Understanding Canonical Correlation Through the General
Linear Model and Principal Components
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Canonical correlation has been little used and little un-
derstood, even by otherwise sophisticated analysts. An
alternative approach to canonical correlation, based on
a general linear multivariate model, is presented. Prop-
erties of principal component analysis are used to help
explain the method. Standard computational methods
for full rank canonical correlation, techniques for
canonical correlation on component scores, and canon-
ical correlation with less than full rank are discussed.
They are seen to be essentially equivalent when the
model equation for canonical correlation on component
scores is presented. The two approaches to less than full
rank situations are equivalent in some senses, but quite
different in usefulness, depending on the application.
An example dataset is analyzed in detail to help demon-
strate the conclusions.

KEY WORDS: Canonical correlation; General linear
model; Less than full rank regression; Component
matching; Regression on component scores.

1. INTRODUCTION

Canonical correlation was introduced by Hotelling
(1935, 1936) as the answer to a simple problem with vast
implications: find that linear combination of a set of
variables which is most highly correlated with any linear
combination of a second set of variables. Like most
multivariate techniques, it received more attention
from theoreticians than it did practical application until
powerful digital computers became available in the
1960’s. That attention centered mostly on either an-
swering the difficult distributional problems associated
with the technique or dealing with the many ways that
more common techniques are either kin to or special
cases of canonical correlation. Bartlett (1948) and
McKeon (1964) provided useful reviews of that issue.

This article centers on understanding canonical cor-
relation as a method of estimation of weights used to
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predict each set from the other. The general linear
multivariate model underlying canonical correlation is
introduced and used, along with standard results on
principal components, to help explain the method. An
example is analyzed in detail to demonstrate many of
the conclusions.

By exploring the general linear multivariate model
behind canonical correlation, a number of useful in-
sights may be had. First, the nature of canonical cor-
relation is made clear. Second, simpler derivations are
available. Third, computational methods for canonical
correlation, canonical correlation on component
scores, and the less than full rank case can be seen to be
different interpretations of the same situation (the col-
linearity problem in regression is essentially the same
problem as the less than full rank problem). Canonical
correlation has never been among the commonly used
multivariate techniques. It is hoped that the reader will
be better able to judge its uses and limitations having
read this article.

This article will ignore questions associated with sig-
nificance testing. As mentioned earlier, canonical cor-
relation contains as special cases many multivariate
techniques for linear models. Suffice it to say that, given
conventional distributional assumptions, the canonical
solution provides statistics that are optimal in many
useful senses. Much progress has been made towards
solving the various distributional questions but work
remains to be done. Anderson (1958) presented a good
deal of information on significance testing. For pur-
poses of estimation, the focus of this article, only the
usual least squares assumptions will be required: linear-
ity of relationships, independence of observations, and
homoscedasticity.

2. THE STANDARD STATEMENT OF CANONICAL
CORRELATION

Many multivariate texts treat canonical correlation.
See, for example, Rao (1973), Morrison (1967), Finn
(1974), or Tatsuoka (1971). Gittens (1979) provided
one of the more detailed presentations. This section
first briefly presents the standard statement of canon-
ical correlation. This will introduce the notation used
throughout. A number of well-known properties are
also mentioned.

In general, Greek letters will denote population pa-
rameters and Roman-alphabet letters will denote sam-
ple statistics. Capital letters will be used for matrices,
small letters for scalars, and small bold letters for col-
umn vectors. With that in hand, consider n observations
on two sets of variables with
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X = {x;} i=1...n
Y ={y;} i=1...n
where n >p +gq.

Consider the parallel matrices Z, and Z, with zero
means and unit variance. Using sample standardized
values will help simplify expressions although it implic-
itly causes some technical problems. All such technical
problems can be resolved, usually by working with the
“raw” (unstandardized) data. Ignoring the problems
allows greatly simplifying the exposition.

The matrices of correlations among the X variables,
among the Y variables, and between the two sets are

i=1...p (2.1)
i=1,...q (2.2

R.=(Un)Z,Z, (2.3)
R,=(1n)Z,'Z, (2.4)
R, =(1In)Z,'Z, 2.5)

Sets of coefficients, a, B, are sought which maximize
o(Z., Z,8) = (Un)aZ,'ZB=a'R,B, (2.6)
under the constraints
(Un)Z.e)(Z,a) =a'R,a=1, 2.7
and

(Un)(Z,B)'(Z,B) = B'R,,B =1. (2.8)
The second and third conditions require the resultant
combinations, namely Z, & and Z,$, to have unit vari-
ance. In order to derive the canonical solution,
LaGrangian multipliers are introduced. Then matrix
derivatives are computed, set to zero, and simplified.
The results are what may be thought of as the normal
equations for canonical correlation:

pR,.a=R,,B (2.9)
and
pR,,B =R, a. (2.10)

To continue the standard proof, at this point one must
assume R,, and R, to be full rank and the canonical
correlation to be nonzero. With these restrictions, (2.8)
implies

B=(1/p)R, 'Rya. (2.11)
It is then easy to generate the solution equation
0=(R,R,,"'R,, — p’Ru)a, (2.12)
and
0=(R.'RyR,, 'R, — pl)ar. (2.13)

Consequently, the weights for the X set are the right
eigenvectors of the matrix

M,=R,'R,R, 'R, (2.14)

and its eigenvalues are the squared canonical cor-
relations.

At most d = min(p,q) distinct solutions may exist.
The canonical variates are uncorrelated (orthogonal)
within set, as required. Furthermore, the ith variate is
uncorrelated with any variate from the other set, except
for the ith (the property of bi-orthogonality). Each suc-
cessive canonical variate pair achieves the maximum
relationship orthogonal to the preceding pair. An

equivalent set of equations, parallel to (2.11) through
(2.16), exists based on the Y set. M,, in general, is not
symmetric. This lack of symmetry implies that the can-
onical weights themselves are also generally not orthog-
onal. The canonical solution may be said to characterize
completely all joint linear relationships between two
sets of variables. The canonical correlations remain in-
variant under any full-rank transformation of either or
both sets, for example. Consequently, the canonical
solution may be computed on the sums of squares and
cross-products matrices, covariance, or correlation ma-
trices. A simple transformation allows conversion to the
preferred metric.

A number of special cases of canonical correlation
are important and more commonly used techniques. If
g =1 and p >1 then canonical correlation becomes
multiple correlation. If g =1 and p = 1 then canonical
correlation becomes univariate correlation. If one set of
variables is a set of dummy variables indicating group
membership, then canonical correlation becomes dis-
criminant analysis and, equivalently, multivariate anal-
ysis of variance. Bartlett (1948) and McKeon (1964)
discussed in detail how various techniques are special
cases of canonical correlation.

3. STANDARD GENERAL LINEAR
MULTIVARIATE MODEL

It is worth noting that the standard derivations of
canonical correlation and multiple regression bear little
relation to each other. For multivariate multiple re-
gression a standard approach may be sketched as fol-
lows. Given n observations on each of two sets of vari-
ables with

X={x,-,—} i=1,...n, j=1,...p (31)
and
Y ={y;} i=1,...n j=1,...4q, (3.2
assume that the linear combinations of X that best pre-
dict Y are sought. This amounts to finding an estimate
of E in the following model equation:
Y=XE+E (3.3)
Here E is an n X g matrix of errors with zero column

means. It is often convenient to consider the model for
standardized scores:

Z,=ZE+E. (3.4)
The method of moments and the least squares method
both provide the same estimate, based on the equation
X'Y =X'XE. (3.5)
This is usually referred to as the system of normal equa-

tions for the model. For standard scores, the normal
equations may be expressed as

R, =R.E. (3.6)
If X is full rank, then it follows that
g =(X'X)X'Y (3.7)
or, for standard scores,
2 =R, 'R, (3.8)
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The least squares method treats the residual covariance
matrix '

V,=2E'E=(Y-XE)(Y -XE)n  (3.9)
=(Y'Y-Y'XE-EZ'X'Y + E'X'XE)/n. (3.10)

The same solution follows from minimizing (via matrix
differentiation techniques) either the generalized vari-
ance, which is the determinant of V,, or the trace of V,

(Press 1972). In turn, the estimator is the same as the
one just discussed.

4. GENERAL LINEAR MULTIVARIATE MODEL
FOR CANONICAL CORRELATION

Canonical correlation may also be cast in a regression
model. The emphasis shifts to estimation of the weights
to predict the linear combinations of one set from the
linear combinations of the other set. This section intro-
duces a model for canonical correlation. It will be used
in the remainder of the article to provide a novel and,
one hopes, clearer approach.

Consider the model equation

Z,B =Z.AD(p) + E. (4.1)

B is a g X d matrix, with the kth column being the
canonical weights for the Y set for the kth canonical
variate pair. D(p,) is a d X d diagonal matrix of canon-
ical correlations. A is a p X d matrix, with the kth col-
umn being the canonical weights for the X set for the
kth canonical variate. The matrices B, A, and D(p,)
must correspond in the sense that the kth columns of B
and A provide the linear combinations that are cor-
related p,, which is the (k,k) element of D(p,). It is
most natural, although not necessary, for the matrices
to be ordered such that the largest canonical correlation
is the (1,1) element of D(p,), the second largest the
(2,2) element, and so forth. As earlier, d is at most
min(p,q). It will often be convenient to drop any zero
canonical correlations and associated vectors from the
equation. E here is n X d.

Equation (4.1) may be treated as a special case of
(3.3) with Y identified as Z,B, X as Z,, and E as
AD (p.). This special structure arises from the orthogo-
nality and bi-orthogonality of the canonical variates.
Consider the equation treating just the kth canonical
correlation:

Z,Bi = Z oupi t €y 4.2)

This is a univariate regression equation relating a single
canonical “Y” variate to its corresponding single X
variate. The standard statement of canonical cor-
relation has more in common with this univariate equa-
tion than with the multivariate statement of (4.1).

The same derivational approach that is used in the
standard proof may, of course, be applied to a multi-
variate statement of the problem. With appropriate
extra care to deal with the greater complication, the
proof follows in a parallel fashion. The solution equa-
tions become

R,B = R.AD (pi) (4.3)

and
R,,A =R, ,BD (ps). (4.4)

Two advantages accrue from the extra work. First, it
makes obvious the fact that the resultant variates are
required to be orthogonal within each set, a crucial
characteristic that is only implicit in a univariate ap-
proach. Second, the multivariate approach helps make
more explicit the simultaneous factorizations at the
heart of canonical correlation. That observation will be
explored later in this article.

New derivations of the canonical solution follow nat-
urally from (4.1). Straightforward method-of-moments
and least squares proofs are both available.

5. PROPERTIES OF THE RESIDUAL
COVARIANCE MATRIX

A number of elegant properties of the model become
apparent upon examining the residual covariance ma-
trix. Equation (4.1) gives

V,=2E'E = (2,B - ZAD(p.)) (Z,B
- ZAD()n (5.1)
=B'R,,B — B'R,AD(p;) — D(pi)A'R,,B
+D(p)A'RLAD(p). (5.2)

Substituting D (p,) for A'R,,B and B'R,,A and I for
A'R,A and B'R,,B in (5.2) gives

Vy=I1—D(p)D(pc) = D(pe)D (px)
+D(p)ID(pi) (5.3)
=1-D(p) (5-4)
=D(1-po). (5.5)

It is easy to show that the same result holds for V,, and
hence that V, = V,. Since the residual covariance matrix
is diagonal the residuals are uncorrelated. The residual
associated with the kth canonical variate pair has vari-
ance 1—p,% In simple linear regression 1—r? is the
proportion of variance in Y not accounted for in X.

The diagonality of V may be contrasted to the situ-
ation in multivariate multiple regression. From (3.4)
and (3.8) it is easily seen that for standard scores

V,=(Z,~Z.E)(Z,~Z,E)(ln) (5.6)
=R,—R,R."'R,, (5.7

The off-diagonal elements, the partial covariances, are
not, in general, zero. The diagonal elements are
1-R,% where R, is the squared multiple correlation
for Y, given the X set. Either X, Y, or both being
orthogonal does not guarantee that the matrix is diago-
nal. One of the defining characteristics of the canonical
solution is the required orthogonality.

6. COMPUTATIONAL METHODS FOR
CANONICAL CORRELATION

The canonical “solution” equation actually leaves the
analyst a few steps away from the calculations for a data
set. The steps needed help explain the technique. Fur-
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thermore, the solution methods will be reinterpreted
later in this article in order to demonstrate certain re-
lationships to componeut analysis.

The methods commonly employed to compute the
canonical solution depend on factoring R,,. Finn
(1974), among others, outlined the most common ap-
proach. Equations (2.15) and (2.16) indicate that the
canonical weights may be found as right eigenvectors of
the matrix M,. Since M, is not, in general, symmetric,
its right and left eigenvectors are distinct and not or-
thogonal. To deal with this, begin by finding a factor of
R, F, (such that F,F,' = R,,). It is easy to see that we
may define F,”" = (F,”")’ = (F,’)"". The following sim-
ple manipulations of (2.12) lead to a solution.

(RyR,, 'R, — pi’Ry)a = 0; (2.12)
F,_I(nyRyy_lRyx - p’F,F,)F,"'F/a=F0, (6.1)
(F,'RyR,,'R.F." — plD)F/a=0, (6.2)

and
(M* - pDa* =0. (6.3)

M.* is clearly symmetric with orthogonal eigenvectors
a* and eigenvalues p,”. Equation (6.3) may be solved
with readily available computer programs. Having
solved for a*, it follows that

a=Fa*. (6.4)

Equation (2.11) gives B = (I/p)R,, 'R, to complete
the solution.

7. CANONICAL CORRELATION ON
COMPONENT SCORES

Principal components may be defined in many ways.
Assume that new variates, which are linear combina-
tions of an existing set, are sought such that the new
variates are successively maximum variance and mutu-
ally uncorrelated (orthogonal). Operationally, they
may be computed from the spectral decomposition of
either the covariance or correlation matrices. Note that
distinct sets arise according to which matrix is factored.

In a multiple regression context, it may happen that
the set of predictors, say X, may be collinear. This is
equivalent to saying that the correlation matrix, R,, (or
the corresponding covariance matrix, C,), is rank
p* <p. A common technique is to replace the original
deficient rank scores with a full rank set of component
scores. Such an approach may be exploited here.

Define a factor of R,, as F, such that

R.=F.F,, (7.1)

where Fisp Xp*,p*=p,andp* = rk(R,,). The spec-
tral decomposition of R,, is

R,= E.D(\,)E,. (7.2)
(p Xp*)p*xp*)(p* xp)
Here E, is a matrix whose columns are the eigenvectors

of R,, and D (\;) is the diagonal matrix of eigenvalues of
R,.. It is easy to see that choosing

F.=ED(\) (7.3)

is one choice meeting the requirement (7.1).

If uncorrelated (orthogonal), unit-variance new vari-
ates, Z,., are sought such that

Z,=Z.F', (7.4)
then
Z.=ZF,(F, F) . (7.5)

Even if p* <rk(X), (7.5) may be a useful approxi-
mation. The covariance matrix among the new variates
is

Cx.x.=;11-Z,.'Z,.=(F,,'F,)“F,’R,,‘Fx(F,’F,)“ (7.6)

=I= Rx‘x‘ (77)

If rk(X) = p then F, is p X p, full rank, and has an
inverse. This leads to useful simplifications of (7.5):

Z.=ZF.(F,'F.™ (7.8)
=Z,F, "= Z,E.D(\,""). (1.9)

If Z,. are computed for the Y set in a parallel manner,
it is easy to see that

Rep=(F,'F,)'F,/R,F.(F,/F)™".  (7.10)
If rk(X) = p then (7.9) implies
thyt=Fx—1nyFy_t. (711)

The new variates are principal component scores nor-
malized to have unit variance. Most computers pack-
ages will provide them, labeled as “factor scores.”
Component scores, defined by

Z.E=2Z,,

have covariance matrix

(7.12)

MZE) (ZE) = ERR.E,= D(\,).

These results may be used to show that the canonical
solution is equivalent to a three-step process. First,
compute factor matrices for R,, and R,,. Second, com-
pute the intercorrelation matrix for the associated com-
ponent scores using (7.10). Third, decompose that ma-
trix. If required, the results may be stated in terms of
the original variables by using the transformations in
(6.4) and (2.11).

In order to see this, consider the solution equation for
component $cores:

(RyyRyoye"'Ryere — pil)a* = 0. (7.14)
Since R,.,»=I, R,.,-~' =1, (7.14) becomes (7.15)
(ReyRyrr — prl)a* =0. (7.16)

Using (7.11) in (7.16) gives
((F. 'Ry F,™)(F, 'Ry F. ™) — pil)a* = 0. (7.17)

~ SinceR,, = F,F,’andR,,”' = F,"'F,™", (7.17),(7.16), and

(7.14) are seen to be identical to (6.3), the most com-
monly used solution equation. Since a* must be an
eigenvector of

R,y Rye=M,., (7.18)
it is appropriate to use the same symbols as in (6.3).
The results presented show that the canonical solu-

tion provides a means of comparing the component
structures of two sets of variables. The weights A* and
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B* are the rotations needed to produce maximum con-
gruence. The patterns of their values show which fac-
tors of each set are related. The canonical correlations
indicate the amount of overlap of the components.

The general problem of comparing two factor struc-
tures is known as the factor matching or Procrustes
problem (Harman 1967). An extensive literature exists,
treating many different cases. Levine (1977) provided
an introduction to the topic as it relates to canonical
correlation. Browne (1979) derived a method for max-
imum likelihood interbattery factor analysis. The inter-
battery factor loadings are rescaled canonical factors.
Note that Browne’s work centers on a genuine
common-factor model rather than the components ap-
proach studied here.

The ideas in this section are not new. Hotelling
(1936) discussed canonical correlation as a process of
diagonalizing the correlation matrices R,,, R,,, and R,,.

Bartlett (1948) and McKeon (1964), among others, di- -

rectly suggested that canonical correlation be used to
evaluate factor matching. Rao (1973) discussed testing
the canonical correlations to test how many factors are
shared. In contrast to most factor-analytic methods, the
technique can have appropriate significance tests. Fur-
thermore, other techniques of factor matching do not
have measures of congruence as well defined as the
canonical correlation. The technique depends on hav-
ing both sets of variables measured on the same subjects
since it exploits the inter-set correlations.

The reader should keep in mind certain distinctions.
First, A and B are, in general, nonorthogonal factors of
R,. ' and R,,”!, respectively. Second, the initial factor
matrix F,, with F,F,' = R, is orthogonal. Third, the
matrix A*, the canonical weights for the component
scores, is orthogonal. It is the rotation that transforms
the original components into the canonical factors. The
canonical factors are usually computed as R,,4. Since
A = F™'A* it follows that

R.A = (FF,)F,"A* =FA*.  (1.19)

Since this holds for any factoring, A* depends on the
choice of factoring, and hence A* is usually ignored.
The next two sections will discuss a case in which A*
may be of more interest than A.

8. MODEL FOR CANONICAL CORRELATION ON
COMPONENT SCORES

For the purpose of factor matching, a special case of
the canonical model provides a model for canonical
correlation on component scores: ,

Z,F,"'B* =Z,F,'A*D.(p:) + E. 8.1)
Here the kth column of A* is a*,, the kth eigenvector
of M,*, and the kth column of B* is %, the kth eigen-
vector of M,*. If ¢ <p, D.(p:) is D(pi) with p-g zero
rows adjoined at the bottom, while if g >p, then
D.(ps) is D(p,) with g — p zero columns adjoined on
the right. If p = q then D.(pi) = D(ps).

The model brings together results presented earlier
and makes them more accessible. The canonical model

w

requires two separate transformations of both sets of
variables. The roles of the original variables and the
factoring process are clarified by this model equation.
Simple derivations of the canonical solution follow from
(8.1). Equation (8.1) provides a model for component
matching, since it may be identified as a model for
canonical correlation in which the scores of interest are
component scores on two different sets of variables.

9., LESS THAN FULL RANK CANONICAL
CORRELATION

Less than full rank correlation matrices, particularly
in a numerical sense, may arise in many ways. It seems
a natural event in what is implicitly a component anal-
ysis. Despite that, for most of this article it has been
assumed that rk(X) = p and rk(Y) = q. This assump-
tion is convenient although not necessary. Relaxing the
assumption requires more caution both in the mathe-
matics and in the application of canonical correlation to
data. This section will review earlier work in the area.
The next section will propose an alternative method,
then relate the two to each other and to an important
special case, multiple regression.

Recall that no assumption of rank was needed in the
derivation of the normal equations for canonical anal-
ysis:

PR = R, B 2.4)

and

pR,,B = R,a. (2.10)

Searle (1971), p. 26, theorem 8) gives a theorem, in the
context of multiple regression, that allows proceeding
even though R,, is not full rank. In the notation used
here, it says that, for all generalized inverses R,,”,

g = %Ry,,"a 9.1)

generates all solutions to (2.10). Following the tech-
nique of the standard proof, this is substituted in (2.9)
giving
(RyR,, R~ p’Ry )& = 0. 9.2)
It is important to realize that for rk(X) =p* <p in-
finitely many R,,- exist, therefore infinitely many ver-
sions of (9.2) exist and so infinitely many & exist. Khatri
(1976) showed that the canonical correlations are
unique even though the weights are not. This follows
from

RyR,, "R, = R,R,'R,. (9.3)

and the fact that R..* is unique. Here R,,” is the unique
Moore-Penrose inverse. If one set of variables is full
rank then the weights for that set are unique but not the
weights for the other (not of full rank) set. The use of
the unique Moore-Penrose inverse defines unique
weights. In any case, for any less than full rank set the
weights are not estimable (in the statistical sense of an
unbiased estimator existing).

An alternative approach to dealing with singular cor-
relation matrices follows from the material in this arti-
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cle. A common technique in multiple regression with an
X set of less than full rank is to replace the X scores with
the (full rank) set of principal components scores. No
information is lost, the resultant parameter matrix of
regression weights is estimable, and the process may
reveal a more accurate understanding of the structure of
the variables. In some cases the investigator has a strong
commitment to the original variable space, and there-
fore the generalized inverse approach has merit. Harris
(1975) briefly discussed the approach of using factor
scores in canonical correlation.

Results in (7.5) may be applied to (8.1) to provide a
model for a singular X and Y:

Z,F,(F,'F,)'B* = Z,F,(F,'F,)'A*D,(p;) + E. (9.4)

As before, any complete orthogonal factoring will
do. However, in this context the factoring may be ex-
ploited as part of the interpretation since it amounts to
a reparameterization of a less than full rank model to a
full rank model. The use of square-root (Cholesky) fac-
tors, the usual method for computer programs, is com-
mendable when just a numerical way station. It would
be recommended by few analysts over a principal-
components analysis if the factors themselves are to see
the light of day, as they should here.

In the full-rank factor space, the generalized inverse
approach is equivalent to the factor-score approach.
This depends on two basic ideas. Khatri (1976) indi-
cated one convenient method for computing R,,* (for a
square symmetric matrix). Find F, such that R,, = F,F,’
where F, is ¢ X g*, where ¢* = rk(Y). Here, of course,
the concern is with ¢* <g. Then R,,” may be computed
as

R’ :Ev(FyIFy)Asz- 9.5)

Using this and other results mentioned earlier, it can be
shown that the solution equation for both methods is

[(F'F)'F'R,F,(F,'F) (F,/F)™ x
F,'R.F.(F,'F)™" - plJa* = 0. (9.6)

This shows the equivalence of the generalized inverse
approach and the computation of the solution on factor
scores. More often than not, much is lost by projecting
the solution back into the rank-deficient original vari-
ables’ space, which is done with the generalized inverse
approach. Either provides a completely general ap-
proach to canonical correlation.

10. UNDERSTANDING MANOVA VIA THE
CANONICAL MODEL

An important application of canonical correlation is
in understanding a multivariate analysis of variance
(MANOVA). A true multivariate analysis, as dis-
tinguished from a collection of univariate analyses, uses
multivariate test statistics. All of the standard multi-
variate test statistics are simple functions of the canon-
ical correlations.

Recall that the residual covariance matrix for the
canonical model is

V=D(-p;). (5.5)

Hence the trace of V is

(V) =21 -pd)=d - 2pi. (10.1)
k k
Since V is diagonal, its determinant is
v=[Ia-pd=A. (10.2)
k

Here A is Wilk’s Lambda likelihood ration criterion
(Tatsuoka 1971). The test statistic for Roy’s largest root
test is p,,, where p,,” is the largest canonical correlation.
Bartlett’s smallest root test considers the smallest
canonical correlation. The Hotelling-Lawley trace sta-
tistic is >, (¥ (1 — p?)). The Pillai-Bartlett trace is
simply > p;. Therefore all of these standard statistics are
simple functions of V. The expressions for the statistics
are from Olsen (1976). Cramer and Nicewander (1979)
reviewed measures of multivariate association. All six
measures they treated may be expressed as simple func-
tions of the canonical correlations, and so of V.

Implicitly, then, one is testing canonical correlations
in a multivariate analysis of variance. By not con-
sidering the canonical variates, one ignores exactly
those linear combinations judged significant. Some
MANOVA programs do give at least one set of the
“discriminant weights,” the linear combinations of the
dependent variables. The canonical correlations may be
useful measures of the strength of a relationship, some-
thing too often ignored in the MANOVA setting. It may
also be useful to study the weights on the predictors.
Canonical correlation may provide a useful tool in de-
composing a complex multivariate-multivariate rela-
tionship space. The general linear multivariate model
approach to computing a MANOVA now dominates.
The general linear multivariate model approach to
canonical analysis presented here provides a natural
framework for interpreting a MANOVA.

11. EXAMPLE ANALYSIS

This section summarizes a canonical correlation anal-
ysis for a particular set of data. The goal is to demon-
strate the concepts discussed earlier in the article.
Canonical correlation analysis involves evaluating re-
lationships within sets of variables and between sets of
variables. It is most natural to first consider summary
statistics for the data, then the within-set character-
istics, and finally the between-set characteristics.

The data of this example are observations on 200
college students from introductory psychology classes,
each solving four different problems. Details of the
problem-solving task are documented in Johnson
(1971). Of the 200 subjects, 88 were female and 112
were males. These data came from a study involving a
treatment that was found not to affect problem-solving
performance. Furthermore, no differences were seen
between male and female performance on this task. If
any treatment effects were present, it would be appro-
priate to conduct canonical analysis on the residual cor-
relation matrix rather than the unadjusted correlated

© The American Statistician, November 1982, Vol. 36, No. 4 347



matrix. Muller, Hosking, and Helms (1979) discussed
this problem in detail. They demonstrated that the pres-
ence of treatment effects leads to biased estimation of
the covariance matrix, and usually to distorted factor
structure.

Table 1 provides summary statistics on the 16 vari-
ables included in the canonical analysis. Four measures
are available for each subject for each of the four prob-
lems solved. For every problem, each response of a
subject, a “‘trial,” may be classified as either a “hypoth-
esis” or a “‘pattern” trial. Each hypothesis trial may be
classified as either ““valid,”” useful, or “invalid,” useless,
for solving the problem. Each pattern response may be
classified as either “informative,” useful, or ‘“‘redun-
dant,” useless, for solving the problem. In a weak
sense, valid hypotheses and informative patterns are
incorrect responses. The sum of the four numbers, valid
hypotheses plus invalid hypotheses plus informative
patterns plus redundant patterns, is equal to the num-
ber of trials taken to solve a particular problem. In all
cases the value measured is the simple count for an
entire problem for a particular subject. As counts, all
are bounded below by zero. Table 1 indicates that on
the average a subject presented approximately five valid
hypotheses for each problem, from two to five invalid
hypotheses, approximately six informative patterns,
and from two to four redundant patterns.

The point of this canonical analysis is to investigate
the similarity of structure of the hypothesis variables
and the pattern variables. Consequently, one set of
variables studied included the four valid hypothesis re-
sponses and the four invalid hypothesis responses, while
the other set included the four informative pattern vari-
ables and the four redundant pattern variables.

Since canonical correlation is essentially invariant
under a linear transformation of either or both sets of
variables, it is most appropriate to treat the correlation
matrices rather than the covariance or sums of squares

Table 1. Problem-Solving Performance for
Four Problems (n = 200)

Standard
Variable Mean Deviation Minimum Maximum
Valid Hypotheses 1 5.20 6.66 1 30
Valid Hypotheses 2 5.74 7.14 1 30
Valid Hypotheses 3 5.15 7.41 1 30
Valid Hypotheses 4 4.93 7.37 1 30
invalid Hypotheses 1 4.52 6.53 0 32
Invalid Hypotheses 2  3.66 6.45 0 48
invaiid Hypotheses 3  2.74 5.95 0 53
Invalid Hypotheses 4  1.77 4.30 0 30
Informative Patterns 1 6.49 3.05 0 19
Informative Patterns 2 6.11 3.43 0 19
Informative Patterns 3 6.38 3.39 0 19
Informative Patterns 4 6.24 3.35 0 19
Redundant Patterns 1 3.80 5.04 0 33
Redundant Patterns 2 2.31 3.03 0 17
Redundant Patterns 3 2.08 3.09 0 23
Redundant Patterns 4 1.87 3.94 0 41

Table 2. Correlations Among Hypothesis
Variables (n = 200)

Valid Hypothesis Invalid Hypothesis
1 2 3 4 1 2 3 4

Valid 1 1.00

Valid 2 .70 1.00

Valid 3 .69 .80 1.00

Valid 4 .64 77 .85 1.00

Invalid 1 12 .24 .21 28 1.00

Invalid 2 .14 .08 A1 21 27 1.00

Invalid3 .03 .13 .06 14 29 .43 1.00

Invalid 4 .13 .06 .15 11 14 37 37 1.00

matrices. Tables 2, 3, and 4 report the relevant cor-
relation matrices. Table 2 gives the correlations among
the hypothesis variables. Table 3 provides the cor-
relations among the pattern variables. Table 4 lists the
correlations between hypothesis and pattern variables.

The first step in a canonical analysis is the decom-
position of each of the two sets of variables. For this
example, principal component analysis was chosen.
Tables 5 and 6 summarize the eigen analysis for the
hypothesis and pattern variables, respectively. In a fac-
tor analysis, a commonly used rule of thumb is that any
factor that does not account for one variable’s worth of
information is not included. In this case eight variables
are present and so one variable’s share of variance is
.125. Therefore approximately two or three factors
would be retained in each case. The canonical cor-
relation analysis uses all eight components from both
sets.

Tables 7 and 8 present the factor matrices for both the
hypothesis and pattern variables. These matrices are
factors in the sense of (7.1) for a correlation matrix
among either the hypothesis or pattern variables. For a
correlation matrix its factor matrix is also a matrix of
correlations. The correlations are between the original
variables, the row labels, and the components, the new
variates, which are the column labels. The elements of
a factor of a covariance matrix are covariances. As
mentioned earlier, the factor matrix for principal-
components analysis equals the matrix of eigenvectors
multiplied by the diagonal matrix of the square roots of
the eigenvalues.

It is common to plot the factor matrix of a correlation

Table 3. Correlations Among Pattern
Variables (n = 200)

Informative Patterns Redundant Patterns
1 2 3 4 1 2 3 4

Informative 1 1.00

Informative 2 57 1.00

informative 3 55 .70 1.00
Informative 4 54 73 .83 1.00

Redundant 1 32 28 30 .32 1.00

Redundant 2 .01 20 .17 A7 .27 1.00

Redundant 3 08 .11 23 22 22 40 1.00
Redundant 4 07 .14 13 .14 .08 .21 31 1.00
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Table 4. Correlations Between Hypothesis and Pattern
Variables (n = 200)

Table 6. Eigen Analysis Summary for Pattern Variables

Proportion Cumulative

Informative Patterns Redundant Patterns Component Eigenvalues of Variance Proportion
! 2 3 4 1 2 3 4 1 3.33 42 42
Valid 1  -.64 —43 -43 -42 -19 —-.14 -.15 —.10 2 1.49 19 60
Valid2 -45 -65 —.54 —53 —04 -.15 —17 —.15 3 93 1 72
valid3  —.44 —45 —64 —55 —06 —-.12 -.21 —.11 g g? -gg -gg

valid4  -41 -46 -55 -.06 —.12 —.13 —21 -.1 : : :

8 3 6 48 .06 94
Invalid 1 -.13 -.04 —-.05 —07 .43 23 .14 -. 7 29 04 98
3 00 8 A7 02 1.00

Invalid2 —-.20 -.13 -.18 -.20 05 40 .16 .01
Invalid3 -.14 -21 -17 -13 -.01 12 15 .09
Invaid4 -12 -.13 -13 -17 -07 03 .15 .37

matrix as in Figures 1 and 2. Such a plot displays the
component loadings, which are the correlations be-
tween the variables and the components. The structures
for the two sets of variables look quite similar. The first
component may be labeled a “type of response” dimen-
sion. Both invalid and valid hypothesis variables load
positively on the first component. The second dimen-
sion may be labeled an “error” dimension. Invalid hy-
potheses load positively while valids load negatively.
From problem 1 to 4 average performance improved
from 20.0 trials to 14.8 trials to solution. Despite that,
no learning or trial dimension, on which variables
would be ordered by problem number, was apparent.

The next step in the analysis involves evaluating re-
lationships between the sets of component variables. A
transformation as indicated in (7.5) from the raw vari-
ables to the new components has been completed. The
next step is to compute the correlation matrix between
the sets of component scores. This, of course, could be
done by first computing the component scores on the
raw data and then computing the resultant correlation
matrix. Alternately, one may simply use (7.10) or
(7.11). Table 9 reports the correlation matrix between
the principal component scores for the two sets of vari-
ables. With a small exception in row five, the largest
value within each row and column always occurs on the
diagonal. Hence the largest correlation for the ith com-
ponent in the hypothesis set is with the ith component
in the pattern set. These correlations are approximately
.5 to .6 in absolute value. Most of the off-diagonal cor-
relations are much smaller. Even though no attempt has
been made to simplify the cross-relationship pattern, it

Table 5. Eigen Analysis Summary for
Hypothesis Variables

Proportion Cumulative
Component Eigenvalues of Variance Proportion
1 3.44 43 43
2 1.78 .22 65
3 87 A1 76
4 61 .08 84
5 59 07 91
6 37 .05 96
7 20 .02 .98
8 13 .02 1.00

has been simplified by orthogonalizing the two sets
individually.

The next step is to decompose the between-
component set correlation matrix, as is done in (7.14)
and (7.16), to find weights for the hypothesis set and
weights for the pattern set. The first analysis will in-
clude all components for both variable sets since this
corresponds to the usual canonical analysis. Subsequent
analysis will use only two components.

Since eight variables are in each set, eight canonical
variate pairs may exist. All eight canonical correlations
are numerically nonzero. Table 10 contains information
that may be misinterpreted. The first canonical cor-
relation is .72 and its square is .52. Approximately half
of the variance in some linear combination of the eight
hypothesis variables is accounted for by some linear
combination of the pattern variables. The second
canonical correlation is .68 and its square is .46. This

Table 7. Component Loadings for
Hypothesis Variables

Component

Plot
Variable 1 2 3 4 5 6 7 8 Symbol
Valid 1 80 —.24 -19 -07 .09 49 .13 -.01 A
Valid 2 88 —-24 04 .01 —-15 .02 .37 —.06 B
Valid 3 90 -.24 -06 .06 .00 -20-.07 .28 C
Valid 4 90 —.14 .04 —.06 -.01 —.28 —.19 —.22 D
Invalid1 39 40 .75 .28 .21 .09-.07 .01 E
Invalid2 .32 .70 -.07 -52 .34 —.05 .07 .03 F
Invalid3 .27 .74 .04 08 —-61 .07-.06 .03 G
Invalid 4 28 .63 —.51 .49 .17 —.03 .03 —.04 H

Table ;8. Component Loadings for Pattern Variables

Component
Plot
Variable 1 2 3 4 5 6 7 8 Symbol
Informative 1 .71 —.33—-.01 .26—.10 .55 .10 —.02 A
Informative 2 .83 —.22 .09—-.12 .21 .00—-43 .05 B
Informative 3 .87 —.18 .09-.18-.07-.18 23 .27 C
Informative 4 .88 —.19 .09-.17-.03-.22 .13 —-.30 D
Redundant1 .51 .20-.62 .52-.01-22-.03 .01 E
Redundant2 .35 .67-.30-.33 42 .20 .10-.01 F
Redundant3 .38 .70 .04—.16-.57 .07-.12-.00 G
Redundant4 .27 .54 .64 .43 .20-.06 .04 .00 H
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Figure 1. Principal Components Loadings for Hypoth-
esis Variables' Correlation Matrix

indicates that, of the variance left after the first canon-
ical variate has been removed, approximately half is
predictable. The successive variate pairs are orthogo-
nal. One computes the first variate pair, then finds re-
siduals from the pair. In turn a subsequent analysis is
done within that residual space, and so forth for each
successive variate pair. Consequently, the second and
later canonical correlations are correlations between re-
sidual spaces.
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Figure 2. Principal Components Loadings for Pattern
Variables’ Correlation Matrix

Table 9. Correlation Matrix Between
Principal Component Scores

Pattern Components

Hypothesis
Components 1 2 3 4 5 6 7 8

60 -22 19 15 06 .13 -.06 -.02
-.16 -36 .01 -01 .04 -08 .03 -03
20 .02 —-47 —-07 -00 -.09 .01 .02
10 -01 21 -33 .11 -13 01 .03
-14 -13 11 -05 .15 .07 -.18 -.16
-02 -06 —-09 -21 -06 .50 .11 .07
.02 -10 .13 .10 -5 -07 51 20
-04 -09 .11 -05 .14 —-01 -23 -58

ONOONLEWN =

Since the nature of the example data precludes the
use of normal-theory statistics, the usual significance
tests have not been reported. From a descriptive per-
spective, seven canonical variate pairs may be useful.
Considering the above discussion concerning the in-
flation of the apparent importance of the later variates,
Wilk’s Likelihood Ratio indicates that two or perhaps
three canonical variate pairs should be retained. Recall
that this number is bounded by the dimensions of the
original spaces.

Tables 11 and 12 provide the canonical weights for the
component scores. These two matrices are the orthogo-
nal transformation matrices necessary to transform the
components into the canonical variates. The transfor-
mations are A* and B*, given in (8.1). They are the
weights necessary to transform the component scores
into the new canonical variates. Each may be thought of
as an orthogonal rotation, in eight-space, of the original
orthogonal structure.

Tables 13 and 14 report the canonical factor loadings
for the hypothesis variables and the pattern variables,
respectively. The values are also the correlations be-
tween the original variables and the canonical variates.
The first two canonical factors are plotted for the hy-
pothesis variables in Figure 3 and for the pattern vari-
ables in Figure 4. The structure in Figures 3 and 4 is
similar to that in Figures 1 and 2 but has some differ-
ences. The differences stem from the fact that rigid
rotation in eight-dimensional space is not necessarily a
rigid rotation in any two-dimensional subspace. The
canonical solution works simultaneously with all eight
component variables. The figures only present the first
two components. Given the original component struc-

Table 10. Canonical Correlation in Summary for Eight

Components
Variate Canonical Canonical Wilks'
Pair Correlation Squared A

1 72 .52 .04
2 .68 .46 .10
3 .65 42 .18
4 .60 .36 31
5 .56 3 A48
6 41 A7 .70
7 40 .16 .84
8 .06 .00 - 1.00
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Table 11. Orthogonal Transformation for Hypothesis
Variables for Eight Components

Table 13. Canonical Factor Loadings for Hypothesis
Variables for Eight Components

Canonical Variate
Hypothesis
Component 1 2 3 4 5 6 7 8

.85 37 -34 -02 .06 .13 .05 -.02
00 -16 .09 —-15 26 .68 —.50 —.40
-13 33 -12 .26 -.65 21 —.49 .29
22 -25 -32 -05 .12 —-.64 -69 —-.05
-06 -25 32 .05 .41 20 -10 .78
06 -03 .13 94 31 .03 -.01 .06
25 21 86 —-.183 .07 .05 -.06 .37
38 -.76 .10 .09 —-47 .14 13 .06

ONONEWN =

tures and the magnitude of the canonical correlations,
the two canonical structures look quite similar. Note
that the interpretation would potentially be different
from the original factors. Certainly the first component
may still be interpreted as a type-of-response dimen-
sion. However, the second component is not as clearly
defined as it was originally. As with any factor of a
correlation matrix, Tables 13 and 14 have elements that
are correlation coefficients between the original vari-
ables and the components.

Tables 15 and 16 report what is more commonly
shown for canonical analysis. This provides the weights
for the standardized original hypothesis and pattern
variables necessary to produce the new canonical
variates. These tables may be computed using the
transformations indicated in (6.4) and (2.11). Two
transformations are combined, one being from the com-
ponents to the canonical variates. Note that the weights
depend upon the scale of the original variables, if stan-
dardized variables are not treated. It must be empha-
sized that the results in Tables 10, 15, and 16 are exactly
what is reported by direct calculation of the canonical
solution. Although they are only a small fraction of the
information, they are usually a major portion of most
computer programs’ output and written reports.

Different results follow if only the first two com-
ponents are retained for each set. For this approach, use
the first two columns of Tables 7 and 8 as F, and F,,
respectively. Then R,.,. becomes the first two rows of
the first two columns of Table 9. Calculation of the
canonical solution on that 2 X 2 matrix gives the rota-
tions, which are the canonical weights. Tables 17 and 18

Table 12. Orthogonal Transformation for Pattern
Variables for Eight Components

Canonical Variate

Pattern
Component 1 2 3 4 5 6 7 8

70 54 -28 .07 -.29 -21 —-.12 -.03
-3 .09 -03 .03 -29 -75 .44 .18
46 —31 09 -38 57 -39 .20 -.10
07 27 .03 —45 -11 46 68 .19
11 —-27 -29 —-.08 .00 .02 -21 .88
14 03 -08 .78 38 .12 44 13
01 43 78 04 .18 —-.09 -.19 .35
38 53 45 .18 -5 .05 .15 —.01

ONOO D WN =

Canonical Factor

Plot
Variable 1 2 3 4 5 6 7 8 Symbol
Valid 1 66 —33 .39 -54 .06 .04-02 .12 A
Valid 2 83 —-52-.05 .01 .02 .07 -.18 .08 B
Valid 3 82 -.19 39 .12-25-04-23 .11 C
Valid 4 64 —47 53 27 .05 .08 —.08 —.05 D
Invalidt .36 .17 .07 .17 .69 —.39 -.35 —.22 E
Invalid2 .38 .17 .12 .19 34 -27 .79 .01 F
Invalid3 .29 -.07 —.13 .03 -.00 —-.36 .32 —.82 G
Invalid 4 .04 —-27 .12 -01-.13-91 .24 .06 H

Table 14. Canonical Factor Loadings for Pattern
Variables for Eight Components

Canonical Factor

Plot
Variable 1 2 3 4 5 6 7 8 Symbo
Informative 1 .66 —.24-.35 .57-.12 .05-.18-.00 A
Informative 2 .71 —.65 .21 .01 .08-.03-.13 .09 B
Informative 3 .81 —.21-.28-.16 .43 .01-.06 .08 C
Informative 4 .59 —.56—-.45-.28 .10-.03-.18 .08 D
Redundant 1 —.05 —.34—-.18 .34 58-28-.55 .03 E
Redundant 2 —.12 -.50—.12 .19 44-29 61 .19 F
Redundant3 .12 —.19—-.20-.03 .26-.54 .27-.70 G
Redundant4 .24 .09-.01-.05-.15-.91 .07 .26 H
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Figure 3. Canonical Factor Loadings for Hypothesis
Variables’ Correlation Matrix
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Figure 4. Canonical Factor Loadings for Pattern Vari-
ables’ Correlation Matrix

Table 15. Canonical Weights for Standardized Original
Hypothesis Variables for Eight Components

Canonical Variate .
Variable 1 2 3 4 5 6 7 8

Valid 1 07 -3 56-135 31 07 .10 -.10
Valid 2 51 -90-15t 21 28 .09 .03 47
Valid 3 89 149 24 24-126 —-29 -42 -.12
Valid 4 -65-117 115 74 50 40 .14 -.40

Invalid 1 1 .35 05 .02 .75 -37 —-60 -.08
Invalid 2 .38 40 -09 26 29 .10 .88 .42
Invalid 3 A7 05 -11 -20 -.33 -.01 A2 111
Invalid 4 —.28 -.53 .04 01 -.15 —91 -—-.02 .34

Table 16. Canonical Weights for.Standardized Original
Pattern Variables for Eight Components

Table 17. Orthogonal Transformation for Hypothesis
Variables for Two Components

Canonical Variate

Hypothesis

Component 1 2
1 ~.9987 0504
2 —.0504 -.9987

Table 18. Orthogonal Transformation for Pattern
Variables for Two Components

Canonical Variate

Pattern
Component 1 2
1 9471 .3210
2 .3410 —.9471

report these for this solution. The associated canonical
correlations are .64 and .39. Tables 19 and 20 give the
correlations between the original sets of variables and
the two corresponding canonical variates. These may be
thought of as the canonical factor loadings. Tables 21
and 22 give the weights necessary to compute the two
canonical variates directly from the original variable
sets.

The canonical factors are orthogonal rotations of the
first two factors in Tables 7 and 8, as well as what are
plotted in Figures 1 and 2. Interpreting Tables 17 and 18
as geometric rotation matrices indicates that finding this
canonical solution amounts to rotating the hypothesis
components approximately 3 degrees and rotating the
pattern components approximately 19 degrees. Hence
canonical factor plots should display the same relation-
ships as in Figures 1 and 2.

The weights are simple and easy to understand with
this approach. This follows from the correspondence
with the component analysis. The canonical analysis
weights for all eight components are less appealing. For
example, the second canonical variates put heavy
weight on the eighth components, which are essentially
noise.

Table 19. Canonical Factor Loadings for Hypothesis
Variables for Two Components

Canonical Variate
Variable 1 2 3 4 5 6 7 8

Canonical Factor

Informative 1 32 09 -52 102 -48 .11 .14 08
Informative 2 37 -71 134 04 —-13 -.04 —.14 —-.20
Informative 3 86 107 .08 —-.17 121t 22 29 .23
Informative 4 —-.45 -.90-1.18 —-83 —-.75 .00 -.30 .15

Redundant1 -.34 —.11 .01 25 .58 —.25 -.80 .06
Redundant2 -24 -39 -19 30 .27 .04 .81 .49
Redundant 3 .07 -08 -.00 -04 .04 -30 .14-1.11
Redundant 4 A7 28 .02 -.06 —-.27 -84 —06 .48

Variable 1 2

Valid 1 .81 -.20
Valid 2 .89 -.20
Valid 3 91 -.20
Valid 4 91 -.10
invalid 1 37 42
invalid 2 .29 VAl
Invalid 3 .23 .75
Invalid 4 : .24 .64
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Table 20. Canonical Factor Loadings for Pattern
Variables for Two Components

Table 22. Canonical Weights for Standardized Original
Pattern Variables for Two Components

Variable 1 2

Informative 1 .76 -.09
Informative 2 .86 .06
Informative 3 .89 11
Infarmative 4 .89 1
Redundant 1 42 .35
Redundant 2 A1 75
Redundant 3 13 .78
Redundant 4 .08 .59

12. CONCLUSIONS

Choosing to retain only meaningful components, as
in the example, leads to simpler interpretation, one
more consonant with the within-set structure. The ana-
lytic results and the example analysis provided a se-
quential construction of the model for canonical cor-
relation based on component scores given in (8.1).
First, the sets were decomposed (one at a time) into
principal components. Next, the between-component
set correlation matrix was computed. Finally, that ma-
trix was decomposed, providing maximally correlated
linear combinations of the two sets of components. Re-
porting any canonical analysis accurately will require
some detail since so much is implicitly being done. Mak-
ing the implicit properties explicit should help under-
standing and exposition.

The example analysis has certain limitations. First,
no form of significance testing was presented. The step-
wise nature of the analysis makes the usual test statistics
of questionable value. Any sequential descriptive anal-
ysis such as a stepwise regression, factor analysis, or the
canonical analysis reported here, demands some form
of replication. Another set of data on the same vari-
ables is available. If the purpose of this analysis were
psychological modeling rather than statistical demon-
stration, it would be necessary to analyze the second
data set to demonstrate the replicability of the conclu-
sions. Many other split-sample techniques are available.
Since canonical correlation usually involves stepwise
data analysis, it is important to remember the general
applicability and need for such an approach.

Table 21. Canonical Weights for Standardized Original
Hypothesis Variables for Two Components

Canonical Variate

Variable 1 2

Valid 1 22 -.14
Valid 2 .25 -.15
Valid 3 .25 -.15
Valid 4 .26 -.09
Invalid 1 12 22
Invalid 2 1 .39
Invalid 3 10 4
Invalid 4 10 .35

Canonical Variate

Variable 1 2

Informative 1 .27 -.14
Informative 2 .28 -.06
Informative 3 .29 -.03
Informative 4 .29 -.03
Redundant 1 10 A7
Redundant 2 -.05 .46
Redundant 3 -.04 .48
Redundant 4 -.04 37

Canonical correlation stands outside the set of com-
monly used linear-models analyses. Despite that, un-
derstanding canonical correlation helps in under-
standing many commonly used linear-models analyses.
As mentioned earlier, most of the more common tech-
niques are special cases of canonical correlation.
McKeon (1964) and Bartlett (1948) each discussed a
number of (distinct) examples. An important feature of
canonical correlation is the symmetry as to which set is
“X* and which is “Y.” In contrast, multivariate multi-
ple regression (including its special cases univariate and
multiple regression), MANOVA (and its special cases),
and discriminant analysis all are not symmetric. Yet the
canonical solution encompasses them all.

[Received January 1981. Revised November 1981.}

REFERENCES

ANDERSON, T.W. (1958), An Introduction to Multivariate Statisti-
cal Analysis, New York: John Wiley and Sons.

BARTLETT, M.S. (1948), “Internal and External Factor Analysis,”
British Journal of Psychology, Statistics Section, 1, 73-81.

BROWNE, M.W. (1979), “The Maximum-likelihood Solution in
Inter-battery Factory Analysis,” British Journal of Mathematical
and Statistical Psychology, 32, 75-86.

CRAMER, E.M., and NICEWANDER, W.A. (1979}, “‘Some Sym-
metric Invariant Measures of Multivariate Association,” Psycho-
metrika, 44, 43-54.

FINN, 1.D. (1974), A General Model for Multivariate Analysis, New
York: Holt, Rinehart and Winston.

GITTENS, R. (1979), “Ecological Applications of Canonical Anal-
ysis,” in Multivariate Methods in Ecological Work, eds. L. Orloci
and C.R. Rao, Fairland, Md.: International Co-op Publication.

GOLUB, G.H. (1969), “Matrix Decompositions and Statistical Cal-
culations,” in Statistical Computation, eds. R.C. Milton and J.A.
Nelder, New York: Academic Press.

HARMAN, J. (1967), Modern Factor Analysis, Chicago: University
of Chicago Press.

HARRIS, R.J. (1975), A Primer of Multivariate Statistics, New York:
Academic Press.

HOTELLING, H. (1935), “The Most Predictable Criterion,” Journal
of Education Psychology, 26, 139-142.

(1936), “Relations Between Two Sets of Variates,”” Biomet-
rika, 28, 321-377.

JOHNSON, E.S. (1971), “Objective Identification of Strategy on a
Selection Concept Learning Task,” Journal of Experimental Psy-
chology, 90, 167-196 (monograph).

KHATRI, C.G. (1976), “A Note on Multiple and Canonical Cor-
relation for a Singular Covariance Matrix,” Psychometrika, 41,
465-470.

© The American Statistician, November 1982, Vol. 36, No. 4 353



LEVINE, M.S. (1977), Canonical Analysis and Factor Comparison,

Beverly Hills, Calif.: Sage Publications (monograph in Qualitative
Applications in the Social_Sciences series).

McKEON, J.J. (1964), “Canonical Analysis: Some Relations Be-
tween Canonical Correlation, Factor Analysis, Discriminant Func-
tion Analysis, and Scaling Theory,” Psychometric Monograph, 13.

MORRISON, D.F. (1967), Multivariate Statistical Methods, New
York: McGraw-Hill.

MULLER, K.E.; HOSKING, l.D.; and HELMS, R.W. (1979),
“Using LINMOD to Adjust for Treatment Effects When Analyz-

ing the Covariance Matrix,” Proceedings of the Statistical Com-
puting Section, American Statistical Association, 136-140.

OLSON, C.L. (1976), *“‘On Choosing a Test Statistic in Multivariate
Analysis,” Psychological Bulletin, 83, 579-586.

PRESS, S.J. (1972), Applied Multivariate Analysis, New York: Holt,
Rinehart, and Winston.

RAOQ, C.R. (1973), Linear Statistical Inference and Its Applications
(2nd ed.), New York: John Wiley.

SEARLE, S.R. (1971), Linear Models, New York: John Wiley.

TATSUOKA, M.M. (1971), Multivariate Analysis: Techniques for
Educational and Psychological Research, New York: John Wiley.

354 © The American Statistician, November 1982, Vol. 36, No. 4












