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Abstract

Training a shape prior has been potent scheme for

anatomical object segmentations, especially for images

with noisy or weak intensity patterns. When the shape

representation lives in a high dimensional space, principal

component analysis is often used to calculate a low dimen-

sional variation subspace from frequently limited number

of training samples. However, the eigenmodes of the sub-

space tend to keep the large-scale variation of the shape

only, losing the detailed localized variability which is cru-

cial to accurate segmentations. In this paper, we propose a

large-to-fine-scale shape prior for probabilistic segmenta-

tion to enable local refinement, using a deformable medial

representation, called the m-rep.

Tests on the goodness of the shape prior are carried out

on large simulated data sets of a) 1000 deformed ellipsoids

with mixed global deformations and local perturbation;

b) 500 simulated hippocampus models. The predictabil-

ity of the shape priors are evaluated and compared by a

squared correlations metric and the volume overlap mea-

surement against different training sample sizes. The im-

proved robustness achieved by the large-to-fine-scale strat-

egy is demonstrated, especially for low sample size appli-

cations. Finally, posterior 3D segmentations of the bladder

from CT images from multiple patients in day-to-day adap-

tive radiation therapy demonstrate that the local residual

statistics introduced by this method improve the segmenta-

tion accuracy.

1. Introduction

Automatic 3D medical image segmentation via de-

formable models is challenging; adoption occurs only if its

accuracy is competitive with manual segmentations. De-

formable models with various representations have been
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en effective in capturing variation across a population

rtain geometric entities [10]. It is important to collect

tatistics about the shape space via proper training in

r to constrain the deformation field, especially for pro-

ing noisy image patterns. Given a sizable training sam-

an off-line learning process can build up the probability

ibution of the shape variation [2, 13], namely the shape

.

ith high dimensional data representations, principal-

ponent-analysis (PCA)-based methods are often used

tract a robust subspace with a fairly small number of

nsions as the shape prior. However, as also pointed out

2], the trained shape variation space often cannot re-

local perturbations of the object; oversmooth segmen-

ns often result. Further, because the number of train-

amples is often smaller than the number of geometric

res, a condition known as high dimension, low sam-

ize (HDLSS), the extracted shape space is not robust in

s of limited predictability.

onsidering the various degrees of localities for geomet-

eatures in many shape representations, an efficient way

presenting the shape space is to decompose them into

rent scales.

ultiscale shape models such as hierarchical ASMs [4]

multiscale spherical wavelets [12] successfully address

issue via wavelet basis functions with shape localities.

we propose a more general approach to “decompose”

ariation space by training the residual statistics hier-

ically, which tends to be applicable to various repre-

tions or parametrizations of deformable modelsl with

ns of locality.

recent study shows the medial representation has su-

r efficiency over the boundary representation [9]. We

discrete medial representation called them-rep (Fig.1)

. M-reps have been successfully applied to various

ical image segmentation tasks [17] and statistical shape



Figure 1. An m-rep model: An interior medial atom (left) with

two spokes and an object (right). The object is composed of mul-

tiple medial atoms. Interior atoms have two spokes each. Exterior

atoms (on the crest region) have three spokes each.

analysis [20]. In terms of average closest point distance

and Dice similarity coefficient, the m-rep segmentation is

among one of the best in literature for segmentation of male

pelvic organs from CT [3, 15, 6, 14, 19]. However, the

global m-rep segmentation results are not accurate enough

due to the oversmooth boundaries, which often are several

voxels off the manually segmented boundaries in local re-

gions. Joshi et al. [8] developed a multiscale m-rep segmen-

tation where the global scale stage optimizes the posterior

probability of the shape with trained statistics and where

the local scale stage is a deterministic optimization on the

full space of atom deformations. However, without shape

prior information, the local scale deformation can be unpre-

dictable when the object boundary is in a low-contrast im-

age region, and the ad hoc weighting penalties are tedious

to optimize.

The m-rep models of objects with simple geometry usu-

ally contain a sparse grid of atoms; the atoms naturally pro-

vide the local scale. A two-scale (object-scale and atom-

scale) probabilistic segmentation scheme via the m-rep is

developed in this paper as an important step towards the

ideal large-to-fine-scale strategy, in which more careful

studies on the number of scales and the size of each scale

are needed.

The rest of the paper is organized as follows: Section 2

begins by introducing the large-to-fine-scale shape prior via

the m-rep. It ends by testing the robustness of the statis-

tics against training sample size on 1000 simulated warped

ellipsoids with both global and local deformations and 500

hippocampus m-rep models sampled from 51 trained vari-

ation modes. Section 3 presents the posterior segmentation

methodology for applying shape statistics. In Section 4,

bladder segmentation results from 79 clinical CT images

are discussed in detail. Section 5 summarizes and discusses

the method and results.

2. Large-to-fine-scale shape space analysis

2.1. Locality of mreps

In single-figure m-rep models, an object is a sheet of

medial atoms represented by a quadrilateral mesh (Fig.1),

which carries geometric properties such as widening, bend-

ing and tapering, with the locality scale given according to

the grid spacing. Each atom controls a local boundary re-

gion implied by its spokes’ ending points. The object as a

whole gives these properties in a way reflecting global in-

terrelations of atoms, whereas each atom, and its relation to

its immediate neighbors, provides more local features.

For simple biological objects represented by a sparse

grid of medial atoms, typically less than 50 atoms, object

and atom scales are sufficient to describe the shape varia-

tion globally and locally. For geometrical structures that

are characterized by hundreds of atoms, it might be neces-

sary to define more locality scales by grouping n-nearest
neighboring atoms, where n controls the size of each scale.

2.2. Largetofinescale shape prior

Let m denote a m-rep model. When the ith medial

atom Ai of m lies on the interior of its medial grid, Ai

is described by the following parameters: its hub position

pi ∈ R3, the common length ri ∈ R
+ of its spokes, and

a pair of unit spoke directions U+1
i ,U−1

i ∈ S2, such that

the points pi + riU
+1
i and pi + riU

−1
i lie on the boundary

of the object and the outward normal directions to the sur-

face at those points are U+1
i and U−1

i , respectively. Each

interior medial atom is understood to lie in the curved space

S = R
3×R

+×S
2×S

2. Each exterior medial atom requires

an additional parameter from R
+ that controls the distance

to a third point of contact with the boundary along the vec-

tor
(
U+1

i + U−1
i

)
/ 2. To simplify notation, we will ignore

this elongation factor and act as if each Ai ∈ S. Thus when
m is composed of k medial atoms, it can be assumed to lie

on the curved space formed by the direct product Sk.

Fletcher et al. [5] developed metrics on S and Sk that

allow these curved spaces to be understood as Riemannian

manifolds. For a medial atom A ∈ S and an m-rep object

m ∈ Sk , they defined Riemannian Log maps from these

manifolds to their tangent planes: LogA : S → TAS and

Logm : Sk → TmSk and Riemannian Exp maps from the

tangent plane back to the manifold: Exp
A

: TAS → S and

Expm : TmSk → Sk.

Fletcher et al. use these metrics and maps to apply prin-

cipal geodesic analysis (PGA), their generalized version of

PCA for manifold data, to m-rep objects to train a shape

prior. PGA applies PCA to the projection of manifold data

by the Riemannian Log map into the tangent plane at their

Fréchet mean. These eigenmodes of variation in the tangent

plane are mapped onto geodesics on the manifold by the

Riemannian Exp map. Our large-to-fine-scale shape prior

is built by PGA first at the whole object scale and then at

an individual atom scale. The atom-scale prior is built upon

the residual space of the object-scale prior.



2.2.1 Object-scale prior

For the object scale, the whole grid of atoms is taken by the

Riemannian Log map at the Fréchet mean object to a vector

in the high dimensional shape space. For example, a model

with 21 atoms in a 3 × 7 grid maps onto a 184 dimensional

vector.

The first several eigenmodes with the largest eigenvalues

produced by PGA usually cover most of the variation from

the training samples. By only using the subspace composed

of these few eigenmodes, we successfully reduce the dimen-

sion of the shape space from several hundred to a number

often less than 10. We avoid eigenmodes with little variance

that are not robustly estimated in the typical situation of a

limited number of training cases and a high-dimensional ob-

ject representation. The remaining variability is captured by

training residual statistics at a local scale.

2.2.2 Atom residual prior

If we regard the object-scale prior as the main shape space,

we can think of the difference between main shape space

and the actual space as the residual shape space. The resid-

ual shape space contains high frequency signals of the shape

details that are missing at the object scale. We again use

PGA to analyze this residual shape space, but locally on

each atom to match the “signal” with the “resolution”.

Fletcher et al. have shown that S the space of medial

atoms forms a symmetric space, and that the metric on S
is left-invariant with respect to the symmetric space action:

◦ : S × S → S. For a precise definition of ◦, we refer the
reader to [5].

Given two medial atomsAi,A
′

i∈ S, the residual∆Ai ∈
S, from A′

i to Ai, can be understood with respect to the

action ◦ and its inverse.

∆Ai
.
= (A′

i)
−1

◦ Ai (1)
.
= (∆pi, ∆ri, ∆U+1

i , ∆U−1
i ).

.
= (pi − p′

i, ri/r′i,RU
+1

i

′(U+1
i ),R

U
−1

i

′(U−1
i )).

Rw represents the rotation along the geodesics in S
2 that

moves a point w ∈ S
2 to the North Pole (0, 0, 1) ∈ S

2. The

atom can be recovered from the residual as follows.

Ai
.
= A′

i ◦ ∆Ai (2)
.
= (p′

i + ∆pi, r
′

i · ∆ri,R
−1

U
+1

i

′(∆U+1
i ),

R−1

U
−1

i

′(∆U−1
i )).

The shape residuals that we use to train the atom prior are

of the form that follows.

∆Ai = (Âobj
i )−1 ◦ Atrain

i , (3)

where Atrain
i is the ith atom of a training m-rep and Â

obj
i ,

formally defined below, is the ith atom in the projection of

training model onto the main shape space. Let µtrain
i de-

note the the Fréchet mean of this atom from the set of train-

ing objects. The dot product of the model deviation vector

in the tangent plane at µtrain
i with the Kobj eigenvectors

learned via object-scale-PGA produces the coefficients for

the projection model:

xp =< Log
µtrain

i

Atrain
i ,vobj

p >

Â
obj
i = Exp

µtrain
i




Kobj∑

p=1

xpv
obj
p



 . (4)

Based on the projections onto the main shape space, the

training samples for computing the atom prior therefore

have to be the same with the object-scale prior. We apply

PGA on
(
Â

obj
i

)
−1

◦ Atrain
i to learn the principal modes

of residual variation for each atom. The atom parametriza-

tion is 8- or 9- dimensional, depending on whether it is an

interior or an exterior atom (Fig.1). The PGA results on a

single atom typically yields four non-neglible eigenmodes.

Similar to the object-scale projection, we project the resid-

ual into its trained residual shape space. Together with the

object-scale projection, we calculate the multiscale projec-

tion as follows:

xq =< Log
Â

obj

i

Atrain
i ,vatom

q >

ÂMultiscale
i = Exp

Â
obj

i




Katom∑

q=1

xqv
atom
q



 , (5)

with Katom ≤ 8.

To date we have assumed that the probability distribution

of local residuals ∆Ai on atom i is independent of neigh-
boring atoms. We are thereby assuming that the correlations

between the atoms are contained in the object-scale PGA

and that the residual variations of each atom are indepen-

dent of the other atoms. Let Â
obj
i and ÂMultiscale

i denote

the projection into the object and atom scale shape spaces

described above of a particular atom of an object instance.

Let m̂obj = ∪iÂ
obj
i and m̂Multiscale = ∪iÂ

Multiscale
i de-

note the projections of that object instance into the shape

spaces. The multiscale prior is thus

p
(
m̂Multiscale

)
= p

(
m̂Multiscale|m̂obj

)
p
(
m̂obj

)

=

(
∏

i

p

((
Â

obj
i

)
−1

◦ ÂMultiscale
i

))
×

p
(
m̂obj

)
. (6)



2.3. Robustness measurement of the shape prior

According to Muller [11] the robustness of a probability

distribution estimation method can be measured by the fit of

test populations to estimated probability distributions, over

a variety of training sample sizes. The fit is evaluated by

the squared correlation ρ2 between test cases and their pro-

jections in the space estimated from training cases, which

reduces to the following formula:

ρ2 =

∑N

i=1
d2(m̂i,test,mtrain)

∑N

i=1
d2(mi,test,mtrain)

, (7)

where m̂i,test is the projection of the test model mi,test

onto the shape space and mtrain is the Fréchet mean of the

training sample. The distance is the Euclidean distance for

Cartesian space, and it is the geodesic distance for the man-

ifold in our m-rep case. The projected model indicates the

closest model to the test model in the trained shape space,

according to geodesic distances d in the feature space. The

closer ρ2 is to 1, the better the predictability provided by the

shape prior.

2.3.1 Toy experiment on deformed ellipsoids

We evaluated the robustness of the statistics first on a sim-

ulated data set of 1000 warped ellipsoids. M-rep models of

warped ellipsoids were produced by successively applying

random, independent, global bending, tapering, and twist-

ing to a base ellipsoid, followed by a random, small, local

perturbation of the hub position for a fixed atom to create a

visible protrusion or indentation at that local region of the

surface (Fig. 2).

Each transformation was sampled from a zero-mean

Gaussian with its respective variance. The accumulated

percentages of variation of object eigenmodes are demon-

strated in Fig. 2, which shows the distribution of the shape

variation among the trained eigenmodes from 20 randomly

selected m-rep models. We found that the first three eigen-

modes obtained by PGA each captured one of the three

global shape changes, namely bending, twisting, and taper-

ing, that were introduced by our simulation. The local sur-

face perturbation that we simulated was captured by the 4th

and 5th eigenmodes, as were small variations at other ran-

dom regions. We attribute these other local variations to the

limited number of training samples.

We used the ρ2 measure to compare two shape priors.

We trained one shape prior by using our multiscale ap-

proach and retaining three object-scale eigenmodes as well

as four atom scale eigenmodes. The other shape prior was

trained at the object scale only, and retained three eigen-

modes. Twenty tests were run for each training sample size,

and there was no overlap between the training and testing

populations. and the stars in the figures are the outliers. The

Figure 2. Left: 3 typical training m-reps that were generated by

a random mix of three global variations (bending, twisting and

tapering) and one local variation (in the circled areas). Right: vs.

k, the cumulative percentage of variation explained by the first k

principal geodesic eigenmodes of 20 randomly selected m-reps.
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Figure 3. The distribution of the prediction measurement ρ2 from

twenty random training and test populations as a function of train-

ing sample sizes are shown for multiscale (notched boxes) and

object-scale (rectangular boxes) shape priors.

distribution of ρ2 as a function of training sample size from

these tests is shown in Fig. 3. We can clearly see that our

multiscale shape prior offers superior predictability than the

object-scale shape prior alone.

From this toy experiment with carefully designed artifi-

cial variation, predictability of the two-scale shape prior is

shown. It suggests that the atom scale residual modes are

able to capture the fairly small amount of local region vari-

ation ignored by the object scale modes .

2.3.2 Experiments on simulated hippocampus models

To further investigate the advantages of the large-to-fine-

scale prior on anatomical structures, we simulated a large



Figure 4. Left: (a) The Fréchet mean of the 290 m-reps. (b) and (c)

are randomly selected from the 500 samples using 51 eigenmodes.

Right: The accumulated percentages of the variances explained by

the eigenmodes trained from the 290 m-reps.

group of hippocampus m-rep models based on 290 hand-

segmented MR images. First, the m-rep models were fitted

to images were obtained by a semi-automated process [7].

Global PGA was then used to form a Gaussian probability

distribution from these models. 51, 33, and 17 eigenmodes

respectively capture 95%, 90% and 80% total variation of

the 290 models (see Fig. 4). By a Gaussian random sam-

pling on the 51 modes, 500 hippocampus models were gen-

erated. Example simulated models are shown in Fig. 4.

Shape priors with different number of eigenmodes were

evaluated. We first used ρ2 to compare the 33 object-modes

prior with the multiscale prior composed of 10 object modes

and 9 atom modes (Fig. 5, top). For training sample size N ,

there are at most N − 1 modes actually available. So in

our tests with 20 samples, 19 object modes are used rather

than 33 object modes we used in the tests on larger sample

sizes. We also calculated Dice coefficients to measure vol-

ume overlap between the test models and the correspond-

ing projected models (Fig. 5, bottom). The two measure-

ments consistently demonstrate that adding the atom scale

improves the robustness of the estimation.

In medical image segmentation, a 33-dimensional space

is too large to search for the optimum shape since robust-

ness is challenged by local minima during optimization. In

this example, using only 10 object modes followed by atom

modes shows much better predicability. More importantly,

much better performance was seen in tests with small train-

ing sample size, indicating the superiority of this large-to-

fine-scale strategy in HDLSS situations.

More comparisons are shown in Fig. 6. Six shape priors

with different combination of modes were tested. To make

the comparison easier, the median ρ2 values among 20 tests

are shown. The two-scale priors are much more robust than
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Figure 5. Comparisons on the robustness of the shape priors be-

tween using 33 object modes with using 10 object modes followed

by atom modes. Top: ρ2 measurement; Bottom: Volume overlap

between the test models and the projected models.

the single-scale object-scale priors overall. As the training

sample size increases, the curves converge to different val-

ues. For the object-scale priors (in red), predictability in-

creases with the number of modes used. Two-scale priors

(in blue) converge much faster as the training sample in-

creases and show their strength with training sample sizes

less than 60. No measurements are calcuated at training

sample size 20 and 30 for the priors with more eigenmodes.

The improvements from the object-scale prior are most no-

ticeable at smaller training sample sizes.

3. Large-to-fine-scale posterior optimization

A large-scale deformation (object stage) followed by a

fine-scale deformation (atom stage) can optimize the model

hierarchically, as shown in Fig. 7. In each stage, a Bayesian

posterior optimization scheme is applied using the off-line

trained statistics at the corresponding scale.

In the object stage the entire sheet of medial atoms de-

form together, restricted by the variation learned from the

multiple sheets of atoms of the training samples. In the atom

stage, each atom is constrained in its own variation space

trained from corresponding atoms of the training samples.



Figure 6. ρ2 measurements from six different combinations of the

number of object-scale modes and atom-scale modes: each marker

shows the median ρ2 from 20 tests. Red curves are the results of

using 17, 33, and 51 object-scale modes only. Blue curves are the

results of using 10, 17, and 33 object-scale modes followed by 9

atom-scale modes (tagged by“+”).

Figure 7. The probabilistic multiscale segmentation scheme for

single object m-rep models: The object and atom stage shape

statistics are collected from training samples and then used dur-

ing the optimization process in the corresponding stages.

The object-scale segmentation results provides a good start-

ing point for the local refinement stage, where the model

deforms locally towards a more “correct” configuration.

Besides the shape prior training, the likelihood function

on image intensity patterns I is also trained. This likelihood

training uses PCA on regional intensity quantile functions

(RIQFs). The image regions are defined locally correspond-

ing to the spoke ends of the atoms. The details for the image

appearance model can be found in [1]. With the training

statistics, at each of the two scales the model deforms by

optimizing the reciprocal-standard-deviation-weighted sum

of two penalty terms: the log geometric prior log p (m) and
the log likelihood of the m-rep log p (I|m). The optimiza-

tion is over the principal geodesic coefficients of the shape

m, thus restricting the result to the shape space spanned by

the principal geodesic directions.

The local scale posterior optimization is described by the

formula:

arg max
∆Ai

log p (∆Ai ◦ Ai|Ii)

= arg max
∆Ai

(log p (Ii|∆Ai ◦ Ai) + log p (∆Ai ◦ Ai))

(8)

where ∆Ai = A−1
i ◦ Exp

Ai

(∑
q xqv

atom
q

)
is the atom

scale variation at Ai (see equation 5) and is implied by

the coefficient vector x. The objective function at each

atom, indexed by i, is optimized over the coefficient vec-

tor x. Starting from the object-stage result, we randomly

loop over all the atoms and update each atom by adding the

residual deformation that maximizes the log posterior prob-

ability density.

4. CT image segmentation results

We tested the methodology on a data set of CT images

of the male pelvis from 5 patients. In the average patient 16

daily CT scans were taken during image-guided radiation

therapy. The images have in-plane resolution of 512×512

voxels with pixel dimension of 0.98 mm × 0.98 mm and an

inter-slice distance of 3 mm. Manual segmentation by an

expert was provided.

For each patient, we carried out two leave-one-day-out

bladder segmentation experiments, one at object scale only

and the other with our two-scale method. Training was done

on all other days when segmenting the target day image.

The results were compared with the manual segmentations

and measured in terms of average closest surface point dis-

tance. Fig. 8, depicts the segmentation results via box plots.

The training models are the m-rep models fitted to the bi-

nary images from the human segmentation, which can be

regarded as the desired segmentation results. The initializa-

tions are done by optimizing the model over the object-scale

shape space to minimize the surface distance to manually

specified points on three designated slices of the image only.

This can be regarded as a part of the object stage. After ini-

tialization, the model is pretty much correctly located in the

image. The object stage then further optimizes the model

into a large-scale shape that is a good starting point for the

atom stage. The observed improvements in median average

surface distance, on the order of 0.1mm, have been shown

to correspond to improvements on the order of 0.5mm in

90th percentile (nearly worst) position distances. The de-

creased interquartile range of the two-scale method indi-

cates improved robustness. The atom scale refinement on

average brings the accuracy into the subvoxel level.

We also found that the improvements in the bladder

segmentation are most noticeable at parts of the bound-

ary where the contrast is high (Fig. 10). An example of

typical (median surface distance) bladder segmentation re-



1 1.5 2 2.5 3

Atom Stage 

 Object Stage 

Initialization 

Training 

                             
Average Surface Distance (mm)

1.18 mm 

Median:

0.92 mm 

1.09 mm 

0.80 mm 

Figure 8. Leave-one-day-out bladder segmentation results for 79

images from 5 patients.

Figure 9. Surface distance errors shown in color from blue (5.5

mm inside) to red (5.8 mm outside) (a) An object-stage result with

average surface distance of 1.15 mm. (b) An atom-stage result

with average surface distance of 0.92 mm.

Figure 10. 2D contours comparison: object stage contours (in

cyan) and the atom stage contours (in red) in 2D slices from axial

(left), coronal (middle) and sagittal (right) views.

sults from the leave-one-day-out study is shown to demon-

strate the difference made by the atom stage visually on the

boundaries. Figure 9 shows surface distance to the refer-

ence segmentation as a color map on the model boundary.

Figure 10 shows the model at both stages on three orthogo-

nal gray scale CT image slices. The localized refinement is

clearly shown in the three slices.

In addition, we applied the statistical atom stage to a

leave-one-patient-out [16] study. For each of the 5 patients

in succession, one was chosen as the target patient and the

other 4 formed the training sample. We pooled the variation

1 1.5 2 2.5 3

Atom Stage 

Object Stage 

Initialization 

Training 

Average Surface Distance (mm) 

1.23 mm

1.39 mm

Median: 0.80 mm

1.03 mm

Figure 11. Leave-one-patient-out bladder segmentation results for

79 images from 5 patients.

of the training models relative to their patient-specific mean

after a pelvic bone based alignment [16].

At segmentation time, we took the previous days’ mean

model as the initialization for the next day’s image seg-

mentation, with the first day’s segmentation being provided

beforehand. Compared to the leave-one-day-out study, al-

though the training sample size is about 3 times larger, this

experiment was a greater challenge due to its more varied

shape space across different patients and the weaker corre-

spondences for the local regions across patients. Neverthe-

less, as seen in Fig. 11 there is improvement resulting from

the atom-scale refinement.

We also applied the strategy to caudate segmentation

from MR images, and saw improved results from the two-

stage approach. We conclude that the local residual statis-

tics effectively enable the refinement from an object-scale

shape. In low contrast regions where even humans have dif-

ficulties in locating the boundary, the atom stage tends to

avoid deformations of the object-stage result.

5. Conclusions

In this paper, we presented a novel method to build

up a large-to-fine-scale shape prior by discovering the fine

residual statistics from the large scale hierarchically via m-

rep. We showed improved robustness on two large simu-

lated data sets, evaluated with the ρ2 measure describing

the predictiveness of an estimated probabilitiy distribution

and volume overlap measurements against different train-

ing sample sizes. We applied the large-to-fine-scale shape

priors within a multiscale posterior optimization segmenta-

tion framework to improve the segmentation accuracy. Our

experiments suggest that the residual shape statistics can be

used to restrict results to the trained shape space and to pe-

nalize the local deformation towards better posterior esti-

mates. Segmentation experiments on 79 CT bladder images

demonstrated improved segmentation accuracy by the local

scale refinement.



A condition for building up the localized shape priors

is the correspondence of the local regions across training

samples. Better correspondence generates tighter statistics.

Here in m-reps, atoms with the same index correspond to

each other geometrically. In other representations without

natural correspondence, resampling techniques can be used

to set the correspondence at different scales.

For HDLSS problems, the strategy of multiple residual

scales has been shown to improve the estimations of proba-

bility distributions of shapes. Computationally, optimizing

in a high dimensional space is much more likely to yield

local optima and less efficient than the successive optimiza-

tion over far fewer dimensions at each stage provided by the

large-to-fine-scale approach.

Besides m-reps, the usage of the local residual statistics

is applicable to various representations with notions of lo-

calities. More studies need to be carried as to the number of

scales and the size of each scale.
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