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In computer vision and image analysis, image registration between 2D projections and a 3D image that
achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel
method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or
a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam
Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the
registration stage, linear operators are used to iteratively estimate the motion/deformation parameters
based on the current intensity residue between the target projection(s) and the digitally reconstructed
radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a
two-step learning process. First, it builds a low-order parametric model of the image region’s motion/
deformation shape space from its prior 3D images. Second, using learning-time samples produced from
the 3D images, it formulates the relationships between the model parameters and the co-varying 2D pro-
jection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matri-
ces yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D
projection intensity residues in the registration. The method’s application to Image-guided Radiation
Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid
motion in the head and neck and under respiratory deformation in the lung, using one treatment-time

imaging 2D projection or a small set thereof.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a variety of situations of image-guided therapy in medicine, a
2D/3D geometric transformation is required to relate a 3D image of
the patient used in planning the treatment with a set of 2D images
acquired at treatment time [1]. Current 2D/3D registration methods
[2-5] find the transformation that optimizes an objective function
consisting of an image matching term and a regularization term.
As a fast optimization often requires many evaluations of the func-
tion’s Jacobian, optimization-based registration methods without
further parallelization are structurally slow unless often unrealisti-
cally accurate initialization is provided. With GPU parallelization
recent optimization-based 2D/3D registration methods are able to
localize the tumor within 1 s assuming rigid patient motion [6,7]
or non-rigid motion [8,9]. However, the mismatch in the registra-
tion dimensionality often introduces a non-convex objective func-
tion which is prone to optimization solutions that are caught in
local minima (i.e., non-global solutions) with normally available
initializations. In order to avoid local minima and to reduce the reg-
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istration time, Li et al. [8,9] adopted a bootstrap-like approach
where optimizations were initialized by registration results from
previous time points. Their optimizations were fully-implemented
on high-end GPUs and obtained sub-second speed. Other methods
have used neural networks to model rigid [10-12], or non-rigid
transformations [13] and to achieve efficient computation at regis-
tration time. However, to the best of our knowledge, there is no
general framework that supports both rigid and non-rigid 2D/3D
registration. We have sought a learning-based framework that is
fast, general to both types of registration, robust to normally avail-
able initializations, and not based on optimization.

In this paper, we describe the methodology of our general learn-
ing-based framework that was initially presented in Chou et al.
[14] for rigid registration and Chou et al. [15] for non-rigid registra-
tion, respectively. Steininger et al. [16] subsequently presented a
similar approach for rigid registration. In a way similar to the face
alignment algorithm AAM (Active Appearance Model) by Cootes
et al. [17] and the efficient tracking scheme by Jurie and Dhome
[18], we seek a linear operator M, calculated by linear regression,
that when iteratively applied to intensity differences (residue) R
between digitally-reconstructed radiographs (DRRs), i.e., projec-
tions, of the currently estimated 3D image and the measured 2D
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images, yields the update of the estimated transformation param-
eters AC that reduce the residue.

AC=M-R (1.1)

The registration process in Eq. (1.1) requires no optimizations;
therefore it can support efficient registration. Different from the
AAM, our linear operator M estimates the 3D transformation
parameters from 2D projection intensity residues R for the 2D/3D
registration.

The paper is organized as follows. First, we describe our 2D/3D
registration framework and our efficient approximation of the
shape parameters C in Section 2. In Section 3, we describe how
we obtain low-order parameterization for rigid motion and for a
deformation shape space. In Section 4, we describe our regression
learning to calculate the linear operator M and an efficient multi-
scale learning scheme. In Section 5, we describe how we generate
commensurate projection intensities to support our regression
estimation. In Section 6, we describe the experimental setup and
clinical context of our medical application. In Section 7, we present
our registration results and compare them to those of an optimiza-
tion-based method. In Section 8, we discuss our rigid and non-rigid
registration results.

2. 2D/3D registration

We first describe the general framework of our 2D/3D image
registration method. Second, we describe our approach for efficient
registration within this framework.

2.1. General 2D/3D registration

The goal of the 2D/3D registration is to match a transformed 3D
grey-scale source image to a set of target 2D projections ¥. We de-
note the projection intensity at pixel location X = (x1,X,) and pro-
jection angle 0 as Y(x; 0). The registration is formulated as an
iterative process. Let I denote the 3D source image and I(t) denote
the 3D image at iteration t. The estimated 3D image region’s mo-
tion/deformation parameters f(t) define a geometric transforma-
tion T(E(t)) in a shape space determined from the 3D images.
The E(t) are calculated by the estimated parameter updates
AC(t) (Eq. (2.1)) obtained from the projection intensity residues
R between the target 2D projections ¥(x; 0) and the computed
projections P(x,I(t — 1); 0) of the transformed 3D source image at
iteration t — 1 (Eq. (2.2)). After parameter estimation in each itera-
tion, an image transformation (Eq. (2.3)) is required in order to pro-
duce updated computed projections for the parameter estimation
in the next iteration.

{E(O) =0 (2.1)
C(t) = C(t— 1)+ AC(t)

R[P(x;0),P(X,I(t — 1);0)] = ¥(x;0) — P(X,I(t — 1); 0) (2.2)

(a)
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7 Projecti
Al 80
X-ray ’,/' ~volume

source

Fig. 2.1. An X-ray projection is simulated by ray-casting on a 3D image volume. The
dashed lines and arrows indicate the ray directions.

I(t) = 1(0) o T(C(t))
10) =1
T(0)=1d

(23)

Id is the identity transformation. The projection operator P is for-
mulated by a simulation of the imaging process. For example, in
the medical literature, to simulate a 3D image’s X-ray projections
from its 3D volume (DRRs), we use ray-casting to compute the pho-
ton attenuation through a given imaging geometry (Fig. 2.1). We
note that although Eq. (2.2) indicates a simple subtraction of the
projection of the 3D image from the target projection, in actual clin-
ical application one must apply additional processing to account for
X-ray scatter in the target projection. This will be explained further
in Section 5.

One way to obtain the estimated parameter updates Af(t) is by
optimizing a measure p of the concatenated intensity residue RY
with respect to the parameter updates AC. The concatenated inten-
sity residues R, defined as the concatenation over all of the projec-
tion angles 6 of the residues R, : R' = (Ro, s Roy, -, Ryp).

AC(t) = arg min|R'[¥(x), P(x,1(0) o T(C(t — 1) + AC))] (2.4)

I,
Without parallelization, iterative computations to carry out this
optimization are structurally slow. Moreover, the optimization
may easily converge to a local minimum since the energy functional
in Eq. (2.4) is not convex. See Section 7.2.3 for the detailed evalua-
tion of the optimization-based approach.

2.2. Efficient linear approximation of AC

We propose an alternative method to calculate AC using multi-
scale linear operators M. At each iteration of the registration, our
method estimates the motion/deformation parameter updates
AC(t) by applying a linear operator M; of scale s to the current con-
catenated intensity residue R'. That is,

AC(t) = R'[¥(x),P(x,I(t — 1))] - M,
where s=1,2,...,5; t=1,2,..., tm (2.5)

Typically, S=4 and t;,q < 10 are satisfactory. The computation in
Eq. (2.5) involves only matrix multiplications by Ms, computation

TR A

Fig. 5.1. (a) Araw Cone-Beam CT (CBCT) projection (target projection), (b) a local Gaussian normalized CBCT projection (normalized target projection), (c) histogram matched
CBCT projection (normalized and histogram matched target projection), and (d) a local Gaussian normalized DRR of a Fréchet mean CT (learning projection) from a lung
dataset. As shown in the images, after normalization and histogram matching, the intensity contrast in the target projection becomes closer to that in the learning projection.
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(b)

Fig. 6.1. (a) Short arc CBCT geometry: rotational imaging system depicting a 30°arc.
The image detector is laterally offset for half-fan acquisition. (b) The NST geometry:
stationary sources arraywith angle 6 = 22.42°.

of the projections P, and subtractions (Eq. (2.2)). This makes the reg-
istration structurally fast. The calculation of the multi-scale linear
operators M involves a machine learning process described in detail
in Section 4. Due to the leveragable advantage of the machine learn-
ing process and the fast linear operation, our proposed method
shows a more robust and faster registration than the optimiza-
tion-based approach. See Section 7.2.3 for the comparisons.

3. Shape space modeling

Our method limits the motion/deformation to a shape space. To
allow M to be accurately learned, we require a low-order parame-
trization C of this shape space. We describe the shape space calcu-
lation for rigid motions and for non-rigid deformations in Sections
3.1 and 3.2 respectively.

3.1. Rigid motion modeling

Rigid motions are modeled explicitly as the variation in the Eu-
ler’s six dimensional rigid space:

C: (tX7ty7tlva7ry7rz) (31)

where &, ty, t, are the translation amounts in cm along the world’s
coordinate axes x, y, z, respectively; and ry, 1, 1, are the rotations in
degrees (°) about the image center, around the world coordinate
axes x, ¥, and z, in succession.

3.2. Deformation modeling

Like others [19,9], we model deformations as a linear combina-
tion of a set of basis deformations calculated through principal
component analysis (PCA). In our target problem, a cyclically vary-
ing set of 3D images {J; over time 7} are available at pre-registra-
tion learning time. From these a mean image J and a set of
deformations ¢, between J; and J can be computed. The basis
deformations are chosen to be the primary eigenmodes of the
PCA of the ¢.. The computed mean image J will be used as the ref-
erence mean image I throughout this paper.

(a)

3.2.1. Deformation shape space and mean image generation

In order to model the deformation space realistically, our meth-
od computes a Fréchet mean image J via an LDDMM (Large Defor-
mation Diffeomorphic Metric Mapping) framework [20] from the
cyclically varying set of 3D images {J; over time t}. The Fréchet
mean, as well as the diffeomorphic deformations ¢ from the mean
to each image J;, are computed using a fluid-flow distance metric
dauia [21]:

N
J=arg rrljinzdﬂuid07jr)2 32)
=1

N 1 .
—argmjin@ | [+ [ e @) —Jf<x>||2dx>
33

where J.(x) is the intensity of the pixel at position x in the image J,
vy, is the fluid-flow velocity field for the image J; in flow time y, o is
the weighting variable on the image dissimilarity, and ¢.(x) de-
scribes the deformation at the pixel location
X: ¢ (X)=x+ fol Vey (X)dy.

The mean image J and the deformations ¢, are calculated by
gradient descent optimization. The set {¢. over t} can be used to
generate the deformation shape space by the following statistical
analysis.

3.2.2. Statistical analysis

Starting with the diffeomorphic deformation set {¢-}, our meth-
od uses PCA to find a set of linear deformation basis functions ¢,,..
The scores /. (basis function weights) for each ¢, yield ¢ in terms
of these basis functions.

N . .
be=P+ ) A b (34)
i=1

We choose a subset of n eigenmodes that capture 95% of the total
variation. Then we let the n basis function weights /' form the n-
dimensional parameterization C.

C=(c,c%---,c" (3.5)
=N 2,0m (3.6)

4. Machine learning

From the motion/deformation shape space we calculate linear
operators M that correlate coarse-to-fine sampled model parame-
ters C with the corresponding projection intensity residue vectors
R. We describe our regression learning to calculate the linear oper-
ators M in Section 4.1 and an efficient multi-scale learning strategy
in Section 4.2.

(b) (c)

Fig. 6.2. (a) Respiratory-correlated CT at the End-Expiration (EE) phase (b) RCCT at the End-Inspiration (EI) phase and (c) Fréchet mean CT generated via the Large

Deformation Diffeomorphic Metric Mapping framework from the RCCT dataset.
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Fig. 6.3. The (a) first and (b) second principal deformation basis functions analyzed from a lung RCCT dataset. Colored lines indicate heated body spectrum presentations of
the deformation magnitudes. As shown in the i images, the first prmcnpal motion consists ofanterlorj)osterlor expansion and contraction of the lung, and the second principal

motion is along the superior-inferior direction. X: Left to Right (LR); Y': Anterior to Posterior (AP); Z

this figure legend, the reader is referred to the web version of this article.)

4.1. Residues to model parameters regression learning

As detailed in Section 4.2 we select a collection of model param-
eters {C, over cases x} for learning. Each case is formed by a selec-
tion of parameter settings. The training uses deviations from the
reference image, such that AC = C,. Linear regression is used to
correlate the selected modeled parameters C, in the xth case with
the co-varying projection intensity residue set {R,, over the pro-
jection angles 0}. R, 4(x) is computed as the intensity difference
at pixel location x = (xq,x2) between the projection at angle 6 of
the mean image I (or an untransformed 3D image for the rigid case)
and the projection of the image IoT(C,.) transformed with the sam-
pled model parameter C,:

Ri.o(X)

We concatenate the residues at each projection angle to formulate a

= P(X,10T(C,); 0) — P(x,1;0) (4.1)

residue set in a vector R’K = (Rig,,Ricgys - -, Rior) and build a linear
regression for all cases k=1, 2,...,K:

G R

G R}

R

=
-~
N

Ck R}

The regression matrix M that gives the best estimation of the linear
operators per parameter scale is computed via a pseudo-inverse:

: Superior to Inferior (SI). (For interpretation of the references to color in

@ Used x-ray sources
O Unused x-ray sources

® ()

Fig. 7.1. (a) A raw DRR from a X-ray source in the NST (b) DRR with Gaussian noise added (c) the NST geometry of two opposing X-ray sources.

M = (R'R") 'RC (4.3)

4.2. Multi-scale learning

To provide adequate regression learning, C must be sufficiently
sampled to capture all the shape variations. However, the direct
implementation requires an exponential time computation. In-
stead, we have designed an efficient scheme that learns the model
parameters from large to small scales, 1 to S, to yield S scale-related
regression matrices My, My, ..., Ms. At the sth scale of learning,
each model parameter ¢ is collected from the combinations of
+3¢'. (S —s+1)/S and 0 where ¢' is the standard deviation of the
basis function weights 4 observed at pre-registration time. In the
registration stage the calculated multi-scale linear operators are
applied sequentially, from M; to Ms, to give new estimations of
the model parameters from large to small scale. After evaluating
the estimation accuracy for target examples of both the rigid and
non-rigid types, we found that four scales of learning (S = 4) pro-
duced sufficiently dense samples in C to achieve the required reg-
istration accuracy.

5. Commensurate projection intensity generation

X-ray scatter is a significant contribution to the cone-beam CT
projections. However, the regression estimators M are not invari-
ant to the projection intensity variations caused by X-ray scatter.
Therefore, our method uses a normalization filter (Section 5.1)
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and a subsequent histogram matching scheme (Section 5.2) to gen-
erate commensurate intensities between learning-time computed
projections and registration-time target projections.

5.1. Local Gaussian normalization

To account for variations caused by X-ray scatter, we perform a
2D Gaussian-weighted normalization for each pixel in the learning
projections (Fig. 5.1d) and the target projections (Fig. 5.1b). To cal-
culate the normalized value ¥'(x; ) at pixel location X = (x1,X;)
and projection angle 0, we subtract a Gaussian-weighted spatial
mean p'(x1,x;) from the raw pixel value ¥(x4,x,) and divide it by
a Gaussian-weighted standard deviation ¢’(x1,X2).

W(x1,X%2) — W(X1,X2)

Pl ) = r) &1
, Y el LG ;0,w) - (&, )]
Wi x2) = QA+1)x 2B+ 1) (>:2)
S Sl b 0 W) (e - ki)
Gl(Xl Xz): E=x1—ALun=x,-B C?”a ) .7’1 ,u 1,42
’ 2A+1)x (2B+1)

(5.3)

where 2A+ 1 and 2B + 1, respectively, are the number of columns
and rows in the averaging window centered at (xq,x;); the function
G is a zero mean Gaussian distribution with a standard deviation w.
We choose A, B, and w to be a few pixels to perform a local Gauss-
ian-weighted normalization for our target problem (see Section 6).

5.2. Histogram matching

In order to correct the intensity spectrum differences between
the normalized learning projection ¥}, and the normalized tar-
get projection ¥, a function F,, of intensity to achieve non-lin-
ear cumulative histogram matching within a region of interest w is
applied. To avoid having background pixels in the histogram, the
region « is determined as that pixel set whose intensity values
are larger than the mean value in the projection. That is, F,, is de-
fined by

Fo (Hr (Phager) ) ~ Hy (Pieaming ) (5.4)

Number of Projections for CLARET Learning
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where Hy is the cumulative histogram profiling function. The histo-
gram matched intensities ‘Pf;rget (Fig. 5.1c) are calculated through
the mapping:

lp* llU;arget © F(U (55)

target —

6. Experimental setup and clinical context

We describe the experimental setups for evaluating the method
and provide some clinical context. Our target problem is IGRT (Im-
age-guided Radiation Therapy). There the 3D image I is the plan-
ning CT (Computed Tomography), and the target projection
images ¥ are treatment-time imaging kV projections. In particular,
the kV projections are produced by (1) a rotational CBCT (Cone-
beam CT) imager or (2) a stationary NST (Nanotube Stationary
Tomosynthesis) imager specified in Maltz et al. [22]. Our method’s
application to IGRT, referred to as Correction via Limited-Angle
Residues in External Beam Therapy, or CLARET [14,15], has shown
promise in registering the planning CT to the treatment-time imag-
ing projections. We describe the two treatment imaging geome-
tries in Section 6.1 and CLARET’s application to head-and-neck
IGRT and lung IGRT in Sections 6.2 and 6.3, respectively.

6.1. Treatment imaging geometry

6.1.1. Cone-beam CT (CBCT)

A CBCT is a rotational imaging system with a single radiation
source and a planar detector, which are mounted on a medical lin-
ear accelerator. This pair rotates by an angle of up to 27 during
IGRT, taking projection images ¥ during traversal (Fig. 6.1a). A
limited-angle rotation provides a shortened imaging time and low-
ered imaging dose. For example, a 5° rotation takes ~1s. In our
application, CBCT projections were acquired in a half-fan mode.
Half-fan mode means that the imaging panel (40 cm width by
30 cm height, source-to-panel distance 150 cm) is laterally offset
16 cm to increase the CBCT reconstruction diameter to 46 cm.
The method’s linear operators are trained for projection angles
over 360° at 1° intervals beforehand at planning time. At treatment
time the method chooses the linear operator that is closest to the
current projection angle.

6.1.2. Nanotube stationary tomosynthesis (NST)
An NST is a stationary imaging system mounted on a medical
linear accelerator that can perform imaging without interfering

1.0 Number of Scales for CLARET Learning

0.8

0.6

0.4

mTRE (mm)

0.2

Number of Scales

(b)

Fig. 7.2. Boxplot results of errors in varying (a) the number of projections used and (b) the number of scales used for CLARET's rigid registration. Red dots are the outliers. In
(a), projections of equally-spaced sources were used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Mean absolute errors (MAE) and standard deviation (SD) of the absolute errors of the
six rigid parameters obtained from 90 synthetic test cases in which CLARET
registration used two synthetic NST projection images.

(mm;°)  Tx Ty Tz Rx Ry Rz mTRE
MAE 0.094 0302 0262 0.1489 0.0248 0.1540 0.524
SD 0.085 0211 0715 0.1093 0.0174 0.2824 0.728

with treatment delivery. As illustrated in Fig. 6.1b, it consists of an
arrangement of radiation sources arrayed around the treatment
portal, together with a planar detector. The geometry thus is fixed
and known beforehand. Firing the sources in sequence produces a
sequence of projection images at different orientations. Each pro-
jection image requires ~200 ms.

6.2. Head-and-neck IGRT

In head-and-neck IGRT, the geometric differences of the skull
between planning time and treatment time can be represented
by a rigid transformation. Therefore, in the pre-registration learn-
ing, CLARET samples clinically feasible variations (+2 cm,*5°) in
the Euler’s 6-space C to capture the treatment-time patient’s mo-
tions. With a single planning CT I of the patient, the computed
learning projections P(x,I o T(C); 0) are generated by transforma-
tion of the feasible variations T(C) and projection from a given an-
gle 0 of the transformed 3D volume I o T(C).

In the registration, CLARET iteratively applies S multi-scale lin-
ear operators M; to Mg to estimate the rigid transformation from
the 2D intensity residues formed by the difference between the
normalized target projections ¥ and the normalized projections
computed from the currently estimated rigid transformation ap-
plied to the planning-time 3D image.

6.3. Lung IGRT

A consideration in lung IGRT is that respiratory motion intro-
duces non-rigid transformations. In the pre-registration learning
stage, a set of 10-phase RCCTs (Respiratory-correlated CTs) col-
lected at planning time serve as the cyclically varying 3D images
{J: over the phase 7}. This image set is used to generate the defor-
mation shape space C. From these RCCTs, a Fréchet mean image J
and its deformations ¢ to the corresponding images J. are calcu-
lated via an LDDMM framework. Fig. 6.2c shows an example respi-
ratory Fréchet mean image. The deformation basis functions ¢
are then generated by PCA on the deformation set {¢. over phase
t}. Liu et al. [19] have shown that a shape space with three eigen-
modes adequately captures 95% respiratory variations experienced
at treatment time. Fig. 6.3 shows the first two principal deforma-
tion basis functions.

C.-R. Chou et al./Computer Vision and Image Understanding 117 (2013) 1095-1106

Table 2
3D tumor centroid error (mm) before and after CLARET's registration for the 10
randomly generated test cases.

Case# 1 2 3 4 5 6 7 8 9 10
Before 82 213 218 201 99 102 109 157 149 199
After 1.3 0.8 1.5 33 08 13 0.5 1.6 2.1 2.7

To generate feasible variations in the deformation space C for
learning the linear operator M, CLARET samples the largest scale
of parameters by three standard deviations of the basis function
weights derived from the RCCT image set. From the Fréchet mean
image the computed projections P(x,I o T(C); 6) are generated by
(1) transformation based on the feasible variations T(C) and (2)
projection from a given angle 0 to the transformed 3D volume
1o T(C).

Just prior to treatment, the Fréchet mean image obtained at
planning time is rigidly registered to the CBCT for correcting pa-
tient position. During treatment with planar imaging, CLARET iter-
atively applies S multi-scale linear operators, from M; to Ms to
estimate the weights C on the basis functions ¢, from current
2D intensity residues. The residues are formed by the difference
between the normalized and histogram matched target projections
Y™ (Fig. 5.1¢) and the normalized projections (Fig. 5.1d) computed
from the presently estimated deformation applied to the Fréchet
mean image.

7. Experiments and results

We show CLARET’s rigid registration and non-rigid registration
results in Sections 7.1 and 7.2, respectively. In particular, we tested
the rigid registration using the NST imaging system for the head-
and-neck IGRT and tested the non-rigid registration using projec-
tion images from CBCT scans acquired with the rotational imaging
system lung intratreatment IGRT. In Section 7.2.3 we compare the
registration accuracy and efficiency of CLARET and an optimiza-
tion-based approach.

7.1. Rigid registration results

We tested CLARET’s rigid registration by synthetic treatment-
time projections and by real phantom projections, as described
in Sections 7.1.1 and 7.1.2, respectively. The registration quality
was measured by the mean absolute error (MAE) and mean tar-
get registration error (mTRE). The MAE in any of the parameters
of C is the mean, over the test cases, of the absolute error in that
parameter. The mTRE for a test case is the mean displacement
error, over all voxels in a 16 x 16 x 16 cm® bounding box (the
probable tumor region) centered on the pharynx in the planning
CT L

Number of projections used

(b)

CLARET Registration Speed CLARET's Registration Accuracy
14 ~
s 12t &
g P =
= 10f e £
c P =3
s / W e
.g 8l // [ -6~1 projection
a / £
13 4
Q /
O s o
4"" 6 projections
1 2 3 4 5 6 1 4

2 3
Number of Scales for CLARET Learning

(c)

Fig. 7.3. (a) One of the testing NST projection of a head phantom. (b) Time plots and (c) error plots of CLARET’s registrations on a real head-and-neck phantom dataset.

Registrations were accelerated on a 16-core laptop GPU (NVIDIA GeForce 9400 m).
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Angular Spacings for CLARET Learning
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Fig. 7.4. Boxplots of average displacement vector field errors when varying (a) the angular spacing and (b) the number of projections used for CLARET’s non-rigid registration.
Red dots are the outliers. In (a), two projections for each test were used. For the zero-degree test case, only one projection was used. In (b), DRRs spanning 9.68° about 14.18°
were used in each test. The single projection was tested at 14.18° (see Fig. 5.1d). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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where y is the number of pixels in the probable tumor region, y; = (-
Y1,¥2,¥3) is the tuple of the ith voxel position, and Cy e, Ces: are the
true and the estimated transformation parameters, respectively.

7.1.1. Synthetic treatment projections

We used noise-added DRRs (digitally reconstructed radio-
graphs) of target CTs as the synthetic treatment-time projections.
The DRRs (Fig. 7.1a) were generated to simulate the NST projec-
tions with dimension 128 x 128 and pixel spacing 3.2 mm
(Fig. 2.1). The target CTs were transformed from the patient’s plan-
ning CT by taking normally distributed random samples of the
translation and rotation parameters within the clinical extent:
+2 cm and # 5°, respectively. The planning CTs have a voxel size
of 1.2 mm lateral, 1.2 mm anterior-posterior, and 3.0 mm supe-
rior-inferior. The number of imaging positions was varied to find
the minimum number with sub-CT-voxel accuracy in terms of
mTRE.

Zero mean, constant standard deviation Gaussian noise was
added to the DRRs to generate the synthetic projections. The stan-
dard deviation of the noise was chosen to be 0.2 x (mean bony
intensity — mean soft tissue intensity). This noise level is far higher
than that produced in the NST system. An example synthetic pro-
jection is shown in Fig. 7.1b.

We first studied how many projection images are needed for
CLARET’s learning to obtain sub-voxel accuracy. The results on 30
synthetic test cases of a head-and-neck dataset, displayed in
Fig. 7.2a, show that two projection images are sufficient to achieve
sub-CT-voxel accuracy. Fig. 7.2a also shows the method’s accuracy
improves with more projections. However, we note that redundant
projections may contribute error in the parameter estimation.
Therefore, the 4-projection geometry (Fig. 7.2a), which used the
middle X-ray source on each imaging bank, produced the sufficient
and necessary number of projections to capture the simulated rigid
motions. Fig. 7.1c shows the geometry of the two opposing X-ray
sources that generated the two projection images in the study.
We note that the choice of opposing sources is such that the max-
imum angle between images (22.5°) is formed with the NST
system.

An analysis of the effect of the number of scales on multi-scale
learning (Section 4.2) shows that increasing the number of scales
reduces the registration errors (Fig. 7.2b).

Table 1 shows the statistics of the errors in each rigid parameter
from 90 synthetic test cases generated from three patients’ plan-
ning CTs (30 cases for each CT). The CLARET registration used only
the two opposing NST projection images (Fig. 7.1c).

7.1.2. Real treatment projections

We tested CLARET's rigid registration on a head phantom data-
set. NST projections (dimension: 1024 x 1024; pixel spacing:
0.4 mm) of the head phantom were downsampled to dimension
128 x 128 with a pixel spacing of 3.2 mm (Fig. 7.3a). The dimen-
sion of the planning CT is 512 x 512 x 96 with a voxel size of
3.43 mm?>. The ground truth was obtained by rigidly registering
all 52 NST projections to the planning CT by the 1-BFGS optimiza-
tion (Nocedal [23]) of the similarity metric in projection space.!
The initial mTRE over the head region is 51.8 mm. With 4-scale
learning (S = 4), CLARET obtained a sub-voxel accuracy of 3.32 mm
using only two projections in 5.81 s. It was computed on a 16-core
laptop GPU (NVIDIA GeForce 9400 m) where the parallelization is
limited. A factor of 32 speed-up (0.18 s per registration) can be ex-
pected when using a 512-core GPU. As shown in Fig. 7.3b and c,
CLARET accuracy improves with increased number of projections
and scales in the multi-scale learning process. The registration time
is approximately linear with the number of projections used.

7.2. Non-rigid registration results

We tested CLARET’s non-rigid registration with synthetic and
real patient cone-beam projections, as described in Sections 7.2.1
and 7.2.2, respectively. RCCT datasets (CT dimension
512 x 512 x 120; voxel size 1 mm lateral x 1 mm anterior-poster-
ior x 2.5 mm superior-inferior) were generated with an 8-slice
scanner (LightSpeed, GE Medical Systems) by acquiring multiple
CT images for a complete respiratory cycle at each couch position
while recording patient respiration (Real-time Position Manage-
ment System, Varian Medical Systems). The CT projections were
retrospectively sorted (GE Advantage 4D) to produce 3D images
at 10 different respiratory phases.

1 Results in Frederick et al. [24] suggests that 2D/3D registration accuracy is higher
than limited-angle-reconstructed-3D/3D registration accuracy for the NST geometry.
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Fig. 7.5. 3D tumor centroid error plots on a lung dataset for varying width of the
Gaussian window used for CLARET’s local Gaussian normalization.

7.2.1. Synthetic treatment projections

We used DRRs of the target CTs as the synthetic treatment-time
projections. The DRRs were generated to simulate projections from
a rotating kV imaging system (Section 6.1.1) mounted on the gan-
try of the medical accelerator (TrueBeam, Varian Medical Systems).
The target CTs were deformed from the patient’s Fréchet mean CT
by taking normally distributed random samples of the coefficients
of the first three PCA-derived deformation eigenmodes of the pa-
tient’s RCCT dataset (Section 3.2).

For each of the 10 CLARET registrations, we used a single simu-
lated coronal projection (dimension 128 x 96; pixel spacing
3.10 mm) at angle 14.18¢° (Fig. 5.1d) as input. (Future studies will
investigate the effect of this pixel spacing on the registration qual-
ity.) The registration quality was then evaluated by measuring the
3D tumor centroid difference between the CLARET-estimated CT
and the target CT. 3D tumor centroids were calculated from active
contour (geodesic snake) segmentations [25]. As shown in Table 2,
after registration CLARET reduces more than 85% of the centroid
error.

We studied CLARET’s registration quality in terms of average
DVF (Displacement Vector Field) error over all cases and all CT vox-
els versus different angular spacings used in learning. Registrations
using two projections with four different angle separations were
tested by 30 randomly generated test cases. Fig. 7.4a shows that
the average DVF error reduces with appropriately large angular
separations. However, tumor motion or respiratory motion may
not be visible or inferable in projections from certain angles. For
example, the tumor may be obscured by denser organs (i.e., medi-
astinum). In Fig. 7.4a the respiration motion may not be inferable
from the projection at 9.68° resulting in a larger error in the
parameter estimation.

We also studied CLARET’s registration quality by measuring the
average DVF error versus the number of projections used for learn-
ing. For each number of projections, we generated 30 random test
cases. Fig. 7.4b shows no particular trend. As a result, we used a
single projection to test CLARET’s non-rigid registration for the real
patient data in the next section.

7.2.2. Real treatment projections

We tested CLARET on five lung patient datasets consisting of
projections from patient CBCT scans acquired with the rotational
imaging system (Section 6.1.1). CLARET 2D/3D registration used
a single coronal CBCT projection at angle 14.18° and downsam-
pled (original dimension 1024 x 768 and pixel spacing
0.388 mm) to 128 x 96 with 3.10 mm pixel spacing (Fig. 5.1a).

Separate registrations were done using projections at the EE
(End-Expiration) and EI (End-Inspiration) phases. Prior to 2D/
3D registration, the Fréchet mean image was rigidly registered
to the patient’s CBCT image so as to align the vetebral anatomy
in both images. We measured the difference in 3D tumor cen-
troid position (Fig. 7.6a) between the CLARET-estimated CT and
reconstructed CBCT at the same respiratory phase as the projec-
tion used in the 2D/3D registration. The RMS window width was
set to 32.0 mm for the Gaussian normalization of this imaging
geometry, which was predetermined to yield the smallest 3D
centroid error in one lung dataset (Fig. 7.5). (Future studies will
check whether this window size is also best for other datasets.)
The results shown in Table 3 suggest a consistency in registra-
tion quality between the synthetic image tests and real projec-
tion image tests. The mean and standard deviation of 3D
tumor centroid errors following 2D/3D registration are
2.66 mm and 1.04 mm, respectively. The errors include an uncer-
tainty in tumor position in the CBCT projections, owing to vari-
ability in the manual segmentations in the CBCT reconstructions,
and residual tumor motion within the EE and EI phase intervals.
Based on repeatability measurements of the manual segmenta-
tions and tumor motion analysis of the RCCT datasets, we esti-
mate the standard deviation uncertainty in manually
determined tumor 3D position to be 1 mm. The average compu-
tation time is 2.61s on a 128-core GPU, NVIDIA GeForce 9800
GTX. A factor of four speed-up (to 0.65s) can be expected when
using a 512-core GPU for acceleration.

The clinical goal is to improve tumor localization during
treatment using CLARET. Assuming a mean lung tumor motion
extent of about 10 mm, the standard deviation uncertainty is
about one-third of the motion extent, or 3 mm. In order to im-
prove on current clinical practice (i.e., no image guidance during
treatment) a standard deviation uncertainty of 2 mm or less is
desirable. Furthermore, since most of the motion is in the infe-
rior-superior direction, it is desirable to achieve 2 mm uncer-
tainty or less in that direction. Our results show that CLARET
achieves the clinically desired accuracy: the mean and standard
deviation 2D tumor centroid error after registration is 1.96 mm
and 1.04 mm, respectively. CLARET reduces positional errors in
directions along the plane of the projection more than in the
out-of-plane direction. As shown in Table 3, most of the percent
2D error reductions (coronal in-plane), except cases from patient
#1, are larger than 3D error reductions. This is expected because
2D/3D registration with a single projection is more sensitive to

Table 3

3D and 2D tumor centroid errors (mm) of EE phase, €22 and eZ; 3D and 2D tumor
centroid errors (mm) of EI phase, efP and e#’; and computation time for five patient
datasets. Numbers inside the parentheses are, respectively, the tumor centroid error
(mm) before CLARET registration (using Fréchet mean image), and percentage error
reduction after registration. The 2D error refers to the tumor centroid error in the
directions orthogonal to the projection direction (coronal plane).

Patient  e32 (mm) e (mm) e (mm) e (mm)  Time (s)

#

1 2.27 2.07 5.26 4.71 1.94+0.74
(7.96%,72%)  (4.16%,50%) (8.03%,34%) (6.80%31%)

2 3.20 2.23 2.85 1.64 3.99+1.99
(9.70%,67%)  (9.18%,76%) (7.45%,62%) (6.77%75%)

3 1.32 1.32 2.03 1.86 245+0.15
(1.47%10%)  (1.47%,10%) (3.63%,44%) (3.49%47%)

4 2.77 1.51 2.31 1.52 1.96 £ 0.02
(10.17%,73%) (9.67%84%) (5.53%,58%) (5.17%71%)

5 2.24 1.91 2.40 0.83 2,76 +1.26

(3.52%,36%)  (3.46%,45%) (3.89%38%) (3.16%,74%)
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(b)

Fig. 7.6. (a) Transaxial image with manual segmented tumor contours in the reconstructed CBCT at one respiratory phase of a lung dataset (patient 3). The contours were
used for 3D centroid calculation. (b) Tumor meshes in the Fréchet mean CT (white), in the target CBCT at the EE respiratory phase (blue) and in the CLARET-estimated CT (red)
of a lung dataset (patient 2). The background is a coronal slice of the mean CT for illustration. The overlap between the estimated and the target tumor meshes indicates a
good registration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7.7. The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT at the EE phase and (c) the estimated CT of the same lung dataset used in Fig. 7.6b. Upper row:
lines indicate the tumor centroid in the CBCT at the EE phase; lower row: lines indicate the diaphragm contour in the CBCT at the EE phase.

tumor displacements in the image plane but less sensitive to
scale changes due to out-of-plane displacements.

Fig. 7.6b shows the 3D meshes of the tumors in the Fréchet
mean CT, the CBCT at EE, and the estimated CT of a lung dataset
for visual validation. As shown in the Figure, the tumor position
in the CLARET-estimated CT is superior to that in the mean im-
age, as expected physiologically for the EE phase. Fig. 7.7 shows
the same 3-space lines in the mean CT, the reconstructed CBCT
at the EE phase and the CLARET-estimated CT of a lung dataset.
The intersection of the lines with the tumor centroid in the CBCT
are in better agreement with the CLARET-estimated CT than with
the mean CT, indicating that CLARET can accurately locate the
tumor in the plane of the projection (coronal plane) and further
corroborating the results of Table 3.

7.2.3. Comparison to an optimization-based registration method

We compared the registration accuracy and efficiency between
CLARET (Eq. (2.5)) and an optimization-based method similar to
that in Li et al. [9]. The optimization-based method we imple-
mented optimizes Eq. (2.4) (with p =2) using the 1-BFGS quasi-
Newton algorithm (Nocedal [23]). To make fair comparisons, we
used the same deformation shape space, the same initializations,
the same GPU acceleration for the projection operator P, and the
same testing datasets.

For the comparisons, we randomly sampled 30 synthetic defor-
mations for each of the five lung patients as the test cases. The
deformations are sampled randomly within +3 standard devia-
tions of deformations observed in the patient’s RCCTs. For each test
case, a single coronal CBCT projection (dimension: 1024 x 768
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Fig. 7.8. Mean target registration error (mTRE) on test data generated from five patients (pt1-pt5): CLARET versus the 1-BFGS optimization versus the initial error before

registration.

downsampled to dimension: 128 x 96) was simulated from the de-
formed Fréchet mean CT as the target projection. Both methods
were initialized with the realistic Fréchet mean image with no
deformation: E(O) =0in Eq. (2.1).

For CLARET, we used four scales of learning for each patient. At
the sth scale of learning, each deformation parameter ¢’ (i =1,2,3)
was collected from the combinations of + 3¢* - (4 — s + 1)/4, #1.5¢" -
(4 —s+1)/4, and 0 where ¢' is the standard deviation of the ith
eigenmode weights observed in the patient’s RCCTs. Therefore, at
each scale of learning, 125 training deformations are sampled.

We compare the registration accuracy by the average registra-
tion error distance over the lung region. As Fig. 7.8 shows, CLARET
yields more accurate results than the I-BFGS optimization-based
registration in almost every test cases in all five patients. Table 4
shows statistical comparisons of the registration accuracy. The
maximum error produced by CLARET among the 30 x 5 =150 test
cases is only 0.08 mm where the maximum error produced by I-
BFGS is 13.15 mm, which is 164 times higher than CLARET. The
smaller median error and error standard deviation also shows that

Table 4
Registration accuracy (mTRE) statistics on the five patient data: CLARET versus the I-
BFGS optimization. Std = standard deviation.

mTRE (mm) Min. Max. Median Mean Std
CLARET 1.1e7 0.08 2.3e7% 1.5¢e73 7.4e73
1-BFGS 2.0e7 13.15 8.8¢73 0.54 2.01

CLARET is more accurate and more robust than the 1-BFGS optimi-
zation-based approach.

In term of registration speed, Fig. 7.9 shows that CLARET is fas-
ter than I-BFGS in every test case and has relatively small variation
in speed. The statistical results shown in Table 5 indicate that the
longest registration time produced by CLARET is still shorter than
the shortest time produced by 1-BFGS.

As our results show, in our implementations CLARET is more ro-
bust, accurate, and faster than the 1-BFGS optimization.
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Fig. 7.9. Registration time on the five patient data (pt1-pt5): CLARET versus the 1-BFGS optimization.

Table 5
Registration time statistics on the five patient data: CLARET versus the 1-BFGS
optimization. std = standard deviation.

Time (s) Min. Max. Median Mean Std
CLARET 0.94 5.15 1.73 1.95 0.74
1-BFGS 5.29 78.73 19.30 23.76 14.41

8. Conclusions and discussion

We have presented a novel rigid and non-rigid 2D/3D registra-
tion method that estimates an image region’s 3D motion/deforma-
tion parameters from a small set of 2D projection images of that
region. Our clinical goal is to model not only temporal changes in
tumor position and shape (tumor tracking), but also those for the
surrounding organs at risk. In this context the volume of interest
is known to exhibit deformations [26,27]. The method is based
on producing limited-dimension parameterization of geometric
transformations based on the region’s 3D images. The method
operates via iterative, multi-scale regression, where the regression
matrices are learned in a way specific to the 3D image(s) for the
specific patient. The synthetic and real image test results have
shown the method’s potential to provide fast and accurate tumor
localization with a small set of treatment-time imaging projections

for IGRT. Faster registration is expected when a modern GPU is
used for a higher level of parallelization.

However, in order to obtain such registration accuracy, our
method requires a well-modeled motion/deformation shape space
that includes all feasible variations of the image region. In many
radiation therapy situations for certain parts of the body, collecting
the required number of 3D images of the patient to form the well-
modeled shape space is not directly obtainable in current thera-
peutic practice. Future work will investigate the possibility of mod-
eling the shape space through a patient population.

To make our method more robust for the IGRT application, fu-
ture work will also evaluate the method on more patient datasets
and study the effects of the projection resolution and the normal-
ization window size on the registration accuracy.
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