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Abstract. This paper presents a new method for constructing statisti-
cal representations of ensembles of similar shapes. The proposed method
relies on an optimal distribution of a large set of surface point correspon-
dences, rather than the manipulation of a specific surface parameteriza-
tion. The optimal configuration is defined as one in which the entropy
or information content of each shape is balanced against the entropy
of the ensemble of shapes. The correspondences are modeled as sets of
dynamic particles that are manipulated using a gradient descent on the
entropies of the shapes and the ensemble, but constrained to lie on a
set of implicit surfaces. The proposed, particle-based method for finding
correspondences requires very little preprocessing of data or parameter
tuning, and therefore makes the problem of shape analysis more practical
for a wider range of problems. This paper presents the formulation and
several synthetic and real shape examples in two and three dimensions.

1 Introduction

Computing statistics on sets of shapes requires quantification of shape differ-
ences, which is a fundamentally difficult problem. A widely-used strategy for
computing shape differences is to compare the positions of corresponding points
among sets of shapes. Medical or biological shapes, however, are typically de-
rived from the interfaces between organs or tissue types. Such surfaces are usually
defined implicitly in the form of segmented volumes, rather than from explicit
parameterizations or surface point samples. Thus, no defined, a priori relation-
ship between points across surfaces exists. Correspondences must therefore be
inferred from the shapes themselves, giving rise to the difficult, yet very impor-
tant, correspondence problem.

Until recently, correspondences for shape statistics were established man-
ually by choosing small sets of anatomically significant landmarks on organs
or regions of interest, which would then serve as the basis for shape analysis.
The demand for more detailed analyses on ever larger populations of subjects
has rendered this approach unsatisfactory. Recently, Davies et al. [1] present
methods for automatically establishing relatively dense sets of correspondences
based on the information content of the set of points needed to describe an en-
semble of similar shapes. These methods, however, rely on mappings between
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fixed parameterizations, and because most shapes in medicine or biology are not
derived parametrically, this reliance on a parameterization presents some sig-
nificant drawbacks. Automatic selection of correspondences for nonparametric,
point-based shape models has been explored in the context of surface registra-
tion [2], but such methods are not sufficient for shape analysis because they
are typically concerned only with pairwise correspondences, and not correspon-
dences across populations of points. Furthermore, these methods also assume a
fixed set of samples on surfaces, whereas, in the context of this paper, we are
given implicit surfaces (volume segmentations) and dynamically resample them
as part of the correspondence selection process.

This paper presents a new method for extracting dense sets of correspon-
dences that describe ensembles of similar shapes. The method is nonparametric
and borrows technology from the computer graphics literature for representing
surfaces as discrete point sets. The proposed method iteratively modifies a sys-
tem of dynamic particles so that they follow trajectories across the surfaces to
find positions that optimize the information content of the system. This strategy
is motivated by a recognition of the inherent tradeoff between geometric accuracy
and statistical simplicity. Our assertion is that each unit of complexity, or infor-
mation, across the ensemble should be balanced against a unit of information on
the surface. This approach provides a natural equivalence of information content
and reduces the dependency on ad-hoc regularization strategies and free param-
eters. Since the points are not tied to a specific parameterization, the method
operates directly on volumetric data, extends easily to higher dimensions or ar-
bitrary shapes, and provides a more homogeneous geometric sampling as well as
more compact statistical representations. The method draws a clear distinction
between the objective function and the minimization process, and thus can more
readily incorporate additional information such as adaptive surface sampling and
high-order geometric information.

2 Related Work

The strategy of finding of parameterizations that minimize information content
across an ensemble was first proposed by Kotcheff and Taylor [3]. They represent
each two-dimensional contour as a set of N samples taken at equal intervals from
a parameterization. Each shape is treated as a point sample in a 2N -dimensional
space, with associated covariance Σ and cost function,

∑
k log(λk +α), where λk

are the eigenvalues of Σ, and α is a regularization parameter that prevents the
very thinnest modes (smallest eigenvalues) from dominating the process. This
is the same as minimizing log |Σ + αI|, where I is the identity matrix, and | · |
denotes the matrix determinant.

Davies et al. [1] propose minimum description length (MDL) as a cost func-
tion. In that work they use arguments regarding quantization to limit the effects
of thin modes and to determine the optimal number of components that should
influence the process. They propose a piecewise linear reparameterization and a
hierarchical minimization scheme. Monotonicity in the reparameterizations en-
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sures that those composite mappings are diffeomorphic. Davies et al. [4] propose
a 3D extension to the MDL method, which relies on spherical parameteriza-
tions and subdivisions of an octahedral base shape, and smoothed updates, rep-
resented as Cauchy kernels. The parameterization must be obtained through
another process such as [5], which relaxes a spherical parameterization onto
an input mesh. The overall procedure is empirically satisfactory, but requires
significant data preprocessing, including a sequence of optimizations—first to
establish the parameterization and then on the correspondences—each of which
entails a set of free parameters or inputs in addition to the segmented volumes.
A significant concern with the basic MDL formulation is that the optimal solu-
tion is often one in which the correspondences all collapse to points where all
the shapes in the ensemble happen to be near (e.g., crossings of many shapes).
Several solutions have been proposed [4, 6], but they entail free parameters and
assumptions about the quality of the initial parameterizations.

The MDL formulation is mathematically related to the min-log |Σ + αI|
approach, as noted by Thodberg [6]. Styner et al. [7] describe an empirical study
that shows ensemble-based statistics improve correspondences relative to pure
geometric regularization, and that MDL performance is virtually the same as
that of min-log |Σ +αI|. This last observation is consistent with the well-known
result from information theory that MDL is, in general, equivalent to minimum
entropy [8].

Another body of relevant work is the recent trend in computer graphics
towards representing surfaces as scattered collections of points. The advantage of
so-called point-set surfaces is that they do not require a specific parameterization
and do not impose topological limations; surfaces can be locally reconstructed or
subdivided as needed [9]. A related technology in the graphics literature is the
work on particle systems, which can be used to manipulate or sample [10] implicit
surfaces. A particle system manipulates large sets of particles constrained to a
surface using a gradient descent on radial energies that typically fall off with
distance. The proposed method uses a set of interacting particle systems, one for
each shape in the ensemble, to produce optimal sets of surface correspondences.

3 Methods

3.1 Entropy-Based Surface Sampling

We treat a surface as a subset of <d, where d = 2 or d = 3 depending whether
we are processing curves in the plane or surfaces in a volume, respectively. The
method we describe here is limited to smooth, closed manifolds of codimen-
sion one, and we will refer to such manifolds as surfaces. We sample a sur-
face S ⊂ <d using a discrete set of N points that are considered random vari-
ables Z = (X1, X2, . . . , XN ) drawn from a probability density function (PDF),
p(X). We denote a realization of this PDF with lower case, and thus we have
z = (x1, x2, . . . , xN ), where z ∈ SN . The probability of a realization x is
p(X = x), which we denote simply as p(x).
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The amount of information contained in such as random sampling is, in the
limit, the differential entropy of the PDF, which is H[X] = −

∫
S

p(x) log p(x)dx =
−E{log p(X)}, where E{·} is the expectation. When we have a sufficient num-
ber of samples from p, we can approximate the expectation by the sample mean
[8], which gives H[X] ≈ −(1/N)

∑
i log p(xi). We must also estimate p(xi). Den-

sity functions on surfaces can be quite complex, and so we use a nonparametric,
Parzen windowing estimation of this density using the samples themselves. Thus
we have

p(xi) ≈
1

N(N − 1)

N∑
j=1
j 6=i

G(xi − xj , σ) (1)

where G(xi − xj , σ) is a d-dimensional, isotropic Gaussian with standard devia-
tion σ. The cost function C, is therefore an approximation of (negative) entropy:
H[X] ≈ −C(x1, . . . , xN ) =

∑
i log 1

N(N−1)

∑
j 6=i G(xi − xj , σ),

In this paper, we use a gradient-descent optimization strategy to manipulate
particle positions. The optimization problem is given by:

ẑ = arg min
z

E(z) s.t. x1, . . . , xN ∈ S. (2)

The negated gradient of E is

− ∂E

∂xi
=

1
σ2

∑N
j=1
j 6=i

(xi − xj)G(xi − xj , σ)∑N
j=1
j 6=i

G(xi − xj , σ)
= σ−2

N∑
j=1
j 6=i

(xi − xj)wij , (3)

where
∑

j wij = 1. Thus to minimize C, the samples (which we will call particles)
must move away from each other, and we have a set of particles moving under a
repulsive force and constrained to lie on the surface. The motion of each particle
is away from all of the other particles, but the forces are weighted by a Gaussian
function of inter-particle distance. Interactions are therefore local for sufficiently
small σ. We use a Jacobi update with forward differences, and thus each particle
moves with a time parameter and positional update xi ← xi − γ ∂C

∂xi
, where γ is

a time step and γ < σ2 for stability.
The surface constraint is specified by the zero set of a scalar function F (x).

This constraint is maintained, as described in several papers [10], by first project-
ing the gradient of the cost function onto the tangent plane of the surface (as pre-
scribed by the method of Lagrange multipliers), and then by iterative reprojec-
tion of the particle onto the nearest root of F by the method of Newton-Raphson.
Another aspect of this particle formulation is that it computes Euclidean distance
between particles (in the ambient space), rather than the geodesic distance on
the surface. Thus, we assume sufficiently dense samples so that nearby particles
lie in the tangent planes of the zero sets of F . This is an important consideration;
in cases where this assumption is not valid, such as highly convoluted surfaces,
the distribution of particles may be affected by neighbors that are outside of
the true manifold neighborhood. The question of particle interactions with more
general distance measures remains for future work.
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Finally, we must choose a σ for each particle, which we do automatically, be-
fore the positional update, using the same optimality criterion described above.
The contribution to C of the ith particle is simply the probability of that par-
ticle position, and optimizing that quantity with respect to σ gives a maximum
likelihood estimate of σ for the current particle configuration. We use Newton-
Raphson to find σ such that ∂p(xi, σ)/∂σ = 0, which typically converges to
machine precision in several iterations.

There are a few important numer-

Fig. 1. A system of 100 particles (right)
produced by successive splitting of a sin-
gle particle (left).

ical considerations. We must truncate
the Gaussian kernels, and so we use
G(x, σ) = 0 for |x| > 3σ. This means
that each particle has a finite radius
of influence, and we can use a spatial
binning structure to reduce the com-

putational burden associated with particle interactions. If σ for a particle is too
small, a particle will not interact with its neighbors at all, and we cannot com-
pute updates of σ or position. In this latter case, we update the kernel size using
σ ← 2σ, until σ is large enough for the particle to interact with its neighbors.
Another numerical consideration is that the system must include bounds σmin

and σmax to account for anomalies such as bad initial conditions, too few parti-
cles, etc. These are not critical parameters, so as long as they are set to include
the minimum and maximum resolutions the system operates reliably.

The mechanism described in this section is, therefore, a self contained, self
tuning system of particles that distribute themselves using repulsive forces to
achieve optimal distributions. For this paper we initialize the system with a
single particle that finds the nearest zero of F , which then splits (producing a
new, nearby particle) at regular intervals until a specific number of particles are
produced and they reach a steady state. Figure 1 shows this process for a sphere.

3.2 The Entropy of The Ensemble

An ensemble E is a collection of M surfaces, each with their own set of parti-
cles, i.e. E = z1, . . . , zM . The ordering of the particles on each shape implies a
correspondence among shapes, and thus we have a matrix of particle positions
P = xk

j , with point samples along the rows and shapes across the columns. We
model zk ∈ <Nd as an instance of a random variable Z, and propose to minimize
the combined ensemble and shape cost function

Q = H(Z)−
∑

k

H(P k), (4)

which favors a compact ensemble representation, balanced against a uniform dis-
tribution of particles on each surface. The different entropies are commensurate
so there is no need for ad-hoc weighting of the two function terms.

For this discussion we assume that the complexity of each shape is greater
than the number of examples, and so we would normally choose N > M . Given
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the low number of examples relative to the dimensionality of the space, we must
impose some conditions in order to perform the density estimation. For this
work we assume a normal distribution and model p(Z) parametrically using a
Gaussian with covariance Σ. The entropy is then given by

H(Z) ≈ 1
2

log |Σ| = 1
2

Nd∑
j=1

log λj , (5)

where λ1, ..., λNd are the eigenvalues of Σ.
In practice, Σ will not have full rank, in which case the entropy is not finite.

We must therefore regularize the problem with the addition of a diagonal matrix
αI to introduce a lower bound on the eigenvalues. We estimate the covariance
from the data, letting Y denote the matrix of points minus the sample mean
for the ensemble, which gives Σ = (1/(M − 1))Y Y T . Because N > M , we
perform the computations on the dual space (dimension M), knowing that the
determinant is the same up to a constant factor of α. Thus, we have the cost
function G associated with the ensemble entropy:

log |Σ| ≈ G(P ) = log
∣∣∣∣ 1
M − 1

Y T Y,

∣∣∣∣ and − ∂G

∂P
= Y (Y T Y + αI)−1. (6)

We now see that α is a regularization on the inverse of Y T Y to account for the
possibility of a diminishing determinant. The negative gradient −∂G/∂P gives
a vector of updates for the entire system, which is recomputed once per system
update. This term is added to the shape-based updates described in the previous
section to give the update of each particle:

xk
j ← γ

[
−∂G/∂xk

j + ∂Ek/∂xk
j

]
. (7)

The stability of this update places an additional restriction on the time steps,
requiring γ to be less than the reciprocal of the maximum eigenvalue of (Y T Y +
αI)−1, which is bounded by α. Thus, we have γ < α, and note that α has the
practical effect of preventing the system from slowing too much as it tries to
reduce the thinnest dimensions of the ensemble distribution. This also suggests
an annealing approach for computational efficiency (which we have used in this
paper) in which α starts off somewhat large (e.g., the size of the shapes) and is
incrementally reduced as the system iterates.

The choice of a Gaussian model for p(Z = z) is not critical for the proposed
method. The framework easily incorporates either nonparametric, or alternate
parametric models. In this case, the Gaussian model allows us to make direct
comparisons with the MDL method, which contains the same assumptions. Re-
search into alternative models for Z is outside the scope of this paper and remains
of interest for future work.

The method outlined above assumes a population of surfaces that are in
alignment with one another. For medical image datasets, this is often not the
case, and some surface registration technique must be applied as a part of the
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algorithm for finding correspondences. Goodall [11], for example, suggests the
point-based Procrustes method. For the results given in the following section,
we assume the surface data is in alignment and leave the analysis of the stability
and interplay between the proposed method and any surface registration tech-
niques for future work. Preliminary results do suggest, however, that Procrustes
alignment may be effectively applied at intervals in the proposed correspondence
optimization.

4 Results and Conclusions

We begin with two experiments

-3 +3-1.5 +1.5mean

PROP.

MDL

Fig. 2. A comparison of the mean and
three standard deviations of the box-
bump experiment.

on closed curves in a 2D plane and a
comparison with the 2D open-source
Matlab MDL implementation given
by Thodberg [6]. In the first exper-
iment, we used the proposed, particle
method to optimize 100 particles per
shape on 24 box-bump shapes, similar
to those described in [6]. Each shape was constructed from a set of point samples
using cubic b-splines with the same rectangle of control, but with a bump added
at a random location along the top of its curve. Distance transforms from these
shapes were constructed using the fast-marching algorithm [12], which forms
implicit contours suitable for input to the proposed algorithm. MDL correspon-
dences were computed using 128 nodes and mode 2 of the Matlab software, with
all other parameters set to their defaults (see [6] for details). Both methods iden-
tified a single dominant mode of variation, but with different degrees of leakage
into orthogonal modes. MDL lost 0.34% of the total variation from the single
mode, while the proposed method lost only 0.0015%. Figure 2 illustrates the
mean and three standard deviations of the first mode of the two different mod-
els. Shapes from the particle method remain more faithful to those described by
the original training set, even out to three standard deviations where the MDL
description breaks down. A striking observation from this experiment is how the
relatively small amount of variation left in the minor modes of the MDL case
produce such a significant effect on the results of shape deformations.

The second experiment was conducted on the set of 18 hand shape con-
tours described in [1], again applying both the particle method and MDL using
the same parameters as described above. As with the box-bump data, distance
transforms were generated from the spline-based contour models for input to
the correspondence algorithm. In this case, we also compared results with a set
of ideal, manually selected correspondences, which introduce anatomical knowl-
edge of the digits. Figure 3 compares the three resulting models in the top three
modes of variation to ±3 standard deviations. A detailed analysis of the prin-
ciple components showed that the proposed particle method and the manually
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Fig. 3. The mean and three standard deviations of the top three modes of the hand
models.

selected points both produce very similar models, while MDL differed signifi-
cantly, particularly in first three modes.

Existing 3D MDL implementations rely on spherical parameterizations, and
are therefore only capable of analyzing shapes topologically equivalent to a
sphere. The particle-based method does not have this limitation. We applied the
proposed method to a set of randomly chosen tori, drawn from a 2D distribution
that is parameterized by the small radius r and the large radius R. Samples were
chosen from a distribution with mean r = 1, R = 2 and σr = 0.15, σR = 0.30,
with a rejection policy that excluded invalid tori (e.g., r > R). Figure 4 shows
the particle system distribution across two of the torus shapes in the sample
set with 250 correspondences. An analysis of the correspondences showed that
the particle system discovered the two pure modes of variation, with only 0.08%
leakage into smaller modes.

We applied the proposed method to a set

Fig. 4. Particle correspon-
dences in two tori (left)
and two hippocampus (right)
shapes. Corresponding inter-
shape particles have matching
colors.

of 20, volumetric hippocampus segmentations
chosen at random from a larger data set de-
scribed in Styner, et al. [13]. Using the fast-
marching algorithm, this time in 3D, we gener-
ated distance transforms from the boundaries
of these segmentations for input to the method.
Fig. 4 shows the particle system distributed across
two of the shapes after optimizing 300 particles
per shape. We used the modes from the result-
ing Gaussian model to construct a set of sur-
face reconstructions for the three largest princi-
ple components. These modes are illustrated in
Fig. 5 to three standard deviations, with per-
centage of total variation of 38.78%, 26.31%,
and 12.29% for the modes, respectively. The
surface meshes shown were generated by the tight cocone algorithm for sur-
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face reconstruction from point clouds [14], using the implementation provided
by the authors of that work.

Because the proposed method is completely generalizable to higher dimen-
sions, we were able to perform both the 2D and 3D experiments using the same
C++ software implementation, which is templated by dimension. All experi-
ments were run on a 2Ghz processor with run times of approximately 20 minutes
for 2D cases and 45 minutes the 3D cases. In each case, the numerical parameter
σmin was set to machine precision and σmax was set to the size of the domain.
For the annealing parameter α, we used a starting value roughly equal to the
diameter of an average shape and reduced it to machine precision over several
hundred iterations. The results presented in this section are typical of reliably
similar results produced during several experimental runs, suggesting that the
proposed method is fairly robust to the initialization.

-3! +3!mean
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Fig. 5. The mean and three standard deviations of the top three modes of the hip-
pocampus model.

The proposed nonparametric method for shape correspondences produces
results that compare favorably with the state of the art. The method works di-
rectly on volumes, requires very little parameter tuning, and generalizes easily.
The particle-based shape correspondence offers a practical solution for a wider
range of shape analysis problems relative to the work in the literature. Although
the energy functions push the system toward consistent configurations of parti-
cles, the approach does not guarantee diffeomorphic mappings between shapes.
The system might be extended to include neighborhood configurations as a part
of the model, but this remains a topic of further investigation.
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