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Abstract. We use object scale and then atom scale Bayesian optimiza-
tion of m-reps to automatically segment the caudate nucleus in brain
MRI images. Our shape priors are learned after alignment of m-reps fit
to 15 manual segmentations of caudates. At the object and atom scale
levels the alignment is to the m-rep mean of the object and atom, re-
spectively. Our appearance likelihood is learned from regional intensity
quantile functions from images that have been aligned, corrected for in-
homogeneity, and intensity normalized. We begin the segmentation of a
target image by the image preprocessing steps described above followed
by an initialization of the mean m-rep model using the image alignment
transformation. The segmentation then proceeds by optimizing the pos-
terior probability over a shape space encompassing eigenmodes of full
m-rep shape variation capturing 87% of the total variance in the training
population of left caudates (83% right). The segmentation concludes by
successively optimizing the posterior probability of the residual changes
in the medial atoms making up the m-rep.
Since only a weak variant of a part of our segmentation method was
inadvertently applied in the Grand Challenge, its results are not repre-
sentative of the performance of our method. Qualitative results of the
actual method are reported within; quantitative results will be reported
separately.

1 Introduction

A popular approach for segmenting 3D objects from a medical image
in a largely automatic way has been to deform a geometric model into
the target image. Such methods optimize an objective function in which a
major term measures the match of the model to the target image. Another
term can reflect knowledge about the anatomy.

A Bayesian point of view allows one to reflect both of these pieces
of knowledge. One seeks the most probable object model m given the
image I over objects with the specified geometric properties i.e. one op-
timizes p ( m | I ). By Bayes’ theorem,

arg max
m

p ( m | I ) = arg max
m

[log p ( m ) + log p ( I | m )] (1)
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The log prior term, log p ( m ), reflects what is known about anatomic
geometry and how it can vary. The log likelihood term, log p ( I | m ),
reflects what image intensity patterns are consistent with the anatomy
and how they can vary.

Because they are especially effective for training probability densi-
ties, we use the m-rep [1, 2] as the object representation and discrete
regional intensity quantile functions (DRIQFs) [3] as the image intensity
representation. We use principal component analysis (PCA) on DRIQFs
as the means of estimating the likelihood distributions. We use principal
geodesic analysis (PGA) [4], i.e., PCA on the tangent space to the Fréchet
mean of the training m-reps (or their medial atom residuals at the atom
scale) as the means of estimating the prior distributions. The PGA also
yields a limited-dimensional space of credible objects within which the
optimal object is sought.

In Sec. 2 we describe the training procedure we used to learn probabil-
ity distributions on m-reps and DRIQFs for caudates. We then describe
our method for segmenting the target data set. Section 3 contains a dis-
cussion of those segmentation results.

2 Method

2.1 Image Preprocessing

The brain MRI images are preprocessed according to a scheme that we
have also used for unbiased atlas production and for atlas based segmen-
tation [5]. This preprocessing pipeline consists of four steps. Each image is
rigidly aligned to an atlas. The aligned images undergo an automatic tis-
sue segmentation [6, 7] and an intensity inhomogeneity correction of that
removes gradual variations in the image intensities mainly due RF coil
imperfections. All training images are then normalized into the same in-
tensity range via a spline based histogram transfer function that matches
the mean intensities of the tissue classes of white matter, grey matter and
cerebrospinal fluid, as well as the overall range of the image intensities.
The final preprocessing step is skull stripping using a procedure based on
a mask generated from the binary tissue segmentation obtained in step
2.

2.2 Training m-reps and the prior distribution on them

The m-rep for a caudate nucleus is mathematically defined [1, 2] as a
2-manifold with boundary of medial atoms (Fig. 1, Left), where for all



interior points of the manifold with boundary the atom consists of a
hub location, the directions of two spokes emanating from the hub to the
implied boundary of the object, and the common length of the two spokes.
On the boundary (edge) of each manifold the atom has a third crest spoke
bisecting the two spokes and having an additional length parameter that
controls the sharpness of the associated crest on the medially implied
object boundary. Our m-rep representation for a caudate samples this
2-manifold with boundary into a rectilinear grid of 3 × 7 atoms (Fig. 1).

Fig. 1. A medial atom (Left). A discrete m-rep, and its implied boundary, for a caudate
nucleus (Right).

Training both the log prior and the log likelihood begins with binary
images of manual segmentations of the left (respectively right) caudate
from the brain aligned training images. M-reps are fit to each of these
binary training images using a variant of our segmentation program [8].

The resulting m-reps are aligned to their mean and a new mean left
(resp. right) caudate is computed. PGA yielded shape spaces made from
the 8 dominant components, which captured 87% and 83% of the variance
for the left and right caudates. The coefficients of these 8 components in
any candidate m-rep within the object scale stage of the segmentation, to-
gether with the associated principal variances, yields the log prior penalty
term in the objective function, weighted to have unit variance.

To train the segmentation at the atom scale, the residue in each me-
dial atom from the projection of each training case into the object scale
shape space is aligned according to the orientation and position of a lo-
cal patch in the projection, where the patch consists of the atom and its
2-4 immediate neighbors. PGA on the aligned residues yields 5 dominant
components, which captures 90 %of the variance for the left caudate and
90% for the right caudate. The coefficients of these components in any



candidate m-rep within the atom scale stage of the segmentation, together
with the associated principal variances yields the log prior penalty term
in the objective function for optimizing that atom, weighted to have unit
variance.

2.3 Training DRIQFs

The local image match function that we use as our log likelihood function
is based on Broadhurst’s discrete regional intensity quantile functions
(DRIQF) [3, 9]. We use the training m-reps to subdivide each MRI image
into local (overlapping) regions. In particular, we use the m-rep spoke
ends and directions to define 58 interior and 58 exterior regions for the
left (resp. right) caudate. Image intensity histograms are recorded for each
region of each training image.

The local image match function measures statistical distance between
the observed histogram in a region of the target image and the popula-
tion of histograms observed for the corresponding region of the training
set. Broadhurst has shown that although the histogram space requires a
non-Pythagorean metric, each histogram can be uniquely mapped onto a
quantile function through the inverse of its cumulative density function
and that linear statistics are valid on the resulting quantile space. PCA
on the training cases yields a mean and eigenmodes of variation for the
quantile functions. The log likelihood term in the objective function for
segmentation is a Mahalanobis distance in this PCA space, weighted to
have unit variance.

2.4 Segmentation

The aforementioned training was done separately for the left and right
caudates, and segmentation proceeded on each caudate using the appro-
priate probability distributions. The segmentation is performed via an it-
erative application of conjugate gradient optimization. First the template
model (the side-specific mean computed in Sec. 2.2) is initialized into the
target image via a 7 parameter similarity transform that optimizes the log
likelihood of the target object according to the probability distribution
of DRIQFS learned in Sec. 2.3. Then the model is deformed in the PGA
shape space, first at the whole object scale and then at the local atom
scale, so that the initialization transform applied to the deformed model
optimizes the objective function (1). We then iterate, first computing a
new initialization transform that optimally brings the deformed model
into the target image, and then computing the optimal deformation for



this improved initialization. Our experience has been that two iterations
of this method yield high quality segmentations and can prevent certain
local minima problems.

3 Results

The segmentations we submitted to the workshop were produced in a
pipeline that deviated from the method outlined in Sec. 2 in ways which
we feel invalidate our results. Because of serious data preparation errors
these segmentations can be explained as garbage in, garbage out.

Several problems with our log likelihood training were due to confusion
over units of cm vs. mm. The sampling radius of each DRIQF was too
narrow by a factor of 10 voxels. This led to an undersampling of exterior
intensities during DRIQF training. Furthermore, the union of the regions
did not cover the entire caudate, i.e. there were large gaps which were
never sampled. Consequently the DRIQFs poorly described the image
intensity relative to the object.

The object-scale log prior distribution was trained from models that
had been aligned at the whole-brain scale, but not aligned at the caudate
scale. As a result of this, the PGA statistics were dominated by orienta-
tion components and also allowed transformations that produce atypical
objects.

Our segmentation consisted of only a variation of a subset of the
procedure described in Sec. 2.4. Our segmentation consisted of only a
single round of object scale PGA deformation, initialized by the identity
transform. We did not iterate over initialization and segmentation, and
we did not use the image data to drive initialization. Because the atom
stage had not been adequately debugged prior to the workshop deadline,
the log-prior was trained only at the object scale. Thus the segmentations
we submitted had only been deformed at the object scale; typically this
produces segmentations that are in many places a few voxels off.

Fixing all of these mistakes makes such strong qualitative improve-
ments that our submitted results (Tables 1-3 and Fig. 3) should be ig-
nored. Fig. 2 shows typical examples of the segmentations produced by
our correct method in comparison to our submitted segmentations from
the incorrect version of our method. It is our intention to work with the
workshop organizers to apply their quantitative analysis to the results of
the correct version of our method.



Fig. 2. From left to right, a sagittal, coronal and transversal slice from a a subject in
the adults BWH group (top) and one in the elderly UNC group (bottom). The outline
of the segmentation produced by correctly applying our method is shown in yellow.
The submitted result from the incorrect version of our method is shown in blue.

3.1 Training sample needs

Any probabilistic training requires a large sample size in order to robustly
estimate the underlying distributions. This applies to our methods of
applying PGA on m-reps and m-rep residuals, and applying PCA on
DRIQFs. It is our opinion that the set of 15 training images provided
by the workshop was too small to adequately describe the variation in
caudate shape across patients. We expect that the quality of our target
image segmentations would greatly benefit from 20 additional training
cases.

The success of our method, and indeed any method based on proba-
bilistic training, in segmenting a novel image depends on that image being
typical with respect to the training population. The physical differences
between the adult population on which we trained, and the pediatric tar-
get population are such that the performance of our method as trained
on adults applied to the pediatric images should be poor; and indeed they
were. It is our belief that with a pediatric training population we could



Correl UNC Ped UNC Eld BWH PNL Total
Left 0.7317 0.1468 0.4778 0.4521
Right -0.1184 0.6791 0.3710 0.3106
Average 0.3067 0.4129 0.4244 0.3813

Table 1. Pearson correlation for the volume measurements in the three testing groups
as well as in total. This coefficient captures how well the volumetric measurements
correlate with those of the reference segmentations.

learn probability distributions that would allow our method to segment
pediatric targets.

3.2 Benefits expected from multiobject segmentation

We believe that our method would be significantly improved if, instead of
focusing on segmenting a single object, it simultaneously segmented that
object and others surrounding it. This multiobject segmentation should
use geometric probability distributions not only on each of the objects,
but also on their interrelations. A method to do such multiobject seg-
mentation and the associated learning of probability distributions is well
along in its development in our laboratory [10]. For the caudate nucleus
in particular, a multiobject segmentation together with the putamen, nu-
cleus incumbens, and lateral ventricle should provide superior results. In
particular, those of our results in which the segmented caudate leaks into
the nucleus incumbens should be improved.

3.3 Run-time performance

Our training is performed off-line, so we exclude it from this discussion.
Preprocessing of an image typically requires on 15 to 20 minutes of com-
putation using a single modern Linux workstation. Most of this time is
spent on the registration and tissue segmentation steps. The object scale
initialization and deformations combined typically run in under 5 min-
utes. Atom scale segmentation runs on average in 20 minutes. Overall our
research implementation of our method can fully segment an image in 45
minutes.
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Test/Re-Test UNC 03 UNC 04 UNC 09 UNC 11 UNC 17 UNC 18 UNC 21 UNC 22 UNC 24 UNC 25 Mean Stdev COV
[mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [mm3] [%]

Left 3177 3330 2724 2415 1888 2838 2605 2642 2011 2020 2565 489 19.1
Right 3256 2869 3272 3476 3284 3315 3717 2661 3778 2943 3257 356 10.9
Total - - - 15.0

Table 2. The volumetric measurements of the 10 data sets of the same young adult
acquired on 5 different scanners within 60 days. The coefficient of variation (COV =
standard deviation / average, last column) indicates the stability of the algorithm in
a test/re-test situation including scanner variability.

All Dataset Overlap Err Volume Diff. Abs. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

UNC Ped 10 70.6 56 9.0 84 2.5 6 3.4 38 13.1 62 49
UNC Ped 14 46.5 70 10.6 81 1.0 61 1.4 75 5.3 84 74
UNC Ped 15 49.1 70 -5.3 90 1.2 56 1.5 72 5.9 82 74
UNC Ped 19 91.9 42 45.5 36 13.7 0 14.8 0 32.9 4 16
UNC Ped 30 97.2 38 32.6 42 7.7 0 8.8 0 19.7 42 24
UNC Eld 01 56.0 64 4.9 82 1.4 48 1.9 66 7.3 78 68
UNC Eld 12 52.4 67 2.1 96 1.2 54 1.7 70 6.4 81 74
UNC Eld 13 38.3 76 3.1 94 0.8 68 1.3 78 5.3 84 80
UNC Eld 20 43.3 72 -4.8 88 1.0 64 1.3 76 6.7 80 76
UNC Eld 26 50.2 68 16.9 70 1.1 60 1.5 73 5.8 83 71
BWH PNL 16 48.7 70 -14.9 74 1.3 51 2.6 53 23.1 32 56
BWH PNL 17 47.8 70 -15.6 73 1.4 49 2.9 48 27.1 20 52
BWH PNL 18 69.5 56 -23.9 58 2.2 18 2.9 48 11.1 68 50
BWH PNL 19 55.5 65 -30.9 46 1.6 42 3.0 46 25.7 24 45
BWH PNL 20 48.6 70 -13.6 76 1.3 54 2.6 54 26.3 22 55
BWH PNL 21 62.1 61 -26.6 53 1.8 33 3.0 47 24.4 28 44
BWH PNL 22 46.3 71 -32.0 44 1.5 45 3.6 36 28.9 15 42
BWH PNL 23 45.9 71 6.4 88 1.0 62 1.4 74 9.5 72 74
BWH PNL 24 46.2 71 -18.9 67 1.0 64 1.4 76 7.6 78 71
BWH PNL 25 44.4 72 -13.7 76 1.2 54 2.6 53 23.4 32 58
BWH PNL 26 50.6 68 -1.8 86 1.2 56 1.8 68 13.5 60 68
BWH PNL 27 43.8 72 -22.4 61 1.5 46 3.4 39 26.1 23 48
BWH PNL 28 46.9 70 -8.4 85 1.4 47 3.2 42 25.4 25 54
BWH PNL 29 56.0 64 -6.5 88 1.3 54 1.7 70 7.8 77 70
Average All 54.5 66 -4.5 73 2.1 45 3.1 54 16.2 52 58
Average UNC Ped 71.0 55 18.5 67 5.2 25 6.0 37 15.4 55 48
Average UNC Eld 48.0 70 4.4 86 1.1 59 1.5 72 6.3 82 74
Average BWH PNL 50.9 68 -15.9 70 1.4 48 2.6 54 20.0 41 56

Table 3. Results of the comparison metrics and corresponding scores for all test cases
averaged for the left and right segmentation. The summary rows at the end of the table
display the overall average across all test cases, as well as grouped for the three testing
groups.



Fig. 3. From left to right, a sagittal, coronal and transversal slice from a a subject in
the adults BWH group (top), one in the elderly UNC group (middle) and one in the
pediatric UNC group (bottom). The outline of the reference standard segmentation is
in red, the outline of the segmentation of the method described in this paper is in blue.
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