not be
visible or inferable in projections from certain angles. For example, the tumor
may be obscured by denser organs (i.e., mediastinum). In Figure 7.4(a) the
respiration motion may not be inferable from the projection at 9.68◦ resulting
in a larger error in the parameter estimation.

We also studied CLARET’s registration quality by measuring the average DVF
error versus the number of projections used for learning. For each number
of projections, we generated 30 random test cases. Figure 7.4(b) shows no
particular trend. As a result, we used a single projection to test CLARET’s
non-rigid registration for the real patient data in the next section.

(a) (b)

Figure 7.4: Boxplots of average displacement vector field errors when varying (a) the angular
spacing and (b) the number of projections used for CLARET’s non-rigid registration. Red
dots are the outliers. In (a), two projections for each test were used. For the zero-degree test
case, only one projection was used. In (b), DRRs spanning 9.68◦ about 14.18◦ were used in
each test. The single projection was tested at 14.18◦ (see Figure 5.1(d)).

7.2.2. Real Treatment Projections

We tested CLARET on 5 lung patient datasets consisting of projections from pa-
tient CBCT scans acquired with the rotational imaging system (section 6.1.1).
CLARET 2D/3D registration used a single coronal CBCT projection at an-
gle 14.18◦ and downsampled (original dimension 1024 × 768 and pixel spacing
0.388 mm) to 128 × 96 with 3.10 mm pixel spacing (Figure 5.1(a)). Separate
registrations were done using projections at the EE (End-Expiration) and EI
(End-Inspiration) phases. Prior to 2D/3D registration, the Fréchet mean image
was rigidly registered to the patient’s CBCT image so as to align the vetebral
anatomy in both images. We measured the difference in 3D tumor centroid po-
sition (Figure 7.6(a)) between the CLARET-estimated CT and reconstructed
CBCT at the same respiratory phase as the projection used in the 2D/3D regis-
tration. The RMS window width was set to 32.0 mm for the Gaussian normal-
ization of this imaging geometry, which was predetermined to yield the smallest
3D centroid error in one lung dataset (Figure 7.5). (Future studies will check
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whether this window size is also best for other datasets.) The results shown in
Table 3 suggest a consistency in registration quality between the synthetic image
tests and real projection image tests. The mean and standard deviation of 3D
tumor centroid errors following 2D/3D registration are 2.66 mm and 1.04 mm,
respectively. The errors include an uncertainty in tumor position in the CBCT
projections, owing to variability in the manual segmentations in the CBCT re-
constructions, and residual tumor motion within the EE and EI phase intervals.
Based on repeatability measurements of the manual segmentations and tumor
motion analysis of the RCCT datasets, we estimate the standard deviation un-
certainty in manually determined tumor 3D position to be 1 mm. The average
computation time is 2.61 seconds on a 128-core GPU, NVIDIA GeForce 9800
GTX. A factor of four speed-up (to 0.65 seconds) can be expected when using
a 512-core GPU for acceleration.

The clinical goal is to improve tumor localization during treatment using CLARET.
Assuming a mean lung tumor motion extent of about 10 mm, the standard devi-
ation uncertainty is about one-third of the motion extent, or 3 mm. In order to
improve on current clinical practice (i.e., no image guidance during treatment) a
standard deviation uncertainty of 2 mm or less is desirable. Furthermore, since
most of the motion is in the inferior-superior direction, it is desirable to achieve
2 mm uncertainty or less in that direction. Our results show that CLARET
achieves the clinically desired accuracy: the mean and standard deviation 2D
tumor centroid error after registration is 1.96 mm and 1.04 mm, respectively.
CLARET reduces positional errors in directions along the plane of the projec-
tion more than in the out-of-plane direction. As shown in Table 3, most of the
percent 2D error reductions (coronal in-plane), except cases from patient #1, are
larger than 3D error reductions. This is expected because 2D/3D registration
with a single projection is more sensitive to tumor displacements in the image
plane but less sensitive to scale changes due to out-of-plane displacements.

Figure 7.5: 3D tumor centroid error plots on a lung dataset for varying width of the Gaussian
window used for CLARET’s local Gaussian normalization.

Figure 7.6(b) shows the 3D meshes of the tumors in the Fréchet mean CT, the
CBCT at EE, and the estimated CT of a lung dataset for visual validation.
As shown in the Figure, the tumor position in the CLARET-estimated CT is
superior to that in the mean image, as expected physiologically for the EE phase.

17



P
at

ie
n
t

#
e3
D
E
E

(m
m

)
e2
D
E
E

(m
m

)
e3
D
E
I

(m
m

)
e2
D
E
I

(m
m

)
T

im
e

(s
)

1
2.

27
(7

.9
6,

72
%

)
2.

0
7

(4
.1

6
,5

0
%

)
5
.2

6
(8

.0
3
,3

4
%

)
4
.7

1
(6

.8
0
,3

1
%

)
1
.9

4
±

0
.7

4
2

3.
20

(9
.7

0,
67

%
)

2.
2
3

(9
.1

8
,7

6
%

)
2
.8

5
(7

.4
5
,6

2
%

)
1
.6

4
(6

.7
7
,7

5
%

)
3
.9

9
±

1
.9

9
3

1.
32

(1
.4

7,
10

%
)

1.
3
2

(1
.4

7
,1

0
%

)
2
.0

3
(3

.6
3
,4

4
%

)
1
.8

6
(3

.4
9
,4

7
%

)
2
.4

5
±

0
.1

5
4

2.
77

(1
0.

17
,7

3%
)

1.
5
1

(9
.6

7
,8

4
%

)
2
.3

1
(5

.5
3
,5

8
%

)
1
.5

2
(5

.1
7
,7

1
%

)
1
.9

6
±

0
.0

2
5

2.
24

(3
.5

2,
36

%
)

1.
9
1

(3
.4

6
,4

5
%

)
2
.4

0
(3

.8
9
,3

8
%

)
0
.8

3
(3

.1
6
,7

4
%

)
2
.7

6
±

1
.2

6

T
a
b

le
3
:

3
D

a
n

d
2
D

tu
m

o
r

ce
n
tr

o
id

er
ro

rs
(m

m
)

o
f

E
E

p
h

a
se

,
e3

D
E
E

a
n

d
e2

D
E
E

;
3
D

a
n

d
2
D

tu
m

o
r

ce
n
tr

o
id

er
ro

rs
(m

m
)

o
f

E
I

p
h

a
se

,
e3

D
E
I

a
n

d
e2

D
E
I
;

a
n

d
co

m
p

u
ta

ti
o
n

ti
m

e
fo

r
5

p
a
ti

en
t

d
a
ta

se
ts

.
N

u
m

b
er

s
in

si
d

e
th

e
p

a
re

n
th

es
es

a
re

,
re

sp
ec

ti
v
el

y,
th

e
tu

m
o
r

ce
n
tr

o
id

er
ro

r
(m

m
)

b
ef

o
re

C
L

A
R

E
T

re
g
is

tr
a
ti

o
n

(u
si

n
g

F
ré
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Figure 7.7 shows the same 3-space lines in the mean CT, the reconstructed
CBCT at the EE phase and the CLARET-estimated CT of a lung dataset.
The intersection of the lines with the tumor centroid in the CBCT are in better
agreement with the CLARET-estimated CT than with the mean CT, indicating
that CLARET can accurately locate the tumor in the plane of the projection
(coronal plane) and further corroborating the results of Table 3.

(a) (b)

Figure 7.6: (a) Transaxial image with manual segmented tumor contours in the reconstructed
CBCT at one respiratory phase of a lung dataset (patient 3). The contours were used for 3D
centroid calculation. (b) Tumor meshes in the Fréchet mean CT (white), in the target CBCT
at the EE respiratory phase (blue) and in the CLARET-estimated CT (red) of a lung dataset
(patient 2). The background is a coronal slice of the mean CT for illustration. The overlap
between the estimated and the target tumor meshes indicates a good registration.

7.2.3. Comparison to an optimization-based registration method

We compared the registration accuracy and efficiency between CLARET (eq.
2.5) and an optimization-based method similar to that in Li et al. [9]. The
optimization-based method we implemented optimizes eq. 2.4 (with ρ = 2) using
the l-BFGS quasi-Newton algorithm (Nocedal [23]). To make fair comparisons,
we used the same deformation shape space, the same initializations, the same
GPU acceleration for the projection operator P, and the same testing datasets.

For the comparisons, we randomly sampled 30 synthetic deformations for each of
the five lung patients as the test cases. The deformations are sampled randomly
within ±3 standard deviations of deformations observed in the patient’s RCCTs.
For each test case, a single coronal CBCT projection (dimension: 1024 × 768
downsampled to dimension: 128×96) was simulated from the deformed Fréchet
mean CT as the target projection. Both methods were initialized with the
realistic Fréchet mean image with no deformation: Ĉ(0) = 0 in eq. 2.1.

For CLARET, we used 4 scales of learning for each patient. At the sth scale
of learning, each deformation parameter ci (i = 1, 2, 3) was collected from the
combinations of ±3σi · (4 − s + 1)/4, ±1.5σi · (4 − s + 1)/4, and 0 where σi is
the standard deviation of the ith eigenmode weights observed in the patient’s
RCCTs. Therefore, at each scale of learning, 125 training deformations are
sampled.
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(a) (b) (c)

Figure 7.7: The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT at the
EE phase and (c) the estimated CT of the same lung dataset used in Figure 7.6 (b). Upper
row: lines indicate the tumor centroid in the CBCT at the EE phase; lower row: lines indicate
the diaphragm contour in the CBCT at the EE phase.

We compare the registration accuracy by the average registration error distance
over the lung region. As Figure 7.8 shows, CLARET yields more accurate results
than the l-BFGS optimization-based registration in almost every test cases in all
five patients. Table 4 shows statistical comparisons of the registration accuracy.
The maximum error produced by CLARET among the 30×5=150 test cases
is only 0.08 mm where the maximum error produced by l-BFGS is 13.15 mm,
which is 164 times higher than CLARET. The smaller median error and error
standard deviation also shows that CLARET is more accurate and more robust
than the l-BFGS optimization-based approach.

In term of registration speed, Figure 7.9 shows that CLARET is faster than
l-BFGS in every test case and has relatively small variation in speed. The
statistical results shown in Table 6 indicate that the longest registration time
produced by CLARET is still shorter than the shortest time produced by l-
BFGS.

As our results show, in our implementations CLARET is more robust, accurate,
and faster than the l-BFGS optimization.
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Figure 7.8: mean target registration error (mTRE) on test data generated from five patients
(pt1-pt5): CLARET vs. the l-BFGS optimization vs. the initial error before registration.

mTRE (mm) min. max. median mean std
CLARET 1.1e−5 0.08 2.3e−4 1.5e−3 7.4e−3

l-BFGS 2.0e−4 13.15 8.8e−3 0.54 2.01

Table 4: Registration accuracy (mTRE) statistics on the five patient data: CLARET vs. the
l-BFGS optimization. std=standard deviation

time (s) min. max. median mean std
CLARET 0.94 5.15 1.73 1.95 0.74
l-BFGS 5.29 78.73 19.30 23.76 14.41

Table 5: Registration time statistics on the five patient data: CLARET vs. the l-BFGS
optimization. std=standard deviation
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Figure 7.9: Registration time on the five patient data (pt1-pt5): CLARET vs. the l-BFGS
optimization.

8. Conclusions and Discussion

We have presented a novel rigid and non-rigid 2D/3D registration method that
estimates an image region’s 3D motion/deformation parameters from a small
set of 2D projection images of that region. Our clinical goal is to model not
only temporal changes in tumor position and shape (tumor tracking), but also
those for the surrounding organs at risk. In this context the volume of interest
is known to exhibit deformations (Mageras et al. [26], Rosu et al. [27]). The
method is based on producing limited-dimension parameterization of geometric
transformations based on the region’s 3D images. The method operates via
iterative, multi-scale regression, where the regression matrices are learned in a
way specific to the 3D image(s) for the specific patient. The synthetic and real
image test results have shown the method’s potential to provide fast and accu-
rate tumor localization with a small set of treatment-time imaging projections
for IGRT. Faster registration is expected when a modern GPU is used for a
higher level of parallelization.
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However, in order to obtain such registration accuracy, our method requires a
well-modeled motion/deformation shape space that includes all feasible varia-
tions of the image region. In many radiation therapy situations for certain parts
of the body, collecting the required number of 3D images of the patient to form
the well-modeled shape space is not directly obtainable in current therapeu-
tic practice. Future work will investigate the possibility of modeling the shape
space through a patient population.

To make our method more robust for the IGRT application, future work will
also evaluate the method on more patient datasets and study the effects of
the projection resolution and the normalization window size on the registration
accuracy.
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