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Abstract. Acoustic Radiation Force Impulse (ARFI) is a noninvasive
ultrasound modality that differentiates tissue structure via viscoelastic
property. We are interested in using ARFI to discriminate between non-
atherosclerotic arterial walls and atherosclerotic plaque. Both of these
tissue types can be modeled as Kelvin materials each characterized by
its own elasticity and viscosity. These properties define the displacement
and recovery of tissue in response to ARFI. In this paper we present
algorithms for clustering ARFI-induced displacement curves and we
use the Kelvin model as a filter for outlier rejection. We validated these
algorithms against a synthetic data set and then obtained preliminary
results for an ARFI image of a raised focal atherosclerotic plaque in a
porcine iliac artery.

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death in North America
[1]. Because atherosclerotic plaques exhibit different material (i.e. mechanical)
properties than non-atherosclerotic arterial wall, measurement of tissue me-
chanical properties is relevant to diagnosis and monitoring CVD status. Con-
ventionally, arterial mechanical properties could not be measured directly, and
surrogate metrics such as peripheral pulse pressure and pulse wave velocity have
been used to infer systemic arterial mechanical properties [2]. Recently, the di-
rect localized measurement of arterial mechanical properties has been made
possible by the following advances in ultrasound technology: intravascular ul-
trasound (IVUS) elastography, non-invasive vascular elastography (NIVE), and
acoustic radiation force impulse (ARFI) ultrasound.

IVUS uses a catheter ultrasound probe to image a cross-section of a blood
vessel intravascularly. Using controlled pull-back, multiple correlated IVUS im-
ages are acquired during physiological arterial pulsation. The images are then
processed as in ultrasound elastography to compute local strain, which is dis-
played parametrically in the form of an elastogram image. Van der Steen et
al [3] have implemented IVUS elastography to produce images of the Young’s
Modulus of tissue and have applied a shape model to segment the bound-
ary between atherosclerotic plaque and arterial wall in the Young’s Modulus
elastogram. Although IVUS elastography has been demonstrated for effective
differentiation of atherosclerotic from nonatherosclerotic tissue, IVUS requires
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a significant amount of time for preparation and for imaging. Because the pro-
cedure is invasive, it can produce serious side effects including the dislodgement
of a plaque, post-procedural hemorrhaging, and hematoma formation during
catheter insertion.

NIVE is a noninvasive technique that has been used to create Von Mises
coefficient elastograms of superficial arteries [4]. NIVE uses the Lagrangian
speckle model estimator to recover strain tensors from high frequency ultra-
sound images during the normal pulsation of the artery.

ARFI ultrasound is another noninvasive modality for measuring the me-
chanical properties of tissue. ARFI ultrasound is performed transcutaneously
using a conventional ultrasound system (modified for research purposes) and
transducer. In ARFI imaging, momentum is transfered from a short duration
acoustic impulse to tissue in a manner that displaces tissue on the order of
microns. Following the displacing, or pushing, impulse, multiple conventional
A-lines are acquired in ensemble form to track induced axial tissue displacement
and subsequent recovery via one-dimensional cross-correlation. ARFI imaging
can be implemented two-dimensionally to assess tissue mechanical properties
over both space and time [5]. We present here preliminary results towards char-
acterizing atherosclerotic plaques by automatic ARFI image segmentation.

For the purpose of segmenting ARFI-induced tissue displacement curves,
we assume that arterial walls and atherosclerotic plaques can be idealized as
Kelvin materials. For either tissue type the equation

F + τεḞ = ER (u + τσu̇) (1)

holds [6]. Here F is the applied force, u is the extension of the material, and
τε, τσ are the relaxation times for constant-strain and constant-stress respec-
tively for the material. ER is the relaxed elastic modulus for the material and
˙ denotes differentiation with respect to time.

We model the force from ARFI as F (t) = f0 (H (t)−H (t− ε)) where H is
the Heaviside function and ε is the impulse duration [7]. At time t > ε,

u(t) = u0 exp
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)
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We expect that the ARFI-induced displacement curve for a Kelvin material
will show peak initial displacement followed by an exponential recovery time.
The ARFI response curve for a tissue is influenced by material properties of
the tissue. Our method characterizes different Kelvin materials (i.e. plaque
and arterial wall) based on their ARFI-induced displacement curves without
directly estimating the Young’s modulus [8, 2, 3] or the Von Mises coefficient
[4] for the different tissue classes.

2 Method

Our problem is then to cluster samples from a two parameter family of expo-
nential decay curves (2). In Sec. 2.1 we discuss algorithms for clustering these
curves. In Sec. 2.2 we apply these clustering algorithms to simulated data. In
Sec. 2.3 we discuss a preliminary experiment of clustering the ARFI response
of a raised focal atherosclerotic plaque in an excised iliac artery.



2.1 Clustering

An ARFI image of size x×y×t measures the displacement of x·y tissue samples
at t time steps. Let fi,j denote the t-dimensional vector of displacements at
position (i, j, ·) in the image. We wish to cluster {fi,j : 1 ≤ i ≤ x, 1 ≤ j ≤ y}
via the k-means [9] algorithm.

Much of the work performed by the k-means algorithm is distance calcula-
tions. The number of multiplications performed in each distance calculation is
proportional to the dimensionality of the feature space. Reducing the dimen-
sionality of the feature space is desirable because it allows for faster clustering.
This is especially important because k-means tends to find locally optimal
clusters. It is common practice to seek the best locally optimal clustering from
multiple repetitions of the algorithm run from different random starting points.

For a displacement curve of the form (2), fi,j contains redundant informa-
tion. We can reduce the dimensionality of this space by estimating the param-
eters of the exponential curve for each displacement vector. A nonlinear least
squares optimization estimates the parameters

gi,j = {ĉ, r̂} = arg minc,r‖c exp(−rT )− fi,j‖2 (4)

where T is a vector of time steps consistent with the sampling in f . This
representation has the advantage of being compact, but the interpretation of
clustering can be uncertain because the parameters c and r are not commen-
surate.

Principal components analysis (PCA) is another mechanism for reducing
the dimensionality of the displacement vectors. PCA treats each fi,j as a sin-
gle point in a linear t-dimensional space. Let µ denote the mean and Σ the
covariance of these points. Let the eigenvalues and eigenvectors of Σ be de-
noted by {λi : 1 ≤ i ≤ t} and {vi : 1 ≤ i ≤ t} respectively. Assuming that the
eigenvectors are sorted by descending eigenvalue, j ≤ k ↔ λj ≥ λk, the dimen-
sionality of the feature space is reduced to t′ << t by

hk
i,j =

(fi,j · vk)√
λk

: 1 ≤ k ≤ t′ (5)

The new dimensionality t′ is typically chosen to explain a fixed percentage of
variance. We will see in Sec. 2.2 that for many of our simulated cases we can
explain > 95% of the variance in the high dimensional space with only a few
principal components.

2.2 Simulated Data

We produced simulated data to test these clustering algorithms. We began
by producing curves of the form c exp(−rt) for a variety of parameters c, r.
A vector fi,j is produced by sampling the curve at 60 uniformly spaced time
steps and then adding white Gaussian noise to the sampled curves. Figure 1
gives examples of the data with S/N ratios of 32dB, 24dB, and 12dB.

The vectors fi,j lie in a 60-dimensional space, but from the formulation we
expect that the data will lie in a two-dimensional subspace. Two different 2D
approximations of the data are calculated: gi,j , by recovering the parameters for
each exponential curve, and hi,j by performing PCA. The result of projecting
the curves into the lower dimensional spaces can be seen in Fig. 2.

Note that for the range of c, r used in this experiment that the PCA-based
dimensionality reduction appears to be more robust to noise than the parameter



32dB S/N 24dB S/N 12dB S/N

Fig. 1. Simulated curves fi,j with additive white Gaussian noise.

recovery method. Even at the 24dB S/N ratio, 12 distinct clusters, correspond-
ing to the 12 combinations of the two control parameters, are visible and can
be easily separated in the PCA image. In the scatter plot of the recovered expo-
nential parameters from the 24dB data there is some overlap between clusters
where a curve might be misidentified as having lower c, r parameters than were
present in the raw curves before noise was added.

32dB S/N 24dB S/N 12dB S/N

Fig. 2. Dimensionality reduction on the data from Fig. 1. (top) Recovered exponential
parameters: (c, r). (bottom) Projection onto two principal components. Each of the
dimensionality reduction schemes transforms all curves with the same parameters to
a single point.

Each of our proposed methods of dimensionality reduction has a natural
measure of its effectiveness. The percent of residual variation,

ρe =
‖ĉ exp (−r̂T )− fi,j‖2

‖fi,j‖2
(6)

gives an indication of how well an individual curve fi,j can be modeled by an
exponential. This ratio is bounded by 0 ≤ ρe ≤ 1 with a lower value indicating
a better fit of the exponential curve to the sampled data. The distribution of
ρe for our simulated data is presented in Fig. 3 (a). The percentage of variance



explained,

ρp(t′) =
∑t′

i=1 λi∑t
j=1 λj

(7)

measures how well the t′-dimensional PCA approximates the original set of
curves. This ratio is bounded by 0 ≤ ρp(t′) ≤ 1 with a greater value indicating
that the t′-dimensional approximation is better able to recover the original
data. Because the noiseless data came from a two-dimensional space we hope
to see ρp(t′) ≈ 1 when t′ ≥ 2, even with small amounts of noise present. Figure
3 (b) shows ρp for the simulated dataset. Note that two principal components
are sufficient to approximate the noiseless data and the curves with a 32dB or
a 24dB S/N ratio, but there is significant residual variance when two principal
components are used to approximate the 12dB S/N ratio data. This is caused,
in part, by the fact that ρe is quite large for a significant fraction of the 12dB
data. When we process ARFI data we will reject data with large ρe prior to
performing PCA.

(a) (b)

Fig. 3. (a) Cumulative histogram of ρe for the data in Fig. 1. (b) ρp as a function of
t′. As the noise level increases the exponential fits the data less well, ρe takes on larger
values for a fixed quantile of the curves, and it takes more principal components to
explain a fixed amount of variance.

2.3 ARFI Data

Two-dimensional ARFI ultrasound was performed on an excised iliac artery of
a familial hypercholesterolemic swine [10]. The imaging field of view included a
focal atherosclerotic plaque. Axial tissue motion in response to ARFI excitation
was measured with one-dimensional cross-correlation to generate profiles of
ARFI-induced tissue displacement over time (a 5 ms observation period, 60
samples). For complete details on the image acquisition protocol we refer the
reader to [11].

A B-mode ultrasound image of the same field of view was processed to
automatically produce a mask for rejecting signal from fluid in the vessel lumen.
In the specific image region of interest (ROI) we studied, this reduced the size
of the data from ∼ 100, 000 displacement curves down to 7,500. Figure 4 (a)
shows the B-mode image and highlights this ROI.

The optimization (4) is used to estimate the exponentials fit to the ARFI
displacement curves. If the Kelvin model applies to both the arterial wall and



the atherosclerotic plaque, the percentage of residual variation (6) should be
low for the ARFI displacement curves for these tissues. The image also includes
other tissues for which this model need not apply. We do not expect that (2)
will approximate well the ARFI displacement curve for such tissue. Because we
are not attempting to characterize these other tissues, we discard the curves
for which ρe is above a threshold level. Discarding data with ρe > 0.15 left
us with a final set of ∼ 6, 000 displacement curves. Examples of the curves
accepted and rejected by this filter can be seen in Fig. 4 (b). PCA on these
curves showed that with three principal components ρp ≈ 0.969.

(a) (b) (c)

Fig. 4. (a) B-mode ultrasound image of an excised porcine iliac artery. The region
for which ARFI data is available is shown in blue. The region identified in an ROI
of the B-mode image is indicated in red. The region identified by filtering ARFI data
on ρe is indicated in yellow. (b) Example ARFI displacement curves with ρe < 0.15
(solid) and ρe > 0.15. Some of the curves with high residual variation are due to
noise and aliasing. Others may indeed be Kelvin materials, but show a delayed peak
in their ARFI response. (c) The open vessel. The yellow boxes indicate the proximal
and distal walls visible in (a). Histology of the section labeled C is discussed in Fig.
5 (C-D).

3 Results

In our experiments on simulated data we created 500 curves for each of 12
categories corresponding to the parameters of the exponential curve before
noise was added. We used the k-means algorithm to recover 12 clusters with
hope that each cluster would correspond to a pre-noise category. The false
labeling rates listed below were measured as the percentage of curves with
different pre-noise parameters from the mode of their cluster.

32dB 24dB 12 dB
Raw Curves 25.0% 33.3% 34.5%

Exponential Coefficients 10.0% 25.5% 32.0%
PCA Coefficients 8.3% 16.7% 15.5%

The high false labeling rates are not unexpected given that a significant
amount of overlap due to noise is visible in Fig. 1. We observed that cluster-
ing on PCA coefficients produced the best results for a fixed noise level. It
is surprising that the PCA representation was slightly more effective on the
12dB data than on 24dB data. One way that k-means can fail is by producing
a cluster with small membership (i.e. only a few outliers) which then forces
the creation of a second cluster with large membership and thus many false



labelings. These failures contribute to the apparent mismatch in the results for
the clustering of PCA coefficients for the 24dB and 12dB datasets.

We clustered the PCA coefficients of the ARFI displacement curves. A com-
parison of these clusters with histology performed in the same tissue region
shows promising results which we present in Fig. 5. The atherosclerotic plaque
is approximately 10mm long. Immunohistochemistry indicated spatially corre-
lated differences in tissue composition of the plaque. Gradation is visible be-
tween a high elastin/low collagen content on its left side and a low elastin/high col-
lagen content on its right side. The plaque and its subcomponents are identi-
fied as distinct clusters by the k-means algorithm. There is a region within the
plaque that appears unclustered (white in the bottom row of Fig. 5). This tissue
has suffered severe elastin degradation to the point that its response to ARFI
is not consistent with (2) and it is rejected by our filter on ρe. The histological
results are treated in greater detail in [11].

Fig. 5. (Top) Histological results for the region labeled (C) in Fig. 4 (c). (Top Left)
Verhoeff van Gieson shows a gradual degradation of the internal elastic lamina from
regions 1-5. (Top Right) Masson’s trichrome shows a gradual increase in collagen from
regions 1-5. (Bottom) Cluster membership corresponding to the yellow region in Fig.
4 (a). (Bottom Left) Three clusters: Two clusters differentiate between materials in
the arterial wall (A, B). The third cluster (dark blue) contains noise. (Bottom Right)
Eighteen clusters: Three components of the plaque are visible at the right side of the
image (1-3).

4 Discussion

The response of a Kelvin material, such as arterial wall or atherosclerotic
plaque, to an ARFI query is a peak displacement in the direction of the force
followed by recovery at an exponential rate. Because the peak displacement
and recovery rates are functions of material properties of the tissues them-
selves, ARFI induced displacement curves can be used to distinguish between
tissue types. K-means clustering provides an automatic mechanism for classi-
fying these ARFI response curves. The set of PCA coefficients for each of the
displacements curves is a data representation that allows k-means to provide an
effective clustering. Because PCA produces a low-dimensional approximation
of the original data it allows the k-means algorithm to run faster, or equiva-
lently it allows for more repetitions of the k-means algorithm in a fixed amount
of time. We have shown preliminary results of using this technique to locate



an atherosclerotic plaque and to decompose it into three subregions of distinct
elastin and collagen composition.

Our future work will include applying our method to other environments
such as the deep venous system and other organ systems in in-vivo images. We
expect to see relaxation curves as clean as those in Fig. 4 (b) during an in-vivo
study. The image acquisition time for ARFI is orders of magnitude smaller than
the cardiac cycle. Gallippi et al. [12] have successfully demonstrated physiolog-
ical motion filters for cardiac gated in-vivo ARFI images.

We are interested in updating our methodology to overcome a limitation
of the k-means algorithm. Our current method depends on a priori knowledge
of the number of clusters to use. We are exploring two ways to provide a fully
automatic segmentation of the ARFI image: by developing an optimization
problem whose solution yields the number of salient clusters in the data and
by developing prior distributions for the ARFI response curves of known tissue
types. Our future work also will include extending our biomechanical model to
include non-Kelvin materials.
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