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Abstract. We use object scale and then atom scale Bayesian optimiza-
tion of m-reps to automatically segment the caudate nucleus in brain
MRI images. Our shape priors are learned after alignment of m-reps fit
to 15 manual segmentations of caudates. The alignment is to the m-rep
means at the respective scale levels. Our appearance likelihood is learned
from regional intensity quantile functions from images that have been
aligned, corrected for inhomogeneity, and intensity normalized. We be-
gin the segmentation of a target image by the image preprocessing steps
described above followed by an initialization of the mean m-rep model us-
ing the image alignment transformation. The segmentation then proceeds
by optimizing the posterior probability over a shape space encompass-
ing eigenmodes of full m-rep shape variation capturing 87% of the total
variance in the training population of left caudates (83% right). The seg-
mentation concludes by successively optimizing the posterior probability
of the residual changes in the medial atoms making up the m-rep.
Since only a weak variant of a part of our segmentation method was
inadvertently applied in the Grand Challenge, its results are not repre-
sentative of the performance of our method. Qualitative results of the
actual method are reported within; quantitative results will be reported
separately.

1 Introduction

A popular approach for segmenting 3D objects from a medical image in a largely
automatic way has been to deform a geometric model into the target image.
Such methods optimize an objective function in which a major term measures
the match of the model to the target image. Another term can reflect knowledge
about the anatomy.

A Bayesian point of view allows one to reflect both of these pieces of knowl-
edge. One seeks the most probable object model m given the image I over ob-
jects with the specified geometric properties i.e. one optimizes p( m | I ). By
Bayes’ theorem,

argmaxp(m | I)=argmaxlogp(m )+logp(I|m) (1)

The log prior term, logp ( m ), reflects what is known about anatomic geometry
and how it can vary. The log likelihood term, logp ( I | m ), reflects what image
intensity patterns are consistent with the anatomy and how they can vary.



Because they are especially effective for training probability densities, we
use the m-rep [1,2] as the object representation and discrete regional intensity
quantile functions (DRIQFSs) [3] as the image intensity representation. We use
principal component analysis (PCA) on DRIQFs as the means of estimating the
likelihood distributions. We use principal geodesic analysis (PGA) [4], i.e., PCA
on the tangent space to the Fréchet mean of the training m-reps (or their medial
atom residuals at the atom scale) as the means of estimating the prior distri-
butions. The PGA also yields a limited-dimensional space of credible objects
within which the optimal object is sought.

In Sec. 2 we describe the training procedure we used to learn probability
distributions on m-reps and DRIQFs for caudates. We then describe our method
for segmenting the target data set. Section 3 contains a discussion of those
segmentation results.

2 Methods

2.1 Image Preprocessing

The brain MRI images are preprocessed according to a scheme that we have also
used for unbiased atlas production and for atlas based segmentation [5]. This
preprocessing pipeline consists of four steps. Each image is rigidly aligned to an
atlas. The aligned images undergo an automatic tissue segmentation [6,7] and
an intensity inhomogeneity correction of that removes gradual variations in the
image intensities mainly due RF coil imperfections. All training images are then
normalized into the same intensity range via a spline based histogram transfer
function that matches the mean intensities of the tissue classes of WM, GM and
CSF, as well as the overall range of the image intensities. The final preprocessing
step is skull stripping using a procedure based on a mask generated from the
binary tissue segmentation obtained in step 2.

2.2 Training m-reps and the prior distribution on them

The m-rep for a caudate nucleus is mathematically defined [1, 2] as a 2-manifold
with boundary of medial atoms (Fig. 1, Left), where for all interior points of
the manifold with boundary the atom consists of a hub location, the directions
of two spokes emanating from the hub to the implied boundary of the object,
and the common length of the two spokes. On the boundary (edge) of each
manifold the atom has a third crest spoke bisecting the two spokes and having
an additional length parameter that controls the sharpness of the associated
crest on the medially implied object boundary. Our m-rep representation for a
caudate samples this 2-manifold with boundary into a rectilinear grid of 3 x 7
atoms (Fig. 1).

Training both the log prior and the log likelihood begins with binary images
of manual segmentations of the left (respectively right) caudate from the brain
aligned training images. M-reps are fit to each of these binary training images
using a variant of our segmentation program [8].



Fig. 1. A medial atom (Left). A discrete m-rep, and its implied boundary, for a caudate
nucleus (Right).

The resulting m-reps are aligned to their mean and a new mean left (resp.
right) caudate is computed. PGA yielded shape spaces made from the 8 dominant
components, which captured 87% and 83% of the variance for the left and right
caudates. The coefficients of these 8 components in any candidate m-rep within
the object scale stage of the segmentation, together with the associated principal
variances, yields the log prior penalty term in the objective function, weighted
to have unit variance.

To train the segmentation at the atom scale, the residue from the projection
of each training case into the object scale shape space is aligned according to
the orientation and position of a local 3-5 atom patch in the projection. PGA
on the aligned residues yields 5 dominant components, which captures 90%of
the variance for the left caudate and 90% for the right caudate. The coefficients
of these components in any candidate m-rep within the atom scale stage of the
segmentation, together with the associated principal variances yields the log
prior penalty term in the objective function for optimizing that atom, weighted
to have unit variance.

2.3 Training DRIQFs

The local image match function that we use as our log likelihood function is based
on Broadhurst’s discrete regional intensity quantile functions (DRIQF) [3,9]. We
use the training m-reps to subdivide each MRI image into local (overlapping)
regions. In particular, we use the m-rep spoke ends and directions to define 58
interior and 58 exterior regions for the left (resp. right) caudate. Image intensity
histograms are recorded for each region of each training image.

The local image match function measures statistical distance between the
observed histogram in a region of the target image and the population of his-
tograms observed for the corresponding region of the training set. Broadhurst
has shown that although the histogram space requires a non-Pythagorean met-
ric, each histogram can be uniquely mapped onto a quantile function through
the inverse of its cumulative density function and that linear statistics are valid



on the resulting quantile space. PCA on the training cases yields a mean and
eigenmodes of variation for the quantile functions. The log likelihood term in
the objective function for segmentation is a Mahalanobis distance in this PCA
space, weighted to have unit variance.

2.4 Segmentation

The aforementioned training was done separately for the left and right caudates,
and segmentation proceeded on each caudate using the appropriate probability
distributions. The segmentation is performed via an iterative application of con-
jugate gradient optimization. First the template model (the side-specific mean
computed in Sec. 2.2) is initialized into the target image via a 7 parameter sim-
ilarity transform that optimizes the log likelihood of the target object according
to the probability distribution of DRIQFS learned in Sec. 2.3. Then the model
is deformed in the PGA shape space, first at the whole object scale and then at
the local atom scale, so that the initialization transform applied to the deformed
model optimizes the objective function (1). We then iterate, first computing a
new initialization transform that optimally brings the deformed model into the
target image, and then computing the optimal deformation for this improved
initialization. Our experience has been that two iterations of this method yield
high quality segmentations and can prevent certain local minima problems.

3 Results

The segmentations we submitted to the workshop were produced in a pipeline
that deviated from the method outlined in Sec. 2 in ways which we feel invalidate
our results. Because of serious data preparation errors these segmentations can
be explained as garbage in, garbage out.

Several problems with our log likelihood training were due to confusion over
units of cm vs. mm. The sampling radius of each DRIQF was too narrow by a
factor of 10 voxels. This led to an undersampling of exterior intensities during
DRIQF training. Furthermore, the union of the regions did not cover the entire
caudate, i.e. there were large gaps which were never sampled. Consequently the
DRIQF's poorly described the image intensity relative to the object.

The object-scale log prior distribution was trained from models that had
been aligned at the whole-brain scale, but not aligned at the caudate scale. As
a result of this, the PGA statistics were dominated by orientation components
and also allowed transformations that produce atypical objects.

Our segmentation consisted of only a variation of a subset of the procedure
described in Sec. 2.4. Our segmentation consisted of only a single round of object
scale PGA deformation, initialized by the identity transform. We did not iterate
over initialization and segmentation, and we did not use the image data to drive
initialization. Because the atom stage had not been adequately debugged prior
to the workshop deadline, the log-prior was trained only at the object scale.
Thus the segmentations we submitted had only been deformed at the object



scale; typically this produces segmentations that are in many places a few voxels
off.

Fixing all of these mistakes makes such strong qualitative improvements that
our submitted results (Figs. 3-6) should be ignored. Fig. 2 shows typical exam-
ples of the segmentations produced by our correct method in comparison to our
submitted segmentations from the incorrect version of our method. It is our in-
tention to work with the workshop organizers to apply their quantitative analysis
to the results of the correct version of our method.

3.1 Training sample needs

Any probabilistic training requires a large sample size in order to robustly esti-
mate the underlying distributions. This applies to our methods of applying PGA
on m-reps and m-rep residuals, and applying PCA on DRIQFs. It is our opinion
that the set of 15 training images provided by the workshop was too small to
adequately describe the variation in caudate shape across patients. We expect
that the quality of our target image segmentations would greatly benefit from
20 additional training cases.

The success of our method, and indeed any method based on probabilistic
training, in segmenting a novel image depends on that image being typical with
respect to the training population. The physical differences between the adult
population on which we trained, and the pediatric target population are such
that the performance of our method as trained on adults applied to the pediatric
images should be poor; and indeed they were. It is our belief that with a pediatric
training population we could learn probability distributions that would allow our
method to segment pediatric targets.

3.2 Benefits expected from multiobject segmentation

We believe that our method would be significantly improved if, instead of fo-
cusing on segmenting a single object, it simultaneously segmented that object
and others surrounding it. This multiobject segmentation should use geometric
probability distributions not only on each of the objects, but also on their in-
terrelations. A method to do such multiobject segmentation and the associated
learning of probability distributions is well along in its development in our lab-
oratory [10]. For the caudate nucleus in particular, a multiobject segmentation
together with the putamen, nucleus incumbens, and lateral ventricle should pro-
vide superior results. In particular, those of our results in which the segmented
caudate leaks into the nucleus incumbens should be improved.

3.3 Run-time performance

Our training is performed off-line, so we exclude it from this discussion. Prepro-
cessing of an image typically requires on 15 to 20 minutes of computation using
a single modern Linux workstation. Most of this time is spent on the registration



Fig. 2. From left to right, a sagittal, coronal and transversal slice from a a subject in
the adults BWH group (top) and one in the elderly UNC group (bottom). The outline
of the segmentation produced by correctly applying our method is shown in yellow.
The submitted result from the incorrect version of our method is shown in blue.

and tissue segmentation steps. The object scale initialization and deformations
combined typically run in under 5 minutes. Atom scale segmentation runs on
average in 20 minutes. Overall our research implementation of our method can
fully segment an image in 45 minutes.
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Fig. 3. From left to right, a sagittal, coronal and transversal slice from a a subject in
the adults BWH group (top), one in the elderly UNC group (middle) and one in the
pediatric UNC group (bottom). The outline of the reference standard segmentation is
in red, the outline of the segmentation of the method described in this paper is in blue.



All Dataset Overlap Err|Volume Diff.| Abs. Dist. | RMS Dist. | Max. Dist. | Total

[%] Score| [%] Score| [mm] Score| [mm] Score| [mm] Score| Score
UNC Ped 10 70.6 56 9.0 84 2.5 6 34 38| 13.1 62 49
UNC Ped 14 46.5 70| 10.6 81 1.0 61 14 75 5.3 &4 74
UNC Ped 15 491 70| -5.3 90 1.2 56 1.5 72 5.9 82 74
UNC Ped 19 91.9 42| 45.5 36 | 13.7 0| 14.8 0| 329 4 16
UNC Ped 30 97.2 38| 32.6 42 7.7 0 8.8 0| 19.7 42 24
UNC Eld 01 56.0 64| 49 82 14 48 1.9 66 7.3 78 68
UNC Eld 12 524 67 2.1 96 1.2 54 1.7 70 6.4 81 74
UNC Eld 13 383 76 3.1 94 0.8 68 1.3 78 5.3 &4 80
UNC Eld 20 433 72| 48 88 1.0 64 1.3 76 6.7 80 76
UNC Eld 26 50.2 68| 169 70 1.1 60 1.5 73 58 83 71
BWH PNL 16 48.7 70 |-14.9 74 1.3 51 26 53| 231 32 56
BWH PNL 17 47.8 70 |-15.6 73 1.4 49 29 48| 271 20 52
BWH PNL 18 69.5 56 [-23.9 58 2.2 18 29 48| 11.1 68 50
BWH PNL 19 55.5 65 [-30.9 46 1.6 42 3.0 46| 257 24 45
BWH PNL 20 48.6 70 |-13.6 76 1.3 54 26 bH4| 263 22 55
BWH PNL 21 62.1 61 |-26.6 53 1.8 33 3.0 47| 244 28 44
BWH PNL 22 46.3 71 (-32.0 44 1.5 45 3.6 36| 289 15 42
BWH PNL 23 45.9 71 6.4 88 1.0 62 14 74 9.5 72 74
BWH PNL 24 46.2 71 (-18.9 67 1.0 64 14 76 7.6 78 71
BWH PNL 25 444 72 |-13.7 76 1.2 54 2.6 53| 234 32 58
BWH PNL 26 50.6 68| -1.8 86 1.2 56 1.8 68| 13.5 60 68
BWH PNL 27 43.8 72 |-224 61 1.5 46 34 39| 26.1 23 48
BWH PNL 28 469 70| -8.4 85 1.4 47 3.2 42| 254 25 54
BWH PNL 29 56.0 64| -6.5 88 1.3 54 1.7 70 7.8 17 70
Average All 545 66| 45 73| 21 45| 3.1 54| 162 52| 58
Average UNC Ped | 71.0 55| 18.5 67 5.2 25 6.0 37| 154 55 48
Average UNC Eld | 48.0 70| 44 86 1.1 59 1.5 72 6.3 82 74
Average BWH PNL| 50.9 68 |-15.9 70 1.4 48 26 54| 20.0 41 56

Fig. 4. Results of the comparison metrics and corresponding scores for all test cases
averaged for the left and right segmentation. The summary rows at the end of the table
display the overall average across all test cases, as well as grouped for the three testing
groups

Correl |UNC Ped|UNC Eld|BWH PNL|| Total
Left 0.7317]  0.1468 0.47781(0.4521
Right -0.1184| 0.6791 0.37101/0.3106
Average| 0.3067| 0.4129 0.4244//0.3813

Fig. 5. Pearson correlation for the volume measurements in the three testing groups
as well as in total. This coefficient captures how well the volumetric measurements
correlate with those of the reference segmentations.



Test/Re-Test||UNC 03|UNC 04|UNC 09|UNC 11|UNC 17|UNC 18{UNC 21|UNC 22|UNC 24[UNC 25| Mean || Stdev| COV
mm?] | [mm?] | [mm?] | [mm?] | [mm?] | [mm?®] | [mm?] | [mm?] | [mm?] | [mm?] ||[[mm?]||mm?]|| [%]
Left 3177 3330 2724 2415 1888 2838 2605 2642 2011 2020 || 2565 || 489 || 19.1
Right 3256 2869 3272 3476 3284 3315 3717 2661 3778 2943 3257 || 356 || 10.9
Total - - - 15.0

Fig. 6. The volumetric measurements of the 10 datasets of the same young adult
acquired on 5 different scanners within 60 days. The coefficient of variation (COV =
standard deviation / average, last column) indicates the stability of the algorithm in
a test/re-test situation including scanner variability.
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