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Object Oriented Data Analysis is the statistical analysis of popula-

tions of complex objects. In the special case of Functional Data Analysis,

these data objects are curves, where standard Euclidean approaches, such

as principal components analysis, have been very successful. Recent de-

velopments in medical image analysis motivate the statistical analysis of

populations of more complex data objects which are elements of mildly

non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, or of
strongly non-Euclidean spaces, such as spaces of tree-structured data ob-
jects. These new contexts for Object Oriented Data Analysis create several

potentially large new interfaces between mathematics and statistics. This
point is illustrated through the careful development of a novel mathemat-
ical framework for statistical analysis of populations of tree structured
objects.

1. Introduction Object Oriented Data Analysis (OODA) is the statistical
analysis of data sets of complex objects. The area is understood through consider-
ation of the atom of the statistical analysis. In a first course in statistics, the atoms
are numbers. Atoms are vectors in multivariate analysis. An interesting special case
of OODA is Functional Data Analysis, where atoms are curves, see Ramsay and
Silverman (1997, 2002) for excellent overviews, as well as many interesting anal-
yses, novel methodologies and detailed discussion. More general atoms have also
been considered. Locantore, et al (1999) studied the case of images as atoms, and
Pizer, et al (1999) and Yushkevich, et al (2001) took the atoms to be shape objects
in two and three dimensional space.

An important major goal of OODA is understanding population structure of a
data set. The usual first step is to find a centerpoint, e.g. a mean or median, of
the data set. The second step is to analyze the variation about the center. Princi-
pal Component Analysis (PCA) has been a workhorse method for this, especially
when combined with new visualizations as done in Functional Data Analysis. An
important reason for this success to date is that the data naturally lie in Euclidean
spaces, where standard vector space analyses have proven to be both insightful and
effective.

Medical image analysis is motivating some interesting new developments in
OODA. These new developments are not in traditional imaging areas, such as the
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denoising, segmentation and/or registration of a single image, but instead are about
the analysis of populations of images. Again common goals include finding center-
points and variation about the center, but also discrimination, i. e. classification,
is important. A serious challenge to this development is that the data often nat-
urally lie in non-Euclidean spaces. A range of such cases has arisen, from mildly
non-Euclidean spaces, such as Lie Groups and Symmetric Spaces, to strongly non-
Euclidean spaces, such as populations of tree or graph structured data objects.
Because such non-Euclidean data spaces are generally unfamiliar to statisticians,
there is opportunity for the development of several types of new interfaces between
statistics and mathematics. One purpose of this paper is to highlight some of these.
The newness of this non-standard mathematical statistics, that is currently un-
der development (and much of which is yet to be developed), is underscored by a
particularly deep look at an example of tree structured data objects.

Lie Groups and Symmetric Spaces are the natural domains for the data objects
which arise in the medial representation of body parts, as discussed in Section
1.1. Human organs are represented using vectors of parameters, which have both
real valued and angular components. Thus each data object is usefully viewed as
a point in a Lie Group, or a Symmetric Space, i. e. a curved manifold space. Such
representations are often only mildly non-Euclidean, because these curved spaces
can frequently be approximated to some degree by tangent spaces, where Euclidean
methods of analysis can be used. However the most natural and convincing analysis
of the data is done “along the manifold”, as discussed in Section 1.1. Because there
already exists a substantial medical imaging literature on this, only an overview is
given here.

Data objects which are trees or graphs are seen in Section 1.2 to be important in
medical image analysis for several reasons. These data types present an even greater
challenge, because the data space is strongly non-Euclidean. Fundamental tools
of standard vector space statistical analysis, such as linear subspace, projection,
analysis of variance and even linear combination are no longer available. Preliminary
ad hoc attempts made by the authors at this type of OODA ended up collapsing
in a mass of contradictions, because they were based on trying to apply Euclidean
notions in this very non-Euclidean domain. This motivated the development of
a really new type of mathematical statistics: a rigorous definition-theorem-proof
framework for the analysis of such data, which was the dissertation of Wang (2003).
In Section 2 it is seen how these tools provide an analysis of a real data set. Section
3 gives an overview of the mathematical structure that underpins the analysis.

Note that statistics and mathematics (of some non-standard types) meet each
other in several ways in OODA. For the Lie Group - symmetric space data, mathe-
matics provides a non-standard framework for conceptualizing the data. For data as
trees, an axiomatic system is used as a device to overcome our poor intuition for data
analysis in this very non-Euclidean space. Both of these marriages of mathematics
and statistics go in quite different directions from that of much of mathematical
statistics: the validation and comparison of existing statistical methods through
asymptotic analysis as the sample size tends to infinity. Note that this latter type
of analysis has so far been completely unexplored for these new types of OODA,
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and it also should lead to the development of many more interesting connections
between mathematics and statistics.

1.1. OODA on Lie Groups - Symmetric Spaces. Shape is an interesting and
useful characteristic of objects (usually in three dimensions) in medical image anal-
ysis. Shape is usually represented as a vector of measurements, so that a data set
of shapes can be analyzed as a set of vectors. There are a number of ways to rep-
resent shapes of objects. The best known in the statistical literature is landmark
based approaches, see Dryden and Mardia (1988) for good overview of this area.
While they have been a workhorse for solving a wide variety of practical problems,
landmark approaches tend to have limited utility for population studies in medi-
cal imaging, because a sufficient number of well defined, replicable landmarks are
frequently impossible to define.

Another common approach to shape representation is via various models for the
boundary. Popular methods of this type include various types of triangular meshes,
the Fourier boundary representations as discussed in Szekely, et al (1996), and the
sophisticated active shape / appearance models, see Cootes (2000) and Cootes and
Taylor (2001) for good introduction and overview.

A class of convenient and powerful shape representations is m-reps (a shortening
of “medial representation”), which are based on medial ideas, see Pizer, et al (1999)
and Yushkevich, et al (2001) for detailed introduction and discussion. The main idea
is to find the “central skeletons” of objects, and then to represent the whole object
in terms of ”spokes” from the center to the boundary. The central structure and
set of spokes to the boundary are discretized and approximated by a finite set of
m-reps. The m-rep parameters (location, radius and angles) are the features and are
concatenated into a feature vector to provide a numerical summary of the shape.
Each data object is thus represented as the direct product (thus a large vector) of
these parameters over the collection of m-reps. A major motivation for using m-reps
over other types of representation is that they provide a more direct solution to the
correspondence problem, which is to match parts of one object with corresponding
parts of other members of the population.

A simple example of the use of m-reps in OODA is shown in Figure 1, which uses
the specific representation of Yushkevich, et al (2001), which studied a set of human
corpora callosa, gathered from two dimensional Magnetic Resonance Images. The
corpus callosum is the small window between the left and right halves of the brain.
The left hand panel of Figure 1 shows a single m-rep decomposition of one corpus
callosum. Each large central dot shows the center of an m-rep (5 of which are used to
represent this object). The m-reps are a discretization of the medial axis, shown in
blue. The boundary of the object is determined by the spokes, which are the shorter
green line segments emanating from each m-rep. These spokes are paired, and are
determined by their (common) angle from the medial axis, and their length. All of
these parameters are summarized into a feature vector which is used to represent
each object.

The right hand panel of Figure 1 shows a simple OODA, of a population of 72
corpora callosa. This is done here by simple principal component analysis of the
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set of feature vectors. The central green shape is the mean of the population. The
colored sequence of shapes gives insight into population variation, by showing the
first principal component (thus the mode of maximal variation). In particular, each
shape shows a location along the eigenvector of the first PC. This shows that the
dominant mode of variation in this population is in the direction of more overall
bending in one direction, shown by the red curves, versus less overall bending in
the opposite direction, shown by the blue curves.

Fig. 1. Corpus Callosum Data. Left hand panel shows all components of the medial representa-
tion of the corpus callosum of one person. Right hand panel shows the boundaries of objects lying

along the first PCA eigenvectors, showing the largest component of variation in the population.

Figure 2 illustrates m-reps for a much more complicated data object, called a
multifigural object. This time the shapes lie in three dimensions, and each data ob-
ject consists of the bladder, prostate and rectum (each of which is called a figure) of
a single patient. The left panel shows the m-rep centers as small yellow spheres. The
spokes are shown as colored line segments. A mesh representation of the boundary
of each figure is added to the m-reps in the center panel. These boundaries are then
rendered as surfaces in the right panel.

A simple approach to OODA for m-rep objects is to simply use Euclidean PCA
on the vectors of parameters. However, there is substantial room for improvement,
because some parameters are angles, while others are radii (thus positive in sign),
and still others are position coordinates. One issue that comes up is that units are
not commensurate, so some vector entries could be orders of magnitude different
from the others, which will drastically effect PCA. An approach to this problem
is to replace the eigen-analysis of the covariance matrix (conventional PCA) with
the an eigen-analysis of the correlation matrix (a well known scale free analog of
PCA). But this still does not address the central challenge of statistical analysis of
angular data. For example, what is the average of a set of angles where some are just
above 0◦, and the rest are just below 360◦? The sensible answer is something very
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Fig. 2. Male pelvic data, showing medial representation of the bladder (yellow), prostate (green)

and a segment of the rectum (red) for a single person. The left panel shows the medial atoms
and spokes. The center panel shows the implied boundary of the three objects represented as a

mesh. The right panel shows a surface rendering of the implied boundaries of the three objects.

close to 0◦, but simple averaging of the numbers involved can give a diametrically
opposite answer closer to 180◦. There is a substantial literature on the statistical
analysis of angular data, also called directional data, i. e. data on the circle or
sphere. See Fisher (1993), Fisher, Lewis and Emgleton (1987) and Mardia (1972,
2000) for good introduction to this area. A fundamental concept of this area is that
the most convenient mathematical representation of angles is as points on the unit
circle, and for angles in 3-d, as points on the unit sphere.

For these same reasons it is natural to represent the vectors of m-rep parameters
as direct products of points on the circle and/or sphere for the angles, as positive
reals for the radii, and as real numbers for the locations. As noted in Fletcher, et
al (2005), the natural framework for understanding this type of data object is Lie
Groups and/or Symmetric Spaces. Fletcher, et al, go on to develop an approach to
OODA for such data. The Frechét approach gives a natural definition of the sample
center, and Principal Geodesic Analysis (PGA) quantifies population variation.

The Frechét mean has been a popular concept in robustness, since it provides
useful generalizations of the sample mean. It also provides an effective starting
point for non-Euclidean OODA. The main idea is that one way to characterize the
sample mean is as the minimizer of the sum of squared distances to each data point.
Thus the Frechét mean can be defined in quite abstract data spaces, as long as a
suitable metric can be found. For Lie Group - symmetric space data, the natural
distance is along geodesics, i. e. along the manifold, and this Frechét mean is called
the geodesic mean.

Fletcher’s Lie Group - symmetric space variation of PCA is PGA. The key to
this approach is to characterize PCA as finding lines which maximally approximate
the data. On curved manifolds, the analog of lines are geodesics, so PGA searches
for geodesics which maximally approximate the data. See Fletcher et al (2005) for
detailed discussion and insightful examples.
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A different example of OODA on curved manifolds can also be found in Izem,
Kingsolver and Marron (2005). That work was motivated by a problem in evolu-
tionary biology, where the data points were curves, but the goal was to quantify
nonlinear modes of variation. This was accomplished by the development of an
analog of analysis of variance, in the specified directions of evolutionary interest,
meaning along a curved manifold surface.

Curved manifolds have also been featured recently in statistics in a completely
different context. In the area that is coming to be called manifold learning, the
main idea is that some high dimensional data sets may lie on low dimensional
manifolds. This idea goes back at least to the Principal Curves idea of Hastie and
Stuetzle (1989). Some popular current approaches to finding such manifolds are the
ISOMap of Tenenbaum, da Silva and Langford (2000), Local Linear Embedding of
Saul and Roweis (2004). See also Weinberger and Saul (2004), Donoho and Grimes
(2003, 2005). Wang and Marron (2005) addressed the related problem of estimating
the dimension of such a low dimensional manifold, using scale space ideas to tolerate
a much higher level of noise than most other methods in this area. A fundamental
difference between manifold learning, and the above described work is that in the
latter, the manifold is fixed and known from the nature of the problem, while in
the former, the goal is to find the manifold in the data.

While the above settings, featuring data objects lying in manifolds, present sta-
tistical challenges because of the non-Euclidean nature of the data space, there are
two senses in which they are relatively mildly non-Euclidean. The first is that when
the data are concentrated in a fairly small region, the manifold can be effectively
approximated by a Euclidean space called the tangent bundle. The second is that
Euclidean intuition can still be used via some fairly straightforward generalization,
such as replacing lines by geodesics, and Euclidean distance by geodesic distance.

1.2. OODA on Tree Spaces A type of data space which is much farther from
Euclidean in nature is the set of trees. A simple motivating example of trees as
data is the case of multifigural objects, of the type shown in Figure 2. In that
example, all three figures are present in every data object. But if some figures
are missing, then the usual vector of m-rep parameters has missing values. Thus
the natural data structure is trees, with nodes representing the figures. For each
figure, the corresponding m-rep parameters appear as attributes of that node. A
more complex and challenging example is the case of blood vessel trees, discussed
in Section 2.

In most of the rest of this paper, the focus is on very challenging problem of
OODA for data sets of tree-structured objects. Tree-structured data objects are
mathematically represented as simple graphs (a collection of nodes, and edges each
of which connects some pair of nodes). Simple graphs have a unique path (a set
of edges) between every pair of nodes (vertices). A tree is a simple graph, where
one node is designated as the root node, and all other nodes are children of a
parent node that is closer to the root, where parents and children are connected by
edges. In many applications, a tree-structured representation of each data object
is very natural, including medical image analysis, phylogenetic studies, clustering



OBJECT ORIENTED DATA ANALYSIS 7

analysis and some forms of classification (i.e. discrimination). Limited discussion,
with references of these areas is given in Section 1.2.1. Our driving example, based
on a data set of tree-structured blood vessel trees, is discussed in Section 2.

For a data set of tree-structured data objects, it is unclear how to develop notions
such as centerpoint and variation about the center. Our initial ad hoc attempts at
this were confounded by the fact that our usual intuitive ideas lead to contradic-
tions. As noted above we believe this is because our intuition is based on Euclidean
ideas, such as linear subspaces, projections, etc., while the space of trees is very
“non-Euclidean” in nature, in the sense that natural definitions of the fundamental
linear operators of addition and scalar multiplication operations do not seem to be
available. Some additional mathematical basis for the claim of “non-Euclidean-ness
of tree space”, in the context of phylogenetic trees, can be found in Billera, Holmes
and Vogtmann (2001). This failure of our intuition to give the needed insights, has
motivated our development of the careful axiomatic mathematical theory for the
statistical analysis of data sets of trees given in Section 3. Our approach essentially
circumvents the need to define the linear operations that are the foundations of
Euclidean space.

The development essentially starts from a Frechét approach, which is based on
a metric. In general, we believe that different data types, such as those listed in
Section 1.2.1, will require careful individual choice of a metric. In Sections 3.2 and
3.3, we define a new metric which makes sense for our driving problem of a data
set of blood vessel trees.

Once a metric has been chosen, the Frechét mean of a data set is the point which
minimizes the sum of the squared distances to the data points. A simple example
is the conventional sample mean in Euclidean space (just the mean vector), which
is the Frechét mean with respect to Euclidean distance. In Section 3.4, this idea is
the starting point of our development of the notion of centerpoint for a sample of
trees.

After an appropriate centerpoint is defined, it is of interest to quantify the vari-
ability of the sample about this center. Here, an analog of PCA, based on the notion
of a treeline which plays the role of “one-dimensional subspace”, is developed for
tree space (see Section 3.5). A key theoretical contribution is a fundamental theory
of variation decomposition in tree space, a tree version of the Pythagorean Theorem
(see Section 3.5), which allows ANOVA style decomposition of sums of squares.
In Section 3.6, an example is provided to highlight the difference between the tree
version PCA and regular PCA.

The driving problem in this paper is the analysis of a sample of blood vessel
trees, in the human brain, see Bullitt and Aylward (2002). We believe that similar
methods could be used for related medical imaging problems, such as the study of
samples of pulmonary airway systems, as studied in Tschirren, et al (2002). The
blood vessel systems considered here are conveniently represented as trees. In our
construction of these trees, each node represents a blood vessel, and the edges only
illustrate the connectedness property between two blood vessels. For these blood
vessel trees, both topological structure (i.e. connectivity properties) and geometric
properties, such as the locations and orientations of the blood vessels, are very
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important. These geometric properties are summarized as the attributes of each
node.

Focussing on our driving example of blood vessel trees, and their correspond-
ing attributes, we develop a new metric δ on tree space, see Section 3.3. Margush
(1982) gives a deeper discussion of metrics on trees. This metric δ consists of two
parts: the integer part dI , which captures the topological aspects of the tree struc-
ture (see Section 3.2 for more detail), and the fractional part fδ, which captures
characteristics of the nodal attributes (see Section 3.3).

The metric δ provides a foundation for defining the notion of centerpoint. A new
centerpoint, the median-mean tree is introduced (see Section 3.4). It has properties
similar to the median with respect to the integer part metric (see Section 3.2) and
similar to the mean with respect to the fractional part metric (see Section 3.3).

In Section 3, methods are developed for the OODA of samples of trees. An
interesting question for future research, is how our sample centerpoint and measures
of variation about the center correspond to theoretical notions of these quantities,
and an underlying probabilistic model for the population. For a promising approach
to this problem, see Larget, Simon and Kadane (2002).

1.2.1. Additional applications of OODA for trees. Our driving application of
OODA for tree structured data objects, to analyze data set of blood vessel trees,
is discussed in Section 2. A number of additional important potential applications,
which have not been tried yet, are discussed here.

In phylogenetic studies [see, e.g., Holmes (1999) and Li, et al (2000)], biologists
build phylogenetic trees to illustrate the evolutionary relations among a group of
organisms. Each node represents a taxonomic unit, such as a gene, or such as an
individual represented by part of its genome, etc. The branching pattern (topol-
ogy) represents the relationships between the taxonomic units. The lengths of the
branches have meanings, such as the evolutionary time. An interesting metric in
this context is the triples distance, developed by Critchlow, Li, Nourijelyani and
Pearl (2000).

In cluster analysis [see Everitt, et al (2001)], a common practice is to obtain
different cluster trees by using different algorithms, or by “bagging” or related
methods [see Breiman (1996)], and then seek to do inference on the “central” tree.
For cluster trees, the terminal nodes (external nodes, i.e., nodes at the tip of the
tree) indicate the objects to be grouped; while the interior nodes indicate deeper
level groupings, and the length of the paths indicate how well groups are clustered.

In the classification and regression tree (CART) analysis [see Breiman, et al
(1984)], researchers make a decision tree to categorize all of the data objects. First,
all of the objects are in one big group, called the “root node”. Then, according to
a decision rule, each group of objects will be partitioned into two subgroups, called
“nodes”. For this type of classification tree, the branches indicate the responses
to some decision rule. Each node represents a group of objects after applying a
sequence of decision rules, so the attributes of each node are the total numbers of
objects in that group.

2. Tree OODA of a blood vessel data set. In this section, advanced sta-
tistical analysis, including centerpoint and variation about the center, of a data set
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of tree-structured objects, is motivated and demonstrated in the context of human
brain blood vessel trees.

An example of arterial brain blood vessels from one person, provided by E. Bul-
litt, is shown in Figure 3. Because of the branching nature of blood vessel systems, a
tree-structured data representation is very natural. See Bullitt and Aylward (2002)
for detailed discussion of the data, and the method that was used to extract trees of
blood vessel systems from Magnetic Resonance Images. The blood vessel systems
considered here have three important components: the left carotid, the right carotid
and the vertebrobasilar systems, shown in different colors in Figure 3. Each compo-
nent consists of one root vessel and many offspring branches (vessels). Each branch
is represented as a node in the tree structure. The attributes for each node include
both information about that vessel, and also tree connectivity information. The
individual information about that branch is coded as a sequence of vessel medial
points (essentially a discretization of the medial axis of the blood vessel), where
each point has a 3d location and a radius (of the vessel at the point). The connec-
tivity information for each branch (node) records an index of its parent, and also
the location of attachment to the parent. All of these attributes are used in the
visual rendering shown in Figure 3.

Fig. 3. The three component blood vessel trees, shown as different colors, from one person. This
detailed graphical illustration uses all attributes from the raw data.

The full data set analyzed here has 11 trees from 3 people. These are the
left carotid, right carotid and vertebrobasilar systems from each person, plus two
smaller, unattached, components from one of the three people.

For simplicity of analysis, in this paper, we will work with only a much smaller set
of attributes, based on a simple linear approximation of each branch. In particular,
the attributes of the root node are the 3d locations of the starting and ending
medial points. The attributes of the other branches include the index of the parent,
together with a connectivity parameter indicating location of the starting point on
the linear approximation of the parent, as

p =
Distance of starting point to point of attachment on the parent

Distance of starting point to ending point on the parent
,

and the 3d locations of the ending point. An additional simplification is that radial
information is ignored.



10 H. WANG AND J. S. MARRON

For computational speed, only a subtree (up to three levels and three nodes) of
each element among those 11 trees is considered. There are only two different tree
structures in this data set, which are called Type I and Type II, shown in Figure
4. Among these 11 blood vessel trees, seven trees have Type I structure and four
trees have Type II structure.

Type I Type II

Fig. 4. Two types of three-node tree structures, that are present in our sample, of simplified

blood vessel trees, where 7 are of Type I, and 4 are of Type II.

Each panel of Figure 5 shows the individual component trees for one person.
The three dimensional aspect of these plots is most clearly visible in rotating views,
which are internet available from the links “first person”, “second person” and
“third person” on the web site Wang (2004). These components are shown as thin
line trees, which represent each raw data point. Trees are shown using the simplified
rendering, based on only the linear approximation attributes, as described above.
The root node of each tree is indicated with a solid line type, while the children are
dashed. We will first treat each person’s component trees as a separate subsample.
Each panel of Figure 5 also includes the new notion of centerpoint (for that subsam-
ple), shown using a thicker line type. This is the median-mean tree, as developed in
Section 3.4. This tree is central in terms of structure, size, and location, in senses
which will be defined there.

Fig. 5. Simplified blood vessel trees (thin colored lines), for each person individually, with the

individual median-mean trees (thicker black line). Root nodes use solid line types and children

are dashed.

These trees are combined into a single, larger sample in Figure 6. Again a rotating
three dimensional view is available at the link “sample” on Wang (2004). This
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combined sample gives effective illustration of our statistical methodologies. Again,
the median-mean tree of the larger sample is shown with a thick black line. This
time the median-mean tree is surprisingly small, especially in comparison to the
median-mean trees for individual people, shown in Figure 5. This will be explained
through a careful analysis of the variation about the median-mean tree.

Fig. 6. Combined sample of simplified blood vessel trees (thin line types) and the median-mean
tree (thick line type). The median-mean tree, in the center, has a very short, nearly horizontal

root node, and very short branches. The contrast of this, with the individual median-mean trees,
shown in the previous figure, will be explained through the analysis of variation.

Another important contribution of this paper is the development of an approach
to analyzing the variation within a sample of trees. In conventional multivariate
analysis, a simple first order linear approach to this problem is Principal Compo-
nent Analysis. We develop an analog, for samples of trees in Section 3.5. Our first
approach is illustrated in Figure 7, with an analysis of the dominant mode of tree
structure variation, for the full blood vessel tree sample shown in Figure 6.

The generalization of PCA, to samples of tree-structured objects could be ap-
proached in many ways, because PCA can be thought of in a number of different
ways. After considering many approaches, we found a suggestion by J. O. Ramsay
to be the most natural. The fundamental idea is to view PCA as a sequence of
one-dimensional representations of the data. Hence, our tree version PCA is based
on notions of one-dimensional representation of the data set. These notions are
carefully developed and precisely defined in Section 3.5. The foundation of this ap-
proach is the concept of treeline, which plays the role of line (a one-dimensional
subspace in Euclidean space) in tree space. Two different types of treelines are de-
veloped in Section 3.5. The structure treeline which quantifies sample variation in
tree structure, is formally defined in Definition 3.1 and is illustrated here in Fig-
ures 7 and 8. The attribute treeline describes variation within a fixed type of tree
structure, is defined in Definition 3.2, and is illustrated here in Figure 9.

The structure treeline which best represents the data set (this will be formally
defined in Section 3.5, but for now think in analogy to PCA), is called the principal
structure treeline. The principal structure treeline for the full simplified blood vessel
data is shown in Figure 7 (structure only, without attributes) and Figure 8 (with
attributes). In Figure 7, this treeline starts with the tree u0, which has two nodes.
The other trees in this direction are u1 and u2, which consecutively add one left
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child. Generally structure treelines follow the pattern of successively adding single
child nodes. This principal structure treeline is chosen, among all treelines that pass
through the median-mean tree, to explain as much of the structure in the data as
possible (in a sense defined formally in Section 3.5). Hence, this highlights structure
variation in this sample, by showing that the dominant component of topological
structure variation in the data set is towards branching in the direction of addition
of left hand children nodes. Next, we also study how the attributes change as we

u
0

u
1

u
2

Fig. 7. The principal structure treeline for the full simplified blood vessel data, without nodal
attributes. Shows that the dominant sample variation in structure is towards the addition of left
hand children nodes.

move along this principal structure treeline, in Figure 8. The three panels show the
simplified tree rendering of the trees whose structure is illustrated in Figure 7, with
the first treeline member u0 shown in the left box, the three node tree u1, which is
the median-mean tree, in the center box, and u2 with four nodes in the right hand
box.

Fig. 8. The principal structure treeline, with nodal attributes. This shows more about the sample
variation, than is available from mere structure information.

In addition to the principal structure representation, another useful view of the
data comes from the principal attribute directions (developed in Section 3.5). Prin-
cipal attribute treelines have a fixed tree structure, and highlight important sample
variation within the given tree structure. Since the tree structure is fixed, this
treeline is quite similar to the conventional first principal component, within that
structure. Here we illustrate this idea, showing the principal attribute treeline which
passes through (and thus has the same structure as) the median-mean tree, shown
in Figure 9. There are six subplots in this figure. The subplots depict a succession
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of locations on the attribute treeline, which highlights the sample variation in this
treeline direction. These are snapshots which are extracted from a movie version
that provides clear visual interpretation of this treeline, and is internet available
from the link “median-mean tree” from Wang (2004). A similar movie, showing a
different principal attribute treeline can be found at the link “support tree” (this
concept is explained in Section 3.1) on Wang (2004).

Fig. 9. The principal attribute treeline passing through the median-mean tree. These are snap-
shots from a movie which highlights this mode of variation in the sample. The thick black root
node flips over.

In general, Figure 9 shows marked change in the length and orientation of the
main root (solid black line). It starts (upper left) as a long nearly vertical segment,
which becomes shorter, and moves towards horizontal (upper right). This trend
continues in the lower left box, where the root is very short indeed, and is horizon-
tal. In the next plots (lower row) the root begins to grow, this time in the opposite
direction. In particular, the root node flips over, with the top and bottom ends
trading places. While these trends are visible here, the impression is much clearer
in the movie version. The branches also change in a way that shows smaller scale
variation in the data. This was a surprising feature of the sample. Careful investi-
gation showed that the given data sets did not all correctly follow the protocol of
choosing the coordinate system according to the direction of blood flow. Some of
them have the same direction; while, some of them have the inverse direction. A way
of highlighting the two different data types is via the projections (the direct analogs
of the principal component coefficients in PCA) of the 11 trees on this attribute
treeline, as shown in Figure 10, and which is formally defined in Section 3.5. Figure



14 H. WANG AND J. S. MARRON

10 is a jitter plot, see Tukey and Tukey (1990), where the projections are shown on
the horizontal axis, and a random vertical coordinate is used for visual separation
of the points. This shows that there are two distinct groups with a clear gap in the
middle, six trees with negative projection coefficients and five with positive ones.
This also shows that no trees correspond to the fourth frame in Figure 9, with a
very short root, which can also be seen in the raw data in Figure 6. This shows
that the surprisingly short root node, for the median-mean tree, resulted from its
being central to the sample formed by these two rather different subgroups, that
were formed by different orientations of the blood flow in the data set. This domi-
nates the total variation, perhaps obscuring population features of more biological
interest.

0

Fig. 10. Projection coefficients, shown as the horizontal axis, of 11 trees on the principal
attribute treeline passing through the median-mean tree. A random height is shown as the vertical

axis for better separation of the points. This shows two distinct subgroups, which explains the
very short median-mean root node.

3. Development of the Tree OODA methodology. In this section, a rig-
orous mathematical foundation is developed for the OODA of a data set of trees. We
will use S = {t1, t2, . . . , tn} to denote the data set of size n. Careful mathematics are
needed because the non-Euclidean nature of tree space means that many classical
notions do not carry over as expected. For simplicity, only the case of binary trees
with finite level, is explicitly studied. A binary tree is a tree such that every node
has at most two children (left child and right child). If a node has only one child,
it should be designated as one of left and right. In our blood vessel application, we
consistently label each single child as left. The set of all binary trees, the binary
tree space, is denoted by T .

3.1. Notation and preliminaries. This section introduces a labelling system for
the nodes of each tree in the sample, i.e. each t ∈ S. Each tree has a designated node
called the root. An important indicator of node location in the tree is the level of
the node, which is the length (number of edges) of the path to the root. In addition,
it is convenient to uniquely label each node of a binary tree by a natural number,
called the level-order index. The level-order index, of the node ω, is denoted by
ind(ω), which is defined recursively as:

1. if ω is the root, let ind(ω) = 1;

2. if ω is the left child of the node ν, let ind(ω) = 2× ind(ν);
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3. otherwise, if ω is the right child of the node ν, let ind(ω) = 2× ind(ν) + 1.

For a tree t, the set of level-order indices of the nodes is denoted by IND(t).
The set IND(t) completely characterizes the topological structure of t, and will be
a very useful device for proving theorems about this structure.

An important relationship between trees is the notion of a subtree, which is an
analog of the idea of subset. A tree s is called a topological subtree of a tree t when
every node in s is also in t, i.e. IND(s) ⊆ IND(t). Moreover, if for every node
k ∈ IND(s), the two trees also have the same nodal attributes, then s is called an
attribute subtree of t.

Also useful will be a set operations, such as union and intersection, on the
topological binary tree space (i.e. when only structure is considered). For two
binary trees t1 and t2, the tree t is the union (intersection) tree if IND(t) =
IND(t1) ∪ IND(t2) (IND(t) = IND(t1) ∩ IND(t2), respectively). A horizon for
our statistical analysis is provided by the union of all trees in the sample, which is
called the support tree. This allows simplification of our analysis, because we only
need to consider topological subtrees of the support tree.

The set of all topological subtrees, of a given tree t, is called a subtree class, and
denoted Tt. The terminology “class” is used because each Tt is closed under union
and intersection.

As noted in Section 1, the first major goal of statistical analysis of samples of
tree-structured objects is careful definition of a centerpoint of the data set. For
classical multivariate data, there are many notions of centerpoint, and even the
simple concept of sample mean can be characterized in many ways. After careful
extensive investigation, we have found that approaches related to the Frechét Mean
seem most natural. This characterizes the centerpoint as the binary tree which is
the closest to all other trees, in some sense (sum of squared Euclidean distances
gives the sample mean in multivariate analysis). This requires a metric on the space
of binary trees. Thus, the second fundamental issue is the definition of a distance
between two trees. This will be developed first for the case of topology only, i.e.
without nodal attributes, in Section 3.2. In Section 3.3, this metric will be extended
to properly incorporate attributes.

3.2. Metric on the binary tree space without nodal attributes. Given a tree t,
its topological structure is represented by its set of level-order indices IND(t).
Two trees have similar (different) topologies, when their level-order index sets are
similar (different, respectively). Hence, the non-common level-order indices give an
indication of the differences between two trees. Thus, for any two topological binary
trees s and t, define the metric

(3.1) dI(s, t) =

∞
∑

k=1

1{k ∈ IND(s)4IND(t)},

where4 is used to denote the symmetric set difference (A4B =
(

A ∩B
)

∪
(

A ∩B
)

,
whereA is the complement of A). Note that dI(s, t) counts the total number of nodes
which show up only in either s or t, but not both of them. Another useful view is
that this metric is the smallest number of addition and deletion of nodes required
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to change the tree s into t. Since dI is always an integer, it is called the integer tree
metric, hence the subscript of I. This will be extended to trees with attributes, in
Section 3.3, by adding a fractional part to this metric.

This metric can also be viewed in another way. Each binary tree can be repre-
sented as a binary string using 1 for an existent node and 0 otherwise. Since the
metric dI counts differences between strings of 0s and 1s, it is just the Hamming
distance from coding theory.

3.3. Metric on the binary tree space with nodal attributes. The integer tree
metric dI captures topological structure of the tree population. In many important
cases, including image analysis, the nodes of the trees contain useful attributes
(numerical values, see Section 1), which also characterize important features of
data objects.

The attributes, contained in the node with level-order index k on the tree t,
are denoted by (xtk, ytk), where for simplicity, only the case of two attributes per
node is treated explicitly here. For each node, indexed by k, the sample mean at-
tribute vector,

∑

t∈S(xtk, ytk)/
∑

t∈S 1{k ∈ IND(t)}, can be assumed to be zero
in the theoretical development, by subtracting the sample mean from the corre-
sponding attribute vector of every tree which has the node k. Moreover, the up-
per bound of the absolute values of the attributes, |xtk| and |ytk|, can be chosen

as
√

2
4 . Given any sample S, this assumption can always be satisfied by multi-

plying each attribute by the scale factors
√

2
4 (maxt∈S |xtk| 1 {k ∈ IND(t)})−1

and√
2

4 (maxt∈S |ytk| 1 {k ∈ IND(t)})−1
. This can induce some bias in our statistical

analysis, which can be partly controlled through careful choice of weights as dis-
cussed below, or by appropriate transformation of the attribute values. But this
assumption is important to control the magnitude of the attribute component of
the metric, with respect to the topological component. The bound

√
2

4 is used be-
cause the Euclidean distance between two-dimensional vectors, whose entries satisfy
this bound, is at most 1. For the general nodal attribute vector (e.g., the nodal at-
tribute vectors of the blood vessel trees), a different bound will be chosen to make
the attribute difference (between two trees) less than 1.

For any trees s and t with nodal attributes, define the new metric (Theorem 3.1
establishes that this is indeed a metric)

(3.2) δ(s, t) = dI(s, t) + fδ(s, t),

where

fδ(s, t) =

[ ∞
∑

k=1

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ IND(s) ∩ IND(t)}

+
∞
∑

k=1

αk(x
2
sk + y2

sk)1{k ∈ IND(s)\IND(t)}

+
∞
∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ IND(t)\IND(s)}
]

1
2

(3.3)
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and where {αk}∞k=1 is a non-negative weight series with
∑∞

k=1 αk = 1. These weights
are included to allow user intervention on the importance of various nodes in the
analysis (for example, in some cases, it is desirable for the root node to dominate the
analysis, in which case α1 is taken to be relatively large). When there is no obvious
choice of weights, equal weighting, αk = 1

#(nodes appearing in the sample) for nodes k
that appear in the sample, and αk = 0 otherwise, may be appropriate. All the
theorems in this paper are developed for general weight sequences. But, in Section
3.6, we consider some toy examples, based on the exponential weight sequence,
which gives the same weight to nodes within a level, and uses an exponentially
decreasing sequence across levels. In particular, the weight

(3.4) αk = {2−(2i+1)}, where i = blog2 kc ,

(where b·c denotes the greatest integer function) is used for each node on the ith

level, i = 0, 1, 2, . . .. In the analysis of the blood vessel data, different normalization
of the attributes is required, because there are as many as six attributes per node.
The data analyzed in Section 2, was first recentered to have 0 mean, and rescaled
so that the absolute value of the attributes was bounded by 1

2
√

7
. To more closely

correspond to the original data, all of the displays in Section 2 are shown on the
original scale.

The last two summations in Equation (3.3) are included to avoid loss of infor-
mation from those nodal attributes that are in one tree and not the other. This
formulation, plus our assumption on the attributes ensures that the second term in
Equation (3.2), fδ (where “f” means fractional part of the metric), is at most 1.

Also, note that fδ is a square root of a weighted sum of squares. When trees s
and t have the same tree structure, fδ(s, t) can be viewed as a weighted Euclidean
distance. In particular, the nodal attributes of a tree t can be combined into a
single long vector called the attribute vector, denoted −→v , for conventional statistical
analysis. For an attribute subtree of t, the collection of attributes of the nodes of
this subtree are a subvector of −→v which is called the attribute subvector.

When trees s and t have different tree structures, it is convenient to replace the
non-existent nodal attributes with (0, 0). This also allows the nodal attributes to
be combined into a single long vector, −→v . Then, fδ(s, t) is a weighted Euclidean
metric on these vectors.

For another view of fδ, rescale the entries of the vector by the square root of the
weights αk. Then, fδ is the ordinary Euclidean metric on these rescaled vectors.

Next, Theorem 3.1 shows that δ is a metric. This requires the following assump-
tion.

Assumption 1. The weight αk is positive and
∑

αk = 1.

Theorem 3.1. Under Assumption 1, δ is a metric on the tree space with nodal
attributes.

A sketch of the proof of Theorem 3.1 is in Section 4. The full proof is in the
dissertation Wang (2003), the proof of Theorem 3.1.2 in Section 3.1.
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Remark 1. To understand why the Assumption 1 is critical to Theorem 3.1,
consider the integer part dI . While dI is a metric on topological tree space, it is not
a metric on the binary tree space with nodal attributes. In particular, for any two
binary trees s and t with the same topological structure, dI(s, t) is always equal to
zero regardless of their attribute difference. Thus, dI is only a pseudo-metric on the
tree space with nodal attributes. The Assumption 1 ensures that δ is a metric, not
just a pseudo-metric.

3.4. Central tree. In the Euclidean space R1, for a given data set of size n,
there are two often-used measurements of the centerpoint, the sample mean and
the sample median. Non-uniqueness for the median arises when n is an even number.
In this section, the concepts of the sample median and the sample mean will be
extended to the binary tree spaces, both with and without nodal attributes.

First, the case with no nodal attributes, i. e. only topological structure, is con-
sidered. A sensible notion of centerpoint is the median tree, which is defined as the
minimizing tree, argmint

∑n
i=1 dI(t, ti), taken over all trees t.

This is a modification of the Frechét mean, argmint
∑n

i=1 dI(t, ti)
2, which is

used because it allows straightforward fast computation. This can be done using
the characterization of the minimizing tree that is given in Theorem 3.2.

Theorem 3.2. If a tree s is a minimizing tree according to the metric dI , then
all the nodes of tree s must appear at least n

2 times in the binary tree sample S.
Moreover, the minimizing tree s (according to dI) must contain all the nodes, which
appear more than n

2 times, and may contain any subset of nodes that appear exactly
n
2 times.

The proof is given in Section 4.

Non-uniqueness may arise when the sample size is an even number. The minimal
median tree, which has the fewest nodes among all the median trees, is recommended
as a device for breaking any ties.

Banks and Constantine (1998) independently developed essentially the same no-
tion of central tree, and this characterization of the minimizing tree, which is called
the majority rule. We use this same terminology.

Next the case of nodal attributes is considered. Our proposed notion of center-
point in this case is called the median-mean tree. It has properties similar to the
sample median with respect to dI and similar to the sample mean with respect to
fδ. Its tree structure complies with the majority rule and its nodal attributes can
be calculated as the sample mean

∑

t∈S(xtk, ytk)/
∑

t∈S 1{k ∈ IND(t)}. As for
the median tree, the median-mean tree may not be unique, and again the minimal
median-mean tree (with minimal number of nodes) is suggested for breaking such
ties.

The median-mean tree is not always the same as the Frechét mean,

argmin
t

∑

s∈S
δ (t, s)

2
.
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We recommend the median-mean tree because it is much faster to compute. The
median-mean tree is also most natural as the centerpoint of the Pythagorean The-
orem (i. e. Sums of Squares analysis) developed in Section 3.5.

Another useful concept is the average support tree, which consists of all the nodes
that appear in the tree sample with nodal attributes calculated as averages, as done
in the median-mean tree. Thus the median-mean tree is an attribute subtree of the
average support tree.

3.5. Variation analysis in the binary tree space with nodal attributes. Now that
the central tree has been developed, the next question is how to quantify the vari-
ation of the sample about the centerpoint, i.e. about the median-mean tree.

In Euclidean space, the classical analysis of variance approach, based on decom-
posing sums of squares, provides a particularly appealing approach to quantifying
variation. This analysis has an elegant geometric representation via the Pythagorean
Theorem.

After a number of trials, we found that the most natural and computable analog
of the classical ANOVA decomposition, came from generalizing the usual squared
Euclidean norm to the variation function:

(3.5) Vδ(s, t) = dI(s, t) + f2
δ (s, t).

Note that if every tree has the same structure, then this reduces to classical sums of
squares, and the median-mean tree is the Frechét mean, with respect to the variation
Vδ(s, t) = f2

δ (s, t), in the sense that it is the minimizing tree, over t, of
∑

s∈S Vδ(s, t).
This is also true in the case of tree samples that are purely topological, i.e. that
have no attributes, when the variation becomes Vδ(s, t) = dI(s, t). Then dI is a
full metric (not just a pseudo-metric), which can be written as a sum of zeros and
ones (see Equation (3.1)). So the metric dI can be interpreted as a sum of squares,
because

(3.6)

∞
∑

k=1

(1{k ∈ IND(s)4IND(t)})2 =

∞
∑

k=1

1{k ∈ IND(s)4IND(t)} = dI(s, t).

In Euclidean space, the total variation of a sample can be measured by the sum of
squared distances to its sample mean. For the tree sample S and the median-mean
tree mδ, the total variation about the median-mean is defined as

∑

s∈S
Vδ(s,mδ) =

∑

s∈S
dI(s,mδ) +

∑

s∈S
f2
δ (s,mδ).

This total variation about the median-mean tree does not depend on how the tie is
broken between the median-mean trees (when it is not unique).

In classical statistics, PCA is a useful tool to capture the features of a data
set by decomposing the total variation about the centerpoint. In PCA, the first
principal component eigenvector indicates the direction in which the data vary the
most. Furthermore, other eigenvectors maximize variation in successive orthogonal
residual spaces.

In binary tree space, each tree in the sample is considered to be a data point.
Unlike Euclidean space, binary tree space is a nonlinear space according to the
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metric δ defined at (3.2). As noted above, because the space is nonlinear, the gener-
alization of PCA is not straightforward. The foundation of our analog of PCA, is a
notion of one-dimensional manifold in binary tree space, which is a set of trees that
plays the role of a “line” (a one-dimensional subspace in Euclidean space). There
are two important types, defined below, both of which are called treeline.

Definition 3.1. Suppose l = {u0, u1, u2, . . . , um} is a set of trees with (or
without) nodal attributes in the subtree class Tt, of a given tree t. The set l is called
a structure treeline (s-treeline) starting from u0 if for i = 1, 2, . . . ,m,

1. ui can be obtained by adding a single node (denoted by ν i ) to the tree ui−1

(thus, when attributes exist, they are common through the treeline);

2. The next node to be added, νi+1 is the child of νi;

3. The first tree u0 is minimal, in the sense that the ancestor node of ν1 is the
root node, or else has another child.

Remark 3.1. Structure treelines are “one-dimensional” in the sense that they
follow a single path, determined by u0, and the sequence of added nodes ν1, . . . , νm.
In this sense the elements of l are nested. Also when there are attributes, each
attribute vector is the corresponding attribute subvector (defined in Section 3.3) of
its successor.

In Definition 3.1, the tree ui−1 is a subtree (an attribute subtree, if there are
attributes) of the trees ui, ui+1, etc. Since every element in the s-treeline is a
topological subtree of t, the length of the s-treeline cannot exceed the number of
levels of the tree t. Illustration of the concept of s-treeline is shown in Figures 11
and 12.

Fig. 11. Toy example tree t, for illustrating the concept of s-treeline, shown in Figure 12.

Figure 12 shows the s-treeline in Tt, where t has the tree structure shown in
Figure 11. Figure 12 indicates both tree topology, and also attributes. The positive
attributes (x, y) are graphically illustrated with a box for each node, where x is
shown as the horizontal length and y is the height.

Note that the attributes are common for each member of the treeline. Each
succeeding member comes from adding a new node. The starting member, u0, can
not be reduced, because the root node has a child, which does not follow the needed
sequence.
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Fig. 12. An s-treeline in Tt, based on the tree t shown in Figure 11.

A structure treeline l is said to pass through the tree u, when the tree u is an
element of the tree set l, i.e., u ∈ l. Recall from Section 2 that, for the blood vessel
data, Figure 7 shows the topology of the structure treeline passing through the
median-mean tree, and Figure 8 shows the corresponding attributes. The central
tree in each figure is the median-mean tree.

An s-treeline summarizes a direction of changing tree structures. The following
definition will describe a quite different direction in tree space, in which all trees
have the same tree structure but changing nodal attributes.

Definition 3.2. Suppose l = {uλ : λ ∈ R} is a set of trees with nodal attributes
in the subtree class Tt, of a given tree t. The set l is called an attribute treeline (a
-treeline) passing through a tree u∗ if

1. every tree uλ has the same tree structure as u∗;

2. the nodal attribute vector is equal to ~v∗ + λ~v, where ~v∗ is the attribute vector
of the tree u∗ and where ~v is some fixed vector, ~v 6= ~0.

Remark 3.2. An a-treeline is determined by the tree u∗ and the vector ~v. The
treeline is “one-dimensional” in this sense, which is essentially the same as a line
in Euclidean space.

Figure 13 shows some members, of an a-treeline from the same subtree class Tt
shown in Figure 11, with λ = 0.5, 1.0, 1.2, 1.5 and ~v = [0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.2]′.

Fig. 13. Toy example of an a-treeline for the same subtree class T t as in Figure 11. Several

members of the treeline are shown. The attributes are a linear function of each other.

The topological structure of all of the trees in Figure 13 are the same. The
dimensions of the boxes, illustrating the values of the attributes, change linearly.
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In Section 2, Figure 9 illustrated an attribute treeline. That treeline highlighted
the strong variation between orientations of the trees in the sample.

From now on, both s-treelines and a-treelines are called treelines. An analogy of
the first principal component is the treeline which explains most of the variation
in the data. A notion of projection, of a tree onto a treeline, needs to be defined,
because this provides the basis for decomposition of sums of squares.

For any tree t and treeline l, the projection of t onto l, denoted Pl(t), is the
tree which minimizes the distance δ(t, ·) over all trees on the treeline l. The idea of
projection is most useful, when it is unique, as shown in the next theorem.

Theorem 3.3. Under Assumption 1, the projection of a tree t onto a treeline
l is unique.

The proof is given in Section 4.
The Pythagorean Theorem is critical to the decomposition of the sums of squares

in classical analysis of variance (ANOVA). Analogs of this are now developed for tree
samples. Theorem 3.4 gives a Pythagorean Theorem for a-treelines and Theorem
3.5 gives a Pythagorean Theorem for s-treelines.

Theorem 3.4. (Tree version of the Pythagorean Theorem: Part I) Let l be an
a-treeline passing through a tree u in the subtree class Tt. Then, for any t ∈ Tt,
(3.7) Vδ(t, u) = Vδ(t, Pl(t)) + Vδ(Pl(t), u).

Remark 3.3. This states that the variation (our analog of squared distance) of
a given tree t from a tree u in the treeline l, which is essentially the hypotenuse of our
triangle, is the sum of the variation of t from Pl(t), plus the variation of Pl(t) from u,
representing the legs of our triangle. This is the key to finding treelines that explain
maximal variation in the data, because Vδ(t, u) is independent of l, so maximizing
(over treelines l) a sample sum over Vδ(Pl(t), u) is equivalent to minimizing the
residual sum over Vδ(t, Pl(t)).

In this paper, only those s-treelines, where every element is an attribute subtree
of the average support tree (as defined in Section 3.4), are considered, because this
gives a tree version of the Pythagorean Theorem, shown next.

Theorem 3.5. (Tree version of the Pythagorean Theorem: Part II) Let S =
{t1, t2, . . . , tn} be a sample of trees. Let l be an s-treeline where every element is an
attribute subtree of the average support tree of S. Then, for any u ∈ l,

(3.8)
∑

t∈S
Vδ(t, u) =

∑

t∈S
Vδ(t, Pl(t)) +

∑

t∈S
Vδ(Pl(t), u).

Remark 3.4. This theorem complements Theorem 3.4, because it now gives
a structure treeline version of the Pythagorean Theorem, which simplifies analysis
of variance, because minimizing the residual sum

∑

t∈S Vδ(Pl(t), t) is equivalent to
maximizing the sum

∑

t∈S Vδ(µδ, Pl(t)) over all treelines passing through the minimal
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median-mean tree, µδ. In some sense, this theorem is not so strong as Theorem 3.4,
because the sample summation is needed, while the Pythagorean Theorem 3.4 is true
even term by term.

Sketches of the proofs of Theorems 3.4 and 3.5 are given in Section 4. Further
details are in the proofs of Theorems 3.5.3 and 3.5.4, in Section 3.5 of Wang (2003).

The foundations are now in place to develop variation analysis in binary tree
space. There are two main steps to the PCA on trees variation analysis.

First, find an s-treeline lPS such that minimizes the sum
∑

t∈S Vδ(t, Pl(t)) over
l passing through the minimal median-mean tree µδ of the sample S, i.e.,

(3.9) lPS = argmin
l:µδ∈l

∑

t∈S
Vδ(t, Pl(t)).

This structure treeline is called a one-dimensional principal structure representation
(treeline) of the sample S. Because of the Pythagorean Theorem 3.5, the one-
dimensional structure treeline lPS , explains a maximal amount of the variation in
the data, as is done by the first principal component in Euclidean space. This is
illustrated in the context of the blood vessel data in Section 2. Figure 8 shows the
principal structure treeline lPS = {u0, u1, u2} with nodal attributes, where u1 is
the unique median-mean tree (also the minimal median-mean tree) of the sample.
Figure 7 shows the topological tree structures of the principal structure treeline in
Figure 8.

Second, a notion of principal attribute treeline direction will be developed. This
will complement the principal structure treeline, in the sense that together they
determine an analog of a two dimensional subspace of binary tree space. Recall
from Definition 3.2, that an attribute treeline, is indexed by a starting tree u∗, with
attribute vector −→v ∗, and by a direction vector −→v , and has general attribute vector
−→v ∗+λ−→v , for λ ∈ R. To create the desired two dimensional structure, we consider a
family of attribute treelines, indexed by the nested members {u0, u1, . . . um} of the
principal structure treeline and their corresponding nested (in the sense of attribute
subvectors, as defined in Section 3.3) attribute vectors {−→v ∗

0,
−→v ∗

1, . . . ,
−→v ∗

m}, and
indexed by a set of nested direction vectors {−→v 0,

−→v 1, . . . ,
−→v m}.

The union of treelines that are nested in this way is called a family of attribute
treelines. This concept is developed in general in the following definition.

Definition 3.3. Let l = {u0, u1, . . . um} be a structure treeline, and let ~c be a
vector of attributes, corresponding to the nodes of um. The l,~c-induced family of

attribute treelines, El,~c = {e0, e1 . . . , em}, is defined, for k = 0, 1, . . . ,m, as

ek = {tλ : tλ has attribute vector −→v k + λ−→c k, λ ∈ R} ,
where −→v k is the attribute vector of uk, and where −→c k is the corresponding attribute
subvector of −→c .

Next an appropriate family of attribute treelines is chosen to provide maximal
approximation of the data (as is done by the first two principal components in Eu-
clidean space). Following conventional PCA, we start with the principal structure
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treeline lPS , (which we will denote in this paragraph as l simply to save a level
of subscripting) and choose the direction vector ~c so that the l,~c-induced family of
attribute treelines explains as much of the data as possible. In particular, we define
the principal attribute direction vector, ~cPA as

~cPA = argmin
~c

∑

t∈S
Vδ

(

t, PEl,~c (t)
)

,

where PEl,~c (t) is the projection of the tree t onto the l,~c-induced family of attribute
treelines. This is an analog of a two dimensional projection, defined as

PEl,~c (t) = argmin
s:s∈e(t)

δ (t, s) ,

where e(t) is the attribute treeline determined by the tree Pl(t) (the projection of
t onto the principal structure treeline), and by the direction vector which is the
corresponding attribute subvector of ~c.

The elements of the lPS ,~cPA-induced family of attribute treelines are all called
principal attribute treelines. As the first two principal components can illuminate
important aspects of the variation in data sets of curves, as demonstrated by e. g.
Ramsay and Silverman (1997, 2002), the principal structure and attribute treelines
can find important structure in a data sets of trees. An example of this, is shown in
Figures 9 and 10, where the principal attribute treeline through the median-mean
tree revealed the change in orientation among in the data.

For completely different extensions of PCA in nonlinear ways, see the princi-
pal curve idea of Hastie and Stuetzle (1989) and the principal geodesic analysis of
Fletcher, et al (2003). Principal curves provide an interesting nonlinear decompo-
sition of Euclidean space. Principal geodesics provide a decomposition of data in
nonlinear manifolds, including Lie groups and symmetric spaces.

3.6. Comparison of tree version PCA and regular PCA. The tree version PCA
is a generalization of the regular PCA to the case of trees as data points. When all
the trees in the sample have the same structure, the principal attribute direction is
the same as the first eigenvector of a weighted PCA. When the structures are not
all the same, the tree version PCA will find a more appropriate family of attribute
treelines. This idea will be illustrated using the following toy example. Here the
metric δ is assumed to use exponential weights, as defined at (3.4).

Example 3.1. Let S = {t1, t2, . . . , t13} be a sample of trees with size n = 13.
Let each member of S have one of the two structures shown in Figure 14. Let the
attributes have the form shown in Table 1, where the x and y values are given in
Table 2. In Table 2, the trees without node 3, have a ? shown in the y entry. Thus,
trees t1, t2, . . . , t7 have three nodes, while the others have two nodes.

Conventional PCA, can be applied to this data, if they can be represented by
vectors of equal length. A natural approach is to substitute the non-existent nodal
attributes ? by the sample average of the corresponding attributes.
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Type I Type II

Fig. 14. The two types of tree structures in the toy data set S.

Table 1

Form of the attributes of the trees in the toy data set S.

Level-order index Attributes
1 (0.1,0.1)
2 (x,x)
3 (y,y)

Table 2

Specific values of x and y for each tree in S.

1 2 3 4 5 6 7
x 0.267 0.280 0.250 0.241 0.242 0.251 0.252
y 0.220 0.230 0.200 0.180 0.180 0.190 0.190

8 9 10 11 12 13
x 0.276 0.285 0.266 0.210 0.220 0.200
y ? ? ? ? ? ?
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The corresponding exponentially weighted attributes are

(
x√
23

,
x√
23

) and (
y√
23

,
y√
23

)

for node 2 and node 3 respectively. Hence, the weighted attribute vector can be
written as

[
0.1√
2
,
0.1√
2
,

x√
23

,
x√
23

,
y√
23

,
y√
23

].

Thus, for analyzing variation in the sample, x/
√
8 and y/

√
8 are the two important

components of the attribute vector. For simple visualization in the following, the
principal components will be represented in two-dimensional space of x and y,
instead of the full six-dimensional space.

The scatter plot of the attributes, x and y, is shown in Figure 15. It shows that,
the attributes of the Type II trees (there are seven, shown with a “+”) form a
pattern from lower left to upper right. The attributes of the Type I trees (there
are six, shown with an “×”) have been divided into two groups with a gap in the
middle.

Applying the regular PCA to the weighted attribute vectors, gives the first prin-
cipal direction (first eigenvector), shown as the solid line in Figure 15. This shows
that the trees with the Type I structure have a strong effect on the conventional
PCA attribute direction, pulling it towards a horizontal line. This clearly is not an
effective one dimensional representation of the data.

Regular PCA

Tree version PCA

Nodal attribute x

N
od

al
 a

ttr
ib

ut
e 

y

Type I
Type II
Center

Fig. 15. Scatter plot of the nodal attributes and principal attribute directions given by Regular

PCA and Tree version PCA.

Next, the tree version PCA is applied to the same toy tree sample S. The tree
version PCA has two steps, finding the principal structure treeline and finding the
family of principal attribute treelines.
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The first two elements (denoted as u0 and u1) on the principal structure treeline
lPS is shown in Figure 16. Note that u1 is the median-mean tree of the sample S.
Moreover, the elements in S can be categorized by projections on this treeline. The
trees with Type I structure have projection u0 on the treeline lPS ; while, the trees
with Type II structure have projection u1 instead.

u
0

u
1

Fig. 16. Principal structure treeline lPS = {u0, u1}.

Based on the principal structure treeline, the principal attribute direction is
calculated and shown as the dashed line in Figure 15. Comparing with the direction
given by regular PCA, it is more appropriate for the reason that it represents the
relation of the (weighted) attributes. The Type I elements should not influence the
direction because they contain no information about the relationship between the
attributes x and y.

Next, the attributes of the six trees with Type I structure will be studied. All
these six trees have a common projection on the principal structure treeline, u0. The
projection coefficients of these trees on the attributes treeline passing through u0

are shown in Figure 17. Note that there is a big jump from the negative coefficients
to the positive ones.

0
Projection coefficients

Fig. 17. Projection coefficients of the trees with Type I structure on the principal attribute

direction.

Note that our tree version PCA only gives an analog of at most the first two
principal components. An interesting problem for future research is to find tree
analogs of additional components.

4. Derivations of theorems.

A sketch of the proof of Theorem 3.1. It follows from the fact that, dI
is a metric on the binary tree space without nodal attributes and fδ is a weighted
Euclidean distance between two attribute vectors (the nodal attributes for non-
existent nodes are treated as zeros).
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Proof of Theorem 3.2. Let s be a minimizing tree according to the integer
tree metric dI . Suppose some of the nodes in s appear less than n

2 times and ν is
the node with the largest level among all of those nodes. If a node appears less than
n
2 times, so do its children. Thus, ν must be a terminal node of s.

For the binary tree s′, with IND(s′) = IND(s)\{ind(ν)}, the following equation
is satisfied

(4.1)

n
∑

i=1

dI(s
′, ti) =

n
∑

i=1

dI(s, ti) + nν − (n− nν),

where nν=#{appearance of the node ν in the sample S}. Since nν < n
2 ,

n
∑

i=1

dI(s
′, ti) <

n
∑

i=1

dI(s, ti),

which is a contradiction with the assumption that s is a minimizing tree.
From the proof above, if nν = n

2 , then
∑n

i=1 dI(s
′, ti) =

∑n
i=1 dI(s, ti); that is,

s′ is also a minimizing tree. Therefore, the minimizing tree may contain any subset
of the nodes that appear exactly n

2 times.
Finally, a proof is given of the fact that the minimizing binary tree s contains

all the nodes which appear more than n
2 times.

Suppose the node ω appears more than n
2 times in the sample S and ind(ω) 6∈

IND(s). Without loss of generality, suppose that ω is a child of some node in the
binary tree s. Otherwise, choose one of its ancestor nodes.

For the binary tree s′′, with IND(s′′) = IND(s)∪{ind(ω)}, the following equa-
tion is satisfied

(4.2)
n

∑

i=1

dI(s, ti) =
n

∑

i=1

dI(s
′′, ti) + nω − (n− nω),

where nω=#{appearance of the node ω in the sample S}. Since nω > n
2 ,

n
∑

i=1

dI(s
′′, ti) <

n
∑

i=1

dI(s, ti),

which is a contradiction with the assumption that s is the minimizing tree.

Proof of Theorem 3.3. The proof will be provided for s-treelines and a-
treelines separately.

Case 1: l is an s-treeline.
Suppose l = {u0, u1, u2, . . . , um}. First, the topological structure is considered.

Let p be the index of the smallest dI -closest, to the tree t, member of the treeline
l; i.e.,

p = inf{i : dI(ui, t) ≤ dI(uj , t), j = 0, 1, . . . ,m}.

It will be shown that, for i 6= p, dI(ui, t) > dI(up, t). The proof will be provided for
i > p and i < p, respectively.
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For p < m, consider the two elements up and up+1 on the treeline l. By definition
of the s-treeline, the tree up can be obtained by deleting a node νp+1 from the tree
up+1. It will now be shown that, νp+1 6∈ IND(t). Otherwise,

dI(up+1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Thus, νp+1 6∈ IND(t), and

(4.3) dI(up+1, t) = dI(up, t) + 1.

Iteratively, for i = 0, . . . ,m− p− 1, the tree up+i can be obtained by deleting a
node νp+i+1 from the tree up+i+1. The node νp+i+1 is an offspring node of the node
νp+1. Since νp+1 6∈ IND(t), for i = 0, . . . ,m− p− 1, νp+i+1 6∈ IND(t). Hence,

(4.4) dI(up+i+1, t) = dI(up+i, t) + 1.

Next, for p > 0, consider the two trees up−1 and up on the treeline l. The tree
up−1 can be obtained by deleting a node νp from the tree up. It will now be shown
that, νp ∈ IND(t). Otherwise,

dI(up−1, t) = dI(up, t)− 1,

which is a contradiction with the definition of p. Hence, νp ∈ IND(t), and

(4.5) dI(up−1, t) = dI(up, t) + 1.

Iteratively, for i = 0, 1, . . . , p− 1, the tree up−i−1 can be obtained by deleting a
node νp−i from the tree up−i. The node νp−i is an ancestor node of the node νp.
Since νp ∈ IND(t), for i = 0, 1, . . . , p− 1, νp−i ∈ IND(t). Thus,

(4.6) dI(up−i−1, t) = dI(up−i, t) + 1.

Hence, there is a unique tree up such that, for i 6= p

(4.7) dI(ui, t) > dI(up, t).

Next, the attribute component of the metric is considered. It will be shown that
the tree up is the unique projection of t onto the s-treeline l by considering the
fractional part fδ as well. Recall that, for i 6= p,

δ(ui, t)− δ(up, t) = (dI(ui, t)− dI(up, t)) + (fδ(ui, t)− fδ(up, t)).

Also, from Equation (4.7),

dI(ui, t)− dI(up, t) ≥ 1.

The proof will be finished by showing the following inequality

(4.8) |fδ(ui, t)− fδ(up, t)| < 1.

Since the fractional part of the distance is always no more than 1,

|fδ(ui, t)− fδ(up, t)| ≤ 1.

So, if equality holds, then

1 = |fδ(ui, t)− fδ(up, t)| ≤ |fδ(ui, up)| ,
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because fδ is the weighted Euclidean distance on the attribute vectors.
Since the fractional part metric is at most 1,

|fδ(ui, up)| = 1.

In fact, for any two trees on the s-treeline, one of the two trees is an attribute
subtree of the other one. Without loss of generality, assume that the tree ui is an
attribute subtree of the tree up, and IND(up)\IND(ui) = K, where the set K is
some proper subset of the positive integers.

Furthermore,

1 = f2
δ (ui, up) ≤

∑

k∈K
αk < 1,

which is a contradiction.
Hence, the inequality (4.8) is satisfied. Thus, δ(ui, t)− δ(up, t) > 0, i.e., up is the

unique projection.
Case 2: l is an a-treeline.
Suppose the a-treeline l = {uλ : λ ∈ R} and all the elements have the same

tree structure. In this case, the integer part metric dI(uλ, t) is a constant over all λ.
Also, the fractional part metric is the ordinary Euclidean distance between weighted
attribute vectors. By the uniqueness of the projection in the Euclidean space, the
projection of a tree t onto an a-treeline is also unique.

Proof of Theorem 3.4. The projection tree Pl(t) has the same tree struc-
ture as the tree u. Therefore, dI(Pl(t), u) = 0 and dI(t, Pl(t)) = dI(t, u).

Next, it needs to be shown that

(4.9) f2
δ (t, u) = f2

δ (t, Pl(t)) + f2
δ (Pl(t), u)

for the a-treeline l.
Note that, for the nodes with level-order index k ∈ IND(t)\IND(u), the con-

tribution of its nodal attributes to both sides of Equation (4.9) is the same. Thus,
without loss of generality, assume that IND(t) ⊆ IND(u). Its attribute vector has
the same length as that of the tree u by adding zeroes on IND(u)\IND(t).

The metric δ is the same as the Euclidean distance of two weighted vectors. Thus,
it is straightforward that Equation (4.9) follows from the ordinary Pythagorean
Theorem.

In the following proof, the relationship attribute subtree, where the tree s is an

attribute subtree of tree t, is denoted by s
A

⊆ t or t
A

⊇ s.

A sketch of the proof of Theorem 3.5. By the definition of dI and the
fact that Pl(ti) is the member of the treeline l, which is δ-closest, and also dI -closest,
to the tree ti, for any i,

(4.10) dI(ti, u) = dI(ti, Pl(ti)) + dI(Pl(ti), u).
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It is necessary to prove that

(4.11)

n
∑

i=1

f2
δ (ti, u) =

n
∑

i=1

f2
δ (ti, Pl(ti)) +

n
∑

i=1

f2
δ (Pl(ti), u).

In fact, since l passes through the tree u, Pl(ti)
A

⊆ u or u
A

⊆ Pl(ti). Without loss
of generality, assume that

(4.12) Pl(t1)
A

⊆ u, . . . , Pl(tK)
A

⊆ u, Pl(tK+1)
A

⊇ u, . . . , Pl(tn)
A

⊇ u

for some K ∈ {0, 1, . . . , n}. If K = 0, then the tree u is an attribute subtree of
Pl(ti), for i = 1, 2, . . . , n; while, if K = n, then Pl(ti) is an attribute subtree of the
tree u, for i = 1, 2, . . . , n.

First, for i = 1, 2, . . . ,K, Pl(ti) is an attribute subtree of u. Suppose that t is a

tree in the set {t1, . . . , tK}, then Pl(t)
A

⊆ u. By the fact that the tree Pl(t) is the
projection of the tree t onto the treeline l, the following equality holds

(4.13) IND(t) ∩ IND(u) = IND(t) ∩ IND(Pl(t)).

Recalling the fact that Pl(t)
A

⊆ u and applying Equation (4.13), a straightforward
calculation [details are given in Section 3.5 of Wang (2003)] shows

(4.14) f2
δ (t, u) = f2

δ (t, Pl(t)) + f2
δ (Pl(t), u).

For i > K, Pl(ti)
A

⊇ u. Again, by the definition of projection and a set theoretical
calculation [details are given in Section 3.5 of Wang (2003)], the following equation
holds

(4.15) IND(Pl(ti)) ∩ IND(u) ∩ IND(ti) =
�
.

Thus, using the set relationship of the trees u, Pl(ti) and ti and Equation (4.15),
the following equations are established,

(4.16) (IND(ti)\IND(Pl(ti))) ∪ (IND(Pl(ti))\IND(u)) = IND(ti)\IND(u),

(4.17) (IND(ti)\IND(Pl(ti))) ∩ (IND(Pl(ti))\IND(u)) =
�
,

(4.18) (IND(Pl(ti))\IND(u))∪ (IND(ti)∩ IND(u)) = IND(ti)∩ IND(Pl(ti)),

and

(4.19) IND(Pl(ti))\IND(t) = IND(u)\IND(ti).

Calculations show that,

(4.20)

n
∑

i=K+1

f2
δ (ti, u) =

n
∑

i=K+1

f2
ρ (ti, Pl(ti)) +

n
∑

i=K+1

f2
δ (Pl(ti), u).

Combining Equation (4.14), Equation (4.11) is established, which completes the
proof of Theorem 3.5.



32 H. WANG AND J. S. MARRON

Acknowledgments. Much of this paper is the dissertation work of the first au-
thor, written under the supervision of the second. S. M. Pizer and the UNC MIDAG
project provided financial support for the both authors, and many helpful con-
versations throughout this research. The term “Object Oriented Data Analysis”
came from a conversation with J. O. Ramsay. E. Bullitt provided the blood vessel
tree data (gathered with support from the grant R01 EB000219 NIH-NIBIB), and
the viewer STree that was used to construct Figure 3. Paul Yushkevich provided
the program mmview, that made Figure 1. Ja-Yeon Jeong gave us the program
pablo view Residue, which was used to create Figure 2. The second author was
also supported by NSF Grant DMS-0308331.

REFERENCES

Banks, D. and Constantine, G. M. (1998). Metric Models for Random Graphs. J. Classification

15 199-223.

Billera, L. J., Holmes, S. P. and Vogtmann, K. (2001). Geometry of the Space of Phylogenetic

Trees. Advances in Applied Mathematics 27 733-767.

Breiman, L., Friedman, J. H., Olshen, J. A. and Stone, C. J. (1984). Classification and

Regression Trees. Wadsworth, Belmont, CA.

Breiman, L. (1996). Bagging Predictors. Machine Learning 24 123-140.

Bullitt, E. and Aylward, S. (2002). Volume rendering of segmented image objects. IEEE,
Trans. Med. Imag. 21 998-1002.

Cootes, T. (2000). An introduction to active shape models. Model Based Methods in Analysis

of Biomedical Images, (eds. R. Baldock and J. Graham), Oxford University Press,
223-248.

Cootes, T. F. and Taylor, C. (2001). Statistical models of appearance for medical image
analysis and computer vision. Proceedings of SPIE Medical Imaging.

Critchlow, D. E., Li, S., Nourijelyani, K. and Pearl, D. K. (2000). Some Statistical Methods
for Phyolgenetic Trees with Application to HIV Disease. Mathematical and Computer
Modelling 32 69-81.

Donoho, D. L. and Grimes, C. (2003). Hessian eigenmaps: locally linear embedding techniques
for high-dimensional data. Proceedings of the National Academy of the Sciences USA,

100(10), 5591–5596.

Donoho, D. L. and Grimes, C. (2005). Image manifolds which are isometric to euclidean space.
Journal of Mathematical Imaging and Vision, to appear.

Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. John Wiley and Sons.

Everitt, B. S., Landau, S. and Leese, M. (2001). Cluster Analysis. Oxford Univ. Press, New

York.

Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge University Press, New York.

Fisher, N. I., Lewis, T. and Emgleton, B. J. J. (1987). Statistical analysis of spherical data,
Cambridge University Press, New York.

Fletcher, P. T., Lu, C. and Joshi, S. (2003). Statistics of Shape via Principal Geodesic

Analysis on Lie Groups. Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 95-101.

Fletcher, P.T., Joshi, S., Lu, C., Pizer, S.M. (2005). Principal Geodesic Analysis for the Study

of Nonlinear Statistics of Shape. To appear IEEE Transactions on Medical Imaging.

Hastie, T. and Stuetzle, W. (1989). Principal Curves. J. Amer. Statist. Assoc. 84, 502-516.

Holmes, S. (1999). Phylogenies: An Overview. IMA series, vol 112, on Statistics and Genetics,

(ed. Halloran and Geisser), 81-119. Springer Verlag, New York.

Izem, R., Kingsolver, J. G. and Marron, J. S. (2005). Analysis of Nonlinear Variation in

Functional Data, unpublished manuscript.



OBJECT ORIENTED DATA ANALYSIS 33

Larget, B., Simon, D. L. and Kadane, J. B. (2002). Bayesian phylogenetic inference from
animal mitochondrial genome arrangements. Journal of the Royal Statistical Society,

Series B, 64, 681-693.

Li, S., Pearl, D. K. and Doss, H. (2000). Phylogenetic Tree Construction Using Markov Chain

Monte Carlo. J. Amer. Statist. Assoc. 95 493-508.

Mardia, K. V. (1972). Statistics of directional data. Academic Press, New York.

Mardia, K. V. (2000). Directional statistics. Wiley, New York.

Locantore, N., Marron, J. S., Simpson, D. G. , Tripoli, N., Zhang, J. T. and Cohen, K. L.

(1999). Robust Principal Component Analysis for Functional Data. Test, 8 1-73.

Margush, T. (1982). Distances Between Trees. Discrete Appl. Math. 4 281-290.

Pizer, S. M., Thall, A. and Chen, D. (1999). M-Reps: A New Object Representation for Graph-

ics. Submitted to ACM TOG. (See http://midag.cs.unc.edu/pubs/papers/mreps-

2000/mrep-pizer.PDF.)

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer Verlag, New

York.
Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis. Springer Verlag,

New York.

Saul, L. K. and Roweis, S. T. (2004). Think globally, fit locally: unsupervised learning of low
dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.

Szekely, G., Kelemen, A., Brechbuhler, C. and Gerig, G. (1996). Segmentation of 2-D and
3-D objects from MRI volume data using constrained elastic deformations of flexible
Fourier contour and surface models. Medical Image Analysis, 1, 19-34.

Tenenbaum, J. B., de Silva, V. and Langford, J. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290, 2319-2322.
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