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Abstract
This paper presents a novel processing scheme for the au-
tomatic computation of a medial shape model which is rep-
resentative for an object population with shape variability.
The sensitivity of medial descriptions to object variations
and small boundary perturbations are fundamental prob-
lems of any skeletonization technique. These problems are
approached with the computation of a model with common
medial branching topology and grid sampling. This model
is then used for a medial shape description of individual
objects via a constrained model fit.

The process starts from parametric 3D boundary repre-
sentations with existing point-to-point homology between
objects. The Voronoi diagram of each sampled object
boundary is grouped into medial sheets and simplified by
a pruning algorithm using a volumetric contribution crite-
rion. Medial sheets are combined to form a common medial
branching topology. Finally, the medial sheets are sampled
and represented as meshes of medial primitives.

We present new results on populations of up to 184 bi-
ological objects. For these objects the common medial
branching topology is described by a small number of
sheets. Despite the coarse medial sampling, a close approx-
imation of individual objects is achieved.

1. Introduction
Representation and analysis of shape is considered a diffi-
cult and challenging problem in computer vision and im-
age analysis. Main motivations for shape characterization
in vision are extraction of characteristic features for object
recognition and retrieval in image databases, building shape
models for model-based segmentation, and object tracking
for navigation and surveillance. This paper specifically ad-
dresses shape representation of 3D objects, for example
anatomical objects extracted from 3D medical image data.
In contrast to most other research studies on object shape
modeling, a major emphasis herein is put on objects ex-
pressing shape variability and on representations appropri-

ate for shape discrimination and statistical shape analysis of
group differences.

Research on methods for representing shape can be
broadly categorized into the following categories where
shape is defined by a) corresponding landmarks and space
warp with interpolation [1], b) a high-dimensional warping
between image data and applying the deformation to a seg-
mented object template [2, 3], c) a parameterization of ob-
ject surfaces [4], d) an extraction of characteristic surface
features [5], and e) an extraction of the medial axis and a
graph description [6, 7, 8]. This paper focuses on the latter
and discusses a new approach for 3D medial shape repre-
sentation. A fundamental problem of any medial descrip-
tion is the sensitivity to boundary change. The boundary
change sensitivity is approached in Voronoi skeletons by
a simplification process called pruning that removes irrel-
evant branches of the Voronoi skeleton. Pruning methods
most influential to our work have been developed by Naef
[9] and Attali [10]. Golland’s 2D skeletons [6] and Pizer’s
3D m-rep description [8] are sampled medial models that
are fitted to individual objects. Keeping the topology of the
model fixed results in an implicit correspondence between
objects. So far, the model has been built manually.

Tackling important open issues in 3D medial shape rep-
resentation, we developed a new processing scheme for the
computation of a sampled medial model that represents not
only individual objects but a population of objects. The
new modeling scheme includes the partition into individual
skeletal sheets and a minimal sampling of each sheet, prop-
erties that were lacking so far but are essential for statistical
shape analysis [11, 12].

This paper is organized as follows. We start with a gen-
eral description of our scheme to compute the medial model.
Then we discuss shape space, common medial branching
topology and minimal sampling in detail. Next, the fit pro-
cess of the medial model to individual objects is described.
Finally we present applications to 3D brain structures.
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Figure 1: Computation of a m-rep model from an object
population. 1. Shape space definition. 2. Common medial
branching computation. 3. Minimal sampling computation.

2. Methods
The main problem adressed in this paper is: Given a popula-
tion of similar objects, how can we automatically compute
a stable medial model in the presence of shape variability?
The following sections describe the our scheme that con-
struct a medialm-repmodel from an object population de-
scribed by boundary parameterization usingspherical har-
monics (SPHARM)(see [13] for more details).

In overview, our scheme is divided into 3 steps and visu-
alized in Fig. 1. We first define a shape space using Prin-
cipal Component Analysis. From this shape space we gen-
erate the medial model in two steps. First we compute the
common branching topology. Then we calculate the mini-
mal sampling of the m-rep model given a maximal approx-
imation error in the shape space.

2.1. M-rep and SPHARM shape description
M-rep models. A m-rep is a linked set of medial primi-
tives [8] called medial atoms,m = (x, r, F , θ). The atoms
are formed from two equal length vectors and are composed
of 1) a positionx, 2) a widthr, 3) a frameF = (~n,~b, ~b⊥)
implying the tangent plane to the medial manifold and 4) an
object angleθ. The medial atoms are grouped into figures
connected via inter-figural links. These figures are defined
as unbranching medial sheets and together form the medial
branching topology. A figure is formed by a set of medial
atoms connected by intra-figural links. The connections be-
tween primitives form a graph called ’medial graph’ with
edges representing either inter- or intra-figural links.

SPHARM The SPHARM description is a parametric
surface description that can only represent objects of spher-
ical topology [4]. The basis functions of the parameter-
ized surface are spherical harmonics. Kelemen [14] demon-
strated that SPHARM can be used to express shape defor-

mations. SPHARM is a smooth, accurate fine-scale shape
representation, given a sufficiently small approximation er-
ror. Based on a uniform icosahedron-subdivision of the
spherical parameterization, we obtain a Point Distribution
Model (PDM) directly from the coefficients via a linear
mapping. Correspondence of SPHARM is determined by
normalizing the parameterization to the first order ellipsoid.

2.2. Shape space via PCA
As a first step in our scheme, we compute a shape space us-
ing Principal Component Analysis (PCA) of parametrized
objects from a training population. The shape space
smoothes the shape variability in the training population,
thus making the computations of our scheme more stable.
We assume that the shape space is an appropriate repre-
sentation of the object’s biological variability. PCA is ap-
plied to SPHARM objects~ci of the training population as
described by Kelemen [14]. The PCA results in an aver-
age coefficient vector~̄c and the eigenmodes of deforma-
tion {(λ1, ~v1) . . . (λn−1, ~vn−1)}. The firstk eigenmodes
{(λ1, ~v1) . . . (λk, ~vk)} are chosen to cover at least95% of
the population’s variability.

A discrete description of the shape space is gained by
sampling it either uniformly or probabilistically. These
samples form an object set that is a representative sam-
pling of the shape space. All subsequent computations of
the model building are then applied to this object set.

2.3. Common medial branching topology
This section describes the computation of the common me-
dial branching topology. First we compute for each object
in the shape space its branching topology as a set of medial
sheets using Voronoi skeletons. Then we establish a com-
mon spatial frame in order to compare the topology of dif-
ferent objects. Finally we determine the common branching
topology via a spatial matching in the common frame.

Medial branching topology of a single object. The
branching topology of an individual object is represented
by a set of medial sheets from the pruned Voronoi skeleton.
We first calculate a finely sampled PDM from the object
described by SPHARM. The inner 3D Voronoi diagram is
then calculated from the PDM. This ’raw’ Voronoi skele-
ton is very complex so that a pruning process is needed to
simplify the skeleton.

Our pruning scheme starts with grouping the Voronoi
skeleton into a set of non-branching, non-self-intersecting
medial sheets. The grouping algorithm is based on the
graph-algorithm proposed originally by Näf [9]. Our ex-
tended version uses a cost function weighted by a geometric
continuity criterion. Additionally, a merging step has been
implemented, which merges similar sheets according to a
mixed radial and geometric continuity criterion. The prun-
ing scheme treats the medial sheets as independent of each
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Figure 2: Voronoi skeleton pruning scheme applied to a lat-
eral ventricles (side views). a. Original boundary. b: Orig-
inal Voronoi skeleton (∼ 1600 sheets). c: Reconstructed
boundary from pruned skeleton (Eoverlap = 98.3%). d:
Pruned skeleton (2 sheets).

other. A simple thresholding of the significance criterions
described below marks the sheets that are to be pruned. The
medial sheet are then pruned using a topology preserving
deletion scheme.

The pruning of medial sheets usually changes the
branching topology of the skeleton by creating new sheets
or by merging existing sheets. Therefore, a sheet-based
pruning scheme has to include an additional grouping step
that is performed directly after the pruning step if any sheet
was pruned. Then, the skeleton needs to be pruned again
with the same criterion, which possibly changes the branch-
ing topology again. Thus, the sheet-pruning scheme applies
a loop consisting of a grouping step followed by pruning
step until no sheet can be pruned.

The global significance criterion we propose uses the
volumetric contribution of the reconstruction to the object:
Cvolume = Vskel − Vskel−si/Vskel. This volumetric contri-
bution criterion correlates directly with the significance of
a sheet to the object shape. However, the volumetric con-
tribution criterion is computationally inefficient and thus as
a dirst step, the pruning scheme removes tiny medial sheets
from the skeleton. Fig. 2 shows the result of the pruning
scheme applied to a real object.

Our experiments show that a considerable reduction of
the number of medial sheets is possible with sacrificing only
little accuracy of the reconstruction. In fact, the pruned
skeletons ofall objects studied so far had a volumetric over-
lap with the original object of more than98%.

A common spatial frame for branching topology com-
parison. The problem of comparing branching topologies
has already been adressed before in 2D by Siddiqi [7] and
others, mainly via matching medial graphs. To our knowl-
edge, there has been no work reported in 3D to date. August
[15] showed that the medial branching topology is quite un-
stable. Thus, we developed a matching algorithm that is
not based on graph matching but on spatial correspondence.

The branching topology is thereby represented by the spa-
tial distributions of medial sheets.

All objects to be compared are mapped into a common
spatial frame by a warped registration (see Fig. 3). In or-
der to minimize the mapping distortions, the average ob-
ject of the shape space is chosen to provide the common
spatial frame. The SPHARM description and its implied
PDM are used to create correspondences on the boundary
between each object and the template object in the common
frame. The correspondence in the whole 3D space is in-
terpolated from the PDM boundary correspondence via thin
plate splines (TPS). The TPS-warp maps every skeleton into
the common frame, where the PDM’s match perfectly.

Extraction of a common branching topology. Given
that all medial sheets of the object set are mapped into a
common spatial frame, a matching criterion can be defined
to assess how well two different sheets spatially correspond.
Visually, a high degree of overlap between matching sheets
in the common frame can be observed. The centers of the
medial sheets match better than the edges, which are quite
sensitive to boundary noise. We developed a robust match-
ing criterion that takes into account the non-isotropic spa-
tial distribution of the Voronoi vertices of the medial sheets.
Specifically, for every sheetsi the covariance matrixΣi of
its vertices and the average vertices’ locationsµi (sheet cen-
ter) are computed. This covariance matrixΣi can be seen as
an ellipsoid approximating the spatial extension of the me-
dial sheetsi. The matching criterion is then computed as
the paired Mahalanobis distance between the sheet centers:

dMaha(si, x) = (x− µi)′ · Σ−1
i · (x− µi) (1)

critMaha(si, sj) =
dMaha(si, µj) + dMaha(sj , µi)

2

An empirically determined threshold leads to the rejection
of a match if the sheet centers are further away than twice
the paired Mahalanobis distance. This empirical threshold
produced good results with the datasets studied so far, but it
might need adaption for objects of different complexity.

Figure 3: Schematic overview of matching procedure
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The common branching topology is computed stepwise.
First, the topology of the average object is chosen as the
initial guess for the common branching topology. Step by
step the algorithm chooses a different object of the shape
space and compares its branching topology with the current
common branching topology until the object set is fully pro-
cessed. Those sheets that do not correspond to any sheet
in the current common branching topology are added to
it. This means that every sheet of the whole object set is
matched by at least one of the sheets of the final common
branching topology. The common branching topology is a
set of medial sheets originating from various objects of the
shape space mapped into the common spatial frame.

2.4. Minimal medial sampling
An m-rep model is determined by a set of medial sheets
and the set of corresponding grid parameters{ni,mi}. In
the next section, we describe the algorithm to compute the
grid sampling of a single medial sheet given the sheet’s pa-
rametersni,mi. This sampling algorithm is applied to all
medial sheets in the common branching topology to com-
pute the m-rep model. Next, we describe how this sampling
algorithm is used to compute the minimal medial sampling
in the shape space given a maximal approximation error.

Sampling of a single medial sheet. Given a medial
sheet from the Voronoi skeleton and a set of m-rep grid di-
mensionsn,m, how can we determine the grid samples for
a most uniform grid on the medial sheet? The procedure
proposed here computes this sampling on the volumetric re-
construction from the medial manifold rather than on the
Voronoi skeleton since efficient and well-tested algorithms
exist for a wide range of image operations.

The procedure first smoothes the voxel sampling of the
medial sheet at its boundary. From the smoothed sheet,
we compute the 1D skeleton using a 3D thinning proce-
dure. After graph-compilation, the longest path is extracted
from the thinning-skeleton to form the medial axis of the
sheet. This axis is uniformly sampled. Next, the m-rep grid
samples on the grid-edge are computed as the closest sheet
boundary points of estimated locations along directions nor-
mal to the medial axis. Finally, the remaining grid samples
are linearly interpolated along the lines connecting medial
axis samples and grid-edge samples (see Fig. 4).

Since the computed medial samples do not lie at the loca-
tions of the Voronoi vertices, they are bijectively projected
to the closest Voronoi vertices of the medial sheet. Since the
medial manifold is densely sampled with Voronoi vertices,
this projection affects the sample locations only slightly. At
the Voronoi vertices, the additional information from the
generating points and the Voronoi neighborhood is used to
estimate the m-rep atom properties.

The computed m-rep is a goodinitial estimate to the m-
rep description. An additional step computes the appropri-

Medial sheet axis

Grid−edge 
estimation

Edge
projection

Interpolate

Sheet/Edge
projection

Figure 4: Visualization of the sampling method. Starting
from the sampled axis (top left, boundary in black, eroded
boundary in purple, axis in red), the grid-edge (top right,
blue) is estimated. The grid-edge is projected to the sheet
boundary (bottom right) and the remaining samples (violet)
are interpolated.

ate m-rep description via deformation to optimally fit the
object boundary (see section 2.5 ).

Minimal sampling in shape space. The grid dimen-
sions{ni,mi} are optimized (nonlinear 1+1 evolutionary
scheme) to be minimal while the m-rep model has a maxi-
mal approximation error in the shape space. The approx-
imation error is defined as the Mean Absolute Distance
(MAD) of the m-rep implied boundary and the original
boundary. The proposed errorEpop is theMAD normalize
using2 the average radius over all skeletons of the popula-
tion ravg: Epop = MAD

ravg
.

The next step computes the minimal sampling in the
shape space. First, the m-rep model of the minimal sam-
pling for the average object is computed as described above.
Next, this m-rep model is checked whether it appropriately
fits into all objects from the object set. If an objectoi of
the object set has a largerEpop thanEmax, the current m-
rep model is not appropriate for the whole shape space and
has to be adjusted. In this case, the algorithm computes a
new m-rep model with a minimal sampling for that object
oi. This m-rep model becomes the current m-rep model,
which has to be checked to appropriately fit the whole ob-
ject set. After all objects of the shape space have been han-
dled by the algorithm, the resulting m-rep model represents
the common m-rep model sought.

2.5. Fitting an m-rep model to an object
Once a common m-rep model is computed, it is used to de-
scribe individual objects via fitting the model into the ob-
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Figure 5: Sampling approximation errorsEpop of the m-
rep implied surface (dark blue dots) with the original object
boundary (light blue transparent) in a hippocampus struc-
ture (ravg = 2.67 mm). The m-rep grids are visualized as
red lines. The grid dimensions are shown in the second row,
and theEpop errors in the third row.

ject boundaries. This fit process is done in 2 steps. First
a good initial estimate is obtained, which is then refined in
an optimization step. The initial estimate is computed by
a TPS warp of the m-rep model from the common frame
into the frame of the individual object using the SPHARM
correspondence on the boundary. Starting from this initial
position, an optimization procedure changes the properties
of the m-rep model to improve the fit to the boundary [16].
Local similarity transformations as well as rotations of the
local angulation are applied to the m-rep atoms.

3. Results
The scheme has been applied to different studies with
populations of several human brain structures; the over-
all number of processed cases is shown in parenthesis:
hippocampus-amygdala (60 cases), hippocampus (180),
thalamus (56), pallide globe (56), putamen (56) and lateral
ventricles (40). Fig. 6 presents a selection of the computed
models. Two of the studies are presented in more detail in
the following paragraphs.

Figure 6: Selection of medial models of anatomical struc-
tures in the left and right brain hemisphere. From outside to
inside: lateral ventricle, hippocampus, pallide globe.

Hippocampus schizophrenia study. The hippocam-
pus structure of an object population with schizophrenic pa-
tients (56 cases) and healthy controls (26 cases) is investi-
gated. One goal of the study was to assess shape asymmetry
between left and right side objects. The model was built on

Figure 7: Six individual m-rep descriptions of the hip-
pocampus study. The visualizations show m-rep grids as
red lines, the m-rep implied surface as dark blue dots and
the original object boundary in transparent light blue.

a object population that included the objects of all subjects
on both sides, with the right hippocampi mirrored at the in-
terhemispheric plane.

The SPHARM coefficients were normalized for rotation
and translation using the first order ellipsoid. The size was
normalized to unit volume. The shape space was defined by
the first 13 eigenmodes with every other eigenmode holding
less than 1% of the variability in the population. All objects
in the shape space had a medial branching topology of a
single medial sheet with a volumetric overlap of more than
98%. Thus, the common topology was a single sheet. The
computed minimal grid sampling of 3x8 had anEpop error
of less than5% for all objects in the shape space. The appli-
cation to the whole hippocampus population of 164 objects
generatedEpop errors in the range of[0.048 . . . 0.088] with
an average error of 0.058. The average radius is 3.0 mm and
thus the average error is 0.17mm. Some m-rep objects are
shown in Fig. 7.

Lateral ventricle twin study. Another study investi-
gates the lateral ventricle structure in an object population
with 10 mono- and 10 di-zygotic twins. The same process-
ing has been performed as in the first case.

The SPHARM coefficients were normalized for rotation
and translation using the first order ellipsoid. The size was
normalized to unit volume. The first 8 eigenmodes de-
fine the shape space, which holds 96% of the variability
of the population. The medial branching topologies var-
ied between one to three medial sheets with an volumetric
overlap of more than 98% for each object. The single me-
dial sheet topology of the average object matched all sheets
in the common frame. Thus, the common medial topol-
ogy was computed to be a single sheet. The minimal sam-
pling of the medial topology was computed with a maxi-
mal Epop ≤ 0.10 in the shape space. The application to
the whole population generatedEpop errors in the range of
[0.057 . . . 0.15] with an average error of 0.094. The aver-
age radius is 2.26mm and thus the average error is 0.21mm.
Some m-rep objects are shown in Fig. 8.
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Figure 8: Four individual m-rep descriptions of the lateral
ventricle study. The visualizations show m-rep grids as red
lines, the m-rep implied surface as dark blue dots and the
original object boundary in transparent light blue.

4. Summary and Conclusions
This paper presents a new processing scheme for medial
shape representation with following novel features: The
medial model represents the common branching topology
of a range of objects characterized by a predefined shape
space. Voronoi skeletons with only a small set of medial
sheets are obtained by an improved grouping and prun-
ing method. Point to point correspondence between me-
dial sheets, a property most essential for building statistical
shape models and for shape comparison, is achieved by cal-
culating skeletons from a parametrized surface description
with existing correspondence. The dense sampling of the
Voronoi skeleton is replaced by a discrete grid with opti-
mal sampling given the degree of approximation. Sensitiv-
ity to boundary changes resulting in instability of skeleton
edges and branching locations are tackled by starting from
smooth parametrized object surfaces and by developing new
techniques for combination of the medial sheet topology of
similar objects and calculation of an optimal grid sampling.

The results of processing large series of objects clearly
demonstrate the feasibility of a medial representation even
with only a few sheets to capture coarse-scale shape of a
whole shape population. Shape models calculated by the
scheme presented herein will be used for model-based seg-
mentation and for the detection of group differences be-
tween patients and controls. In contrast to surface-based ob-
ject representation, a medial representation captures growth
and bending independently, a property most desirable for
shape description. Further, it provides type and magnitude
of shape changes with locality. Both properties make it the
shape representation of our choice for studying biological
objects, for example for studying neuro-development and
neuro-degeneration in brain research.
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