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Abstract. Acoustic Radiation Force Impulse (ARFI) is a noninvasive
ultrasound modality that differentiates tissue structure via viscoelastic
property. We are interested in using ARFI to discriminate between non-
atherosclerotic arterial walls and atherosclerotic plaque. Both of these
tissue types can be modeled as Kelvin materials each characterized by
its own elasticity and viscosity. These properties define the displacement
and recovery of tissue in response to ARFI. In this paper we present
algorithms for clustering ARFI-induced displacement curves and we use
the Kelvin model as a filter for outlier rejection. We validated these
algorithms against a synthetic data set and then obtained preliminary
results for an ARFI image of a raised focal atherosclerotic plaque in a
porcine iliac artery.

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death in North America. [1]
Because atherosclerotic plaques exhibit different material (i.e. mechanical) prop-
erties than non-atherosclerotic arterial wall, measurement of tissue mechanical
properties is relevant to diagnosis and monitoring CVD status. Conventionally,
arterial mechanical properties could not be measured directly, and surrogate met-
rics such as peripheral pulse pressure and pulse wave velocity have been used to
infer systemic arterial mechanical properties [2]. Recently, the direct localized
measurement of arterial mechanical property has been made possible by two ad-
vances in ultrasound technology: intravascular ultrasound (IVUS) elastography
and acoustic radiation force impulse (ARFI) ultrasound.

IVUS uses a catheter ultrasound probe to image a cross-section of a blood
vessel intravascularly. Using controlled pull-back, multiple correlated IVUS im-
ages are acquired during physiological arterial pulsation. The images are then
processed as in ultrasound elastography to compute local strain, which is dis-
played parametrically in the form of an elastogram image. Van der Steen et
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al [3] have implemented IVUS elastography to produce images of the Young’s
Modulus of tissue and have applied a shape model to segment the boundary
between atherosclerotic plaque and arterial wall in the Young’s Modulus elas-
togram. Although IVUS elastography has been demonstrated for effective dif-
ferentiation of atherosclerotic from nonatherosclerotic tissue, IVUS requires a
significant amount of time for preparation and for imaging. Because the proce-
dure is invasive, it can produce serious side effects including the dislodgement
of a plaque, post-procedural hemorrhaging, and hematoma formation during
catheter insertion.

A noninvasive alternative to IVUS, ARFI ultrasound is performed transcuta-
neously using a conventional ultrasound system (modified for research purposes)
and transducer. In ARFI imaging, momentum is transfered from a short dura-
tion acoustic impulse to tissue in a manner that displaces tissue on the order of
microns. Following the displacing, or ’pushing’, impulse, multiple conventional
A-lines are acquired in ensemble form to track induced axial tissue displacement
and subsequent recovery via one-dimensional cross-correlation. ARFI imaging
can be implemented two-dimensionally to assess tissue mechanical properties
over both space and time [4]. We present here preliminary results towards char-
acterizing atherosclerotic plaques by automatic ARFI image segmentation.

For the purpose of segmenting ARFI-induced tissue displacement curves, we
assume that arterial walls and atherosclerotic plaques can be idealized as Kelvin
materials. For either tissue type the equation

F + τεḞ = ER (u + τσu̇) (1)

holds [5]. Here F is the applied force, u is the extension of the material, τε, τσ

are the relaxation times for constant-strain and constant-stress respectively for
the material. ER is the relaxed elastic modulus for the material and ˙ denotes
differentiation with respect to time.

We model the force from ARFI as F (t) = f0 (H (t)−H (t− ε)) where H is
the Heaviside function and ε is the impulse duration. At time t > ε,

u(t) = u0 exp
(
− t

τσ

)
(2)

u0 =
f0

ER

(
exp

(
ε

τσ

)
− 1

)
τσ − τε

τσ
(3)

We expect that the ARFI-induced displacement curve for a Kelvin material
will show peak initial displacement followed by an exponential recovery time.
The ARFI response curve for a tissue is influenced by material properties of
the tissue. Our method characterizes different Kelvin materials (i.e. plaque and
arterial wall) based on their ARFI-induced displacement curves without directly
estimating the Young’s modulus [6, 2, 3] for the different tissue classes.

2 Method

Our problem is then to cluster samples from a two parameter family of expo-
nential decay curves (2). In Sec. 2.1 we discuss algorithms for clustering these
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curves. In Sec. 2.2 we apply these clustering algorithms to simulated data. In
Sec. 2.3 we discuss a preliminary experiment of clustering the ARFI response of
a raised focal atherosclerotic plaque in an excised iliac artery.

2.1 Clustering

An ARFI image of size x×y×t measures the displacement of x ·y tissue samples
at t time steps. Let fi,j denote the t-dimensional vector of displacements at
position (i, j, ·) in the image. We wish to cluster {fi,j : 1 ≤ i ≤ x, 1 ≤ j ≤ y} via
the k-means [7] algorithm.

Much of the work performed by the k-means algorithm is distance calcula-
tions. The number of multiplications performed in each distance calculation is
proportional to the dimensionality of the feature space. Reducing the dimension-
ality of the feature space is desirable because it allows for faster clustering. This
is especially important because k-means tends to find locally optimal clusters.
It is common practice to seek the best locally optimal clustering from multiple
repetitions of the algorithm run from different random starting points.

For a displacement curve of the form (2), fi,j contains redundant information.
We can reduce the dimensionality of this space by estimating the parameters of
the exponential curve for each displacement vector. A nonlinear least squares
optimization estimates the parameters

gi,j = {ĉ, r̂} = arg minc,r‖c exp(−rT )− fi,j‖2 (4)

where T is a vector of time steps consistent with the sampling in f . This represen-
tation has the advantage of being compact, but the interpretation of clustering
can be uncertain because the parameters c and r are not commensurate.

Principal components analysis (PCA) is another mechanism for reducing the
dimensionality of the displacement vectors. PCA treats each fi,j as a single
point in a linear t-dimensional space. Let µ and Σ denote the mean and covari-
ance of these points. Let the eigenvalues and eigenvectors of Σ be denoted by
{λi : 1 ≤ i ≤ t} and {vi : 1 ≤ i ≤ t} respectively. Assuming that the eigenvectors
are sorted by descending eigenvalue, j ≥ k ↔ λj ≥ λk, the dimensionality of the
feature space is reduced to t′ << t by

hk
i,j =

(fi,j · vk)√
λk

: 1 ≤ k ≤ t′ (5)

The new dimensionality t′ is typically chosen to explain a fixed percentage of
variance. We will see in Sec. 2.2 that for many of our simulated cases we can
explain > 95% of the variance in the high dimensional space with only a few
principal components.

2.2 Simulated Data

We produced simulated data to test these clustering algorithms. We began by
producing curves of the form c exp(−rt) for a variety of parameters c, r. A vector
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fi,j is produced by sampling the curve at 60 uniformly spaced time steps and
then adding white Gaussian noise to the sampled curves. Figure 1 gives examples
of the original curves and noisy data with S/N ratios of 24dB and 12dB.

Noiseless 24dB S/N 12dB S/N

Fig. 1. Simulated curves fi,j . Note that there are 12 distinct noiseless curves,
corresponding to three choices of peak value and four choices of recovery rate
(c, r) ∈ {0.5, 1.0, 1.5} ×

{
3
30

, 4
30

, 5
30

, 6
30

}
.

The vectors fi,j lie in a 60 dimensional space, but we know from the formu-
lation that 2 dimensions ought to be enough to describe the data. Two different
2D approximations of the data are calculated: gi,j , by recovering the parameters
for each exponential curve, and hi,j by performing PCA. The result of projecting
the curves into the lower dimensional spaces can be seen in Fig. 2.

Note that for the range of c, r used in this experiment that the PCA-based
dimensionality reduction appears to be more robust to noise than the parameter
recovery method. At the 24dB S/N ratio, 12 distinct clusters, corresponding to
the 12 combinations of the two control parameters, are visible and can be easily
separated in the PCA image. In the scatter plot of the recovered parameters
from the 24dB data there is some overlap between clusters where a curve might
be misidentified as having lower c, r parameters than were present in the raw
curves before noise was added.

Each of our proposed methods of dimensionality reduction has a natural
measure of it’s effectiveness. The percent of residual variation,

ρe =
‖ĉ exp (−r̂T )− fi,j‖2

‖fi,j‖2
(6)

gives an indication of how well the data in f can be modeled by an exponential.
This ratio is bounded by 0 ≤ ρe ≤ 1 with a lower value indicating a better
fit of the exponential curve to the sampled data. The distribution of ρe for our
simulated data in presented in Fig. 3.

The percentage of variance explained,

ρp(t′) =
∑t′

i=1 λi∑t
j=1 λj

(7)

measures how well the t′-dimensional PCA approximates the original data. This
ratio is bounded by 0 ≤ ρp(t′) ≤ 1 with a greater value indicating that the
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Noiseless 24dB S/N 12dB S/N

Fig. 2. Dimensionality reduction on the data from Fig. 1. (top) Recovered exponential
parameters: (c, r). (bottom) Projection onto two principal components. The markers
in the plots of noiseless data have been enlarged for visibility reasons. Each of the
dimensionality reduction schemes transforms all curves with the same parameters to a
single point. Note that allowing c to vary with r held constant produces a straight line
in the PC1/PC2 space, but the slope of this line is depends on r. Allowing r to vary
for a fixed c produces a curved path through the PC1/PC2 space.

Noiseless 24dB S/N 12dB S/N

Fig. 3. Cumulative histogram of ρe for the data in Fig. 1. In the noiseless case ρe ≤ 0
for 100% of the curves. As the noise level increases, ρe takes on larger values for a fixed
quantile of the curves.

t′ dimensional approximation is able to recover the original data. Because the
noiseless data came from a 2-dimensional space we hope to see ρp(t′) ≈ 1 when
t′ ≥ 2, even with small amounts of noise present. Figure 4 shows ρp for the sim-
ulated dataset. Note that 2 principal components are sufficient to approximate
the noiseless data and the curves with a 24dB S/N ratio, but there is signifi-
cant residual variance when 2 principal components are used to approximate the
12dB S/N ratio data. This is caused, in part, by the fact that ρe is quite large
for a significant fraction of the 12dB data. When we process ARFI data we will
reject data with large ρe prior to performing PCA.

2.3 ARFI Data

Two-dimensional ARFI ultrasound was performed on an excised iliac artery of
a familial hypercholesterolemic pig. The imaging field of view included a fo-
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Noiseless 24dB S/N 12dB S/N

Fig. 4. ρp as a function of t′ for the data in Fig. 1. As the noise level increases, it takes
more principal components to explain a fixed amount of variance.

cal atherosclerotic plaque. Using conventional ARFI methods, axial tissue mo-
tion in response to ARFI excitation was measured with one-dimensional cross-
correlation to generate profiles of ARFI-induced tissue displacement over time
(a 5 ms observation period, 60 samples).

A B-mode ultrasound image of the same field of view was processed with
a local median filter to automatically produce a mask for rejecting signal from
blood in the vessel lumen. In the specific image ROI we studied, this reduced
the size of the data from ∼ 100, 000 displacement curves down to 7,500.

The optimization (4) is used to estimate the exponential’s fit to the ARFI
displacement curves. Because the Kelvin model applies to both the arterial wall
and the atherosclerotic plaque, the percentage of residual variation (6) ought
to be low for the ARFI displacement curves for these tissues. The image also
includes other tissues for which this model need not apply. We do not expect that
(2) will approximate well the ARFI displacement curve for such tissue. Because
we are not attempting to characterize these other tissues, we discard the curves
for which ρe is above a threshold level. Discarding data with ρe > 0.15 left us
with a final set of ∼ 6, 000 displacement curves. PCA on these curves showed
that with three principal components ρp ≈ 0.969.

3 Results

In our experiments on simulated data we created 500 curves for each of 12
categories corresponding to the parameters of the exponential curve before noise
was added. We used the k-means algorithm to recover 12 clusters with hope that
each cluster would correspond to a pre-noise category. The false labeling rate for
each data representation was measured as the percentage of curves with different
pre-noise parameters from the mode of their cluster. In the 24 dB dataset, we
measured a false labeling rates of 0.333, 0.255, and 0.167 using the 60 sample
representation, exponential parameters, and PCA coefficients respectively as the
data representation. In the 12dB dataset the false labeling rates were 0.345,
0.320, and 0.155. It is surprising that the PCA representation was slightly more
effective on the 12dB data than on 24dB data. This is likely due to randomness
in producing the data. We expect that in repeated experiments clustering the
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(a) (b) (c) (d)

Fig. 5. (a) B-mode ultrasound image of an excised porcine iliac artery. The region for
which ARFI data is available is show in blue. The region identified by local median
filtering in an ROI of the B-mode image is indicated in red. The region identified by
filtering ARFI data on ρe is indicated in yellow. (b) Example ARFI displacement curves
with ρe ≤ 0.15. (c) Example ARFI displacement curves with ρe > 0.15. (d) The mean
and first three principal modes of variation for the filtered ARFI curves.

less noisy data would be more successful. The overall trend that we observed
was clustering on PCA coefficients produced the best results.

We clustered the PCA coefficients of the ARFI displacement curves. This pro-
duced images which show a spatial distribution of cluster membership as in Fig.
6. A comparison of these clusters with histology performed in the same tissue re-
gion shows promising results. The atherosclerotic plaque is approximately 10mm
long. Immunohistochemistry indicated spatially correlated differences in tissue
composition of the plaque. Gradation is visible between a high elastin/low col-
lagen content on its left side and a low elastin/high collagen content on its right
side. The plaque and its subcomponents are identified as distinct clusters by the
k-means algorithm. There is a region within the plaque that appears unclustered
(white in Fig. 6). This tissue has suffered severe elastin degradation to the point
that its response to ARFI is not consistent with (2) and it is rejected by our
filter on ρe.

Fig. 6. Cluster membership. (left) Three clusters: Two clusters differentiate between
materials in the arterial wall (A, B). The third cluster (dark blue) contains noise.
(center) Six clusters: the high collagen/low elastin plaque fragment is visible in blue
(X). (right) Eighteen clusters: Three components of the plaque are visible at the right
side of the image (1-3).
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4 Discussion

The response of a Kelvin material, such as arterial wall or atherosclerotic plaque,
to an ARFI query is a peak displacement in the direction of the force followed
by recovery at an exponential rate. Because the peak displacement and recovery
rates are functions of material properties of the tissues themselves, the ARFI
induced displacement curve can be used to distinguish between tissue types. K-
means clustering provides an automatic mechanism for classifying these ARFI
response curves. The set of PCA coefficients for each of the displacements curves
is a data representation that allows k-means to provide an effective clustering.
Because PCA produces a low-dimensional approximation of the original data it
allows the k-means algorithm to run faster, or equivalently it allows for more
repetitions of the k-means algorithm in a fixed amount of time. We have shown
preliminary results of using this technique to locate an atherosclerotic plaque
and to decompose it into three subregions of distinct elastin and collagen com-
position.

Our future work will include extending our biomechanical model to include
non-Kelvin materials. Other future work will include applying our method to
other environments. We are interested in studying in-vivo images as well as ap-
plying our method to the deep venous system and to other organ systems. We
are interested in updating our methodology. Developing strong prior distribu-
tions should allow us to search for a specific tissue type within an ARFI image.
Performing semi-automatic rather than manual segmentation will allow us to in-
teract with a human expert to identify and reject noise clusters, and to subdivide
clusters of interest.
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