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Abstract
This article presents a feasibility and evaluation study for using 2D ultrasound in conjunction with our statistical deformable
bone model within the scope of computer-assisted surgery. The final aim is to provide the surgeon with enhanced 3D
visualization for surgical navigation in orthopedic surgery without the need for preoperative CT or MRI scans. We unified
our earlier work to combine several automatic methods for statistical bone shape prediction and ultrasound segmentation
and calibration to provide the intended rapid and accurate visualization. We compared the use of a tracked digitizing
pointer and ultrasound for acquiring landmarks and bone surface points for the estimation of two cast proximal femurs.

Keywords: Intra-operative ultrasound, statistical shape modeling, computer-assisted orthopedic surgery, minimally invasive
surgery

Introduction

The use of 3D anatomical models in computer-

assisted surgery (CAS) provides the surgeon with

image guidance and enhanced visualization to assist

navigation and planning. Such models are typically

obtained from preoperatively acquired CT or MRI

scans, which may not always be available or may

not even be necessary if cheaper, radiation-free

and/or intra-operative solutions can be provided.

Consequently, intra-operative 3D anatomical visu-

alization can potentially be achieved using an image-

free or sparse information approach through the use

of statistical shape models. Building a patient-specific

anatomical model is a nontrivial challenge given

sparse a priori patient anatomical data. Statistical

model building consists of establishing legal vari-

ations of shape from a training population. The stat-

istical model is then adapted, or fitted, to the patient

anatomy using intra-operatively digitized bone

surface points. Thus, the aim of statistical shape

model fitting is to extrapolate from an extremely

sparse set of 3D points a complete and accurate ana-

tomical surface representation.

Surface points are typically acquired by use of a

tracked digitizing pointer. In cases of limited

surgical access, it can be difficult to acquire a set of

points that spans the patient’s anatomy sufficiently

to ensure accurate shape prediction of a given statisti-

cal model. As such, a natural extension is to use ultra-

sound imaging for noninvasive intra-operative

digitization of surface points. The use of ultrasound

in CAS is a subject that has been broached by

several scientists. Chan et al. [1] and Lavallée et al.

[2] have explored methods using ultrasound to

instantiate 3D deformable bone models without the

need for preoperative CT or MRI scans. We present

here our first experiences using our method for auto-

matic segmentation of 2D B-mode ultrasound

contours [3], concurrently with our 3D bone defor-

mation method [4], to provide rapid, automatic

intra-operative visualization for navigation and plan-

ning in minimally invasive orthopedic surgery.

Correspondence: Haydar Talib, MEM Research Center, Institute for Surgical Technology and Biomechanics, Stauffacherstrasse 78,
CH-3014 Bern, Switzerland. Tel: 41 31 631 59 52. Fax: 41 31 631 59 60. E-mail: haydar.talib@memcenter.unibe.ch

Computer Aided Surgery, September/November 2005; 10(5/6): 293–299

ISSN 1092-9088 print=ISSN 1097-0150 online #2005 Taylor & Francis
DOI: 10.1080=10929080500379390



Methods

Statistical model construction

The first step is to build a statistical shape model from

a training database. The basic idea is to compute the

mean shape and to establish from the training set the

pattern of legal variations in the shapes for a given

class of images. This is achieved using principal

component analysis (PCA). PCA finds a new

orthonormal basis for the training set such that the

axes are oriented along directions in which the data

has its highest variance. PCA-based statistical shape

models were introduced by Cootes et al. [5] to estab-

lish point distribution models (PDMs).

As potential clinical applications include hip and

knee surgeries, we began by concentrating on the

proximal femur. Prior work involving our method

used a database of 14 bones [4]. We continue to

expand our training population, and for the experi-

ments described here the database consisted of a set

of 30 CT scans of the proximal femur. The CT

data sets were segmented, and surface models of

the bones extracted, for the statistical model

construction. Dense correspondence between

points on the surface of the bones in the training

database was initialized with a semiautomatic land-

mark-driven method and then optimized using the

Minimum Description Length criterion [6] to

construct a compact optimal model.

The statistical shape model is constructed based on

the established point correspondences. Each member

of the training population is described as an individ-

ual vector containing all 3D point coordinates. The

mean vector and the covariance matrix are next com-

puted from the set of object vectors. The sorted

eigenvalues and corresponding eigenvectors of the

covariance matrix are the principal directions span-

ning a shape space, with the mean shape representing

its origin [5]. Figure 1 shows the variability captured

by the first two modes of variation of our proximal

femur model varied by +2 standard deviations.

Model deformation algorithm

The aim of this step is to recover the patient-specific

3D shape of the anatomy from the few available digi-

tized landmarks and surface points. The key factor is

the observation that objects in our shape space, and

according to our hypothesis the patient’s 3D shape,

can be described as the mean shape plus a weighted

linear combination of eigenvectors. The problem

is therefore formulated as estimating the weights for

this unknown shape, such that the errors between

the reconstructed model and the cloud of digitized

surface points are minimized.

Our model fitting algorithm is formulated as a

linear equation system with additional regularization

terms, and computes a Mahalanobis distance

weighted least square fit of the model to the 3D

data [7]. The Mahalanobis distance term enables

stable prediction with a minimal number of known

surface points. Where Fleute and Lavallée [8] and

Chan et al. [9] consider a truncated set, we include

the complete set of eigenvectors, or shape variations,

without an exorbitant increase in the computation

time. The objective function that we minimize is

defined as follows:
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The first term in the function is the Euclidean

distance between the N digitized points Y and the

estimated shape comprising the mean X plus a

weighted sum of the eigenvectors pi. The second

term is the Mahalanobis distance of the predicted

shape from the mean and controls the probability of

the predicted shape. This term ensures that the pre-

dicted shapes are valid by favoring those that are

closer to the mean. r is dynamically adapted as

additional points are digitized, thereby relaxing the

Mahalanobis distance term and enabling better

convergence behavior. M-estimator-based weights

wk help to effectively reject outliers [10].

The shape parameters ai are estimated such that

both terms are simultaneously minimized. The func-

tion f is differentiated with respect to the shape par-

ameters and equated to zero. This results in a linear

system of m unknowns, which is solved using QR

decomposition.

We evaluated our statistical model deformation

through leave-one-out tests and obtained acceptable

predictions (mean surface error ,2.5 mm) for the

database of 14 proximal femur scans [4].

Figure 1. The first two eigen modes of variation of our proximal

femur model. The shape instances were generated by evaluating
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Calibration and automatic segmentation of ultrasound

To initialize as well as provide surface points for our

bone deformation method, we used bone surface

contours extracted from the image planes of the

tracked 2D B-mode probe of a Kontron Sigma

330# standard diagnostic ultrasound system.

The ultrasound probe was fitted to a dynamic

reference base (DRB), allowing for accurate tracking

(Figure 2a). The necessary ultrasound calibration

step ensures that the coordinates of the imaging

plane are known with respect to the anatomy in

question, which also bears a DRB. Calibration was

achievable in ,5 min, using a minimum of ultrasound

images, and has a high reported accuracy [3]. Where

Chan et al. [1] manually segment bone contours

from ultrasound images, the bone contours used in

our experiment were automatically segmented,

thereby yielding a cloud of points in the coordinate

space of the anatomy (Figure 2b). This automatic seg-

mentation approach requires an average of 0.8 s of

computation for each ultrasound image frame and

has a mean accuracy of 0.42 mm [11].

Experimental setup

Two statistical models were built: one using all 30 CT

scans (large) and another one using a subset of 14 scans

(small). This was done to study the effect of population

size on shape prediction and will be further addressed

in the results section. The shape prediction algorithm

requires initialization via three landmark points (the

lesser trochanter, femoral notch and greater trochan-

ter), and the predicted shape is consequently refined

from subsequent surface points.

Using two different plastic cast proximal femurs,

their CT surface models were registered into the

anatomy’s coordinate space using an in-house

optical-tracking navigation system, yielding a regis-

tration error of 0.2 mm for this experiment. The

registered surface models were considered as ‘gold’

references, used for error measurements (computed

with Mesh [12]) of the predicted bone models.

Ultrasound bone contours provided the three

anatomical landmarks and surface points for bone

model deformation. The result was a predicted

model in the anatomy’s coordinate space. To provide

a comparison of performance, a tracked calibrated

pointer was used in parallel to digitize 24–26 points

for the bone deformation method.

To obtain stable estimates of the errors and an

initial impression of the repeatability of our proposed

method, two different research scientists each per-

formed a series of five to six trials per bone.

CT-based error

Let the CT-based error be defined as a lower-bound

measure of accuracy, given a training population for

the bone shape prediction method used here. The

CT-based error for each cast bone was obtained by

first initializing the bone deformation algorithm

with ideal localization of the three landmarks from

the 3D bone surface model of the CT. Following

this step, additional surface points that span the

object sufficiently were input to our shape prediction

method. The result was a bone shape prediction in

the CT coordinate space, which provided a predic-

tion error that was isolated, in the sense that there

was minimum human error and no tracking, segmen-

tation, registration or calibration errors. In this scen-

ario, if all surface points from the CT surface models

were used for the deformation, then the error would

converge to the minimum prediction error for a given

shape with respect to the model training population.

Therefore, the CT-based error for each bone was

obtained for an equivalent number of surface

points, as in the experimental trials to establish a

‘fair’ error reference.

Results

The results in Tables I and II show the mean and

median surface errors for the predicted shapes with

respect to the ‘gold’ references for each bone, using

24–26 digitized surface points for each of the two

methods described in this article. They also include

averaged mean and median surface errors for each

scenario to help gauge the repeatability of each

Figure 2. (a) The DRB attached to the ultrasound probe. (b) Automatically segmented bone contours in anatomical space.
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experiment. We will use the terms mean error and

median error to refer to mean surface error and

median surface error, respectively.

Effects due to training population size

The results for all the pointer-based trials can be seen

in Figure 3, which shows the averaged mean error

plots for each user and for the two training popu-

lations with respect to the number of digitized

surface points. It can be seen immediately from this

result that Bone 1 was better estimated with the

large training population, whereas the converse was

true for Bone 2. The trend was observed for all the

experimental setups, including the CT-based error

scenario. It should be noted that the error differences

with respect to different training population sizes can

be expressed as linear shifts; the difference is typically

0.5 mm. The reported results in Tables I and II, as

well as those for CT-based error, are taken from the

large 30-bone training population.
Statistically speaking, the large population should

yield better estimations for a given set of surface

points of an unknown shape. The latter statement

holds true, on average, for most unknown shapes,

but not for all. It thus appears that Bone 2 would

be an outlier. We can corroborate this assertion by

briefly considering the aforementioned CT-based

error setup. Nine dry cadaveric femurs were gathered

from an archive to test our shape prediction method

with respect to training population size, using

surface points acquired from CT-generated surface

models. Shape prediction error was taken with

respect to the number of points digitized, and the

two training populations’ effects on the outcome

were compared. It can be seen from Table III that,

for seven of the nine bones, the large training popu-

lation produced better predictions than the small

population. For the two cases where the small

Figure 3. Statistics accumulated from the trials carried out by the

two users on (a) Bone 1 and (b) Bone 2 using a tracked pointer to

obtain surface points. The average mean error is plotted against the

number of surface points digitized.

Table I. Error statistics of predicted shapes for Bone 1.

Bone 1

Trial

number

Pointer-based

error (mm)

Ultrasound-based

error (mm)

Mean Median Mean Median

User 1 1 2.20 1.71 14.34 14.34

2 1.99 1.46 9.52 8.91

3 1.98 1.25 7.01 6.69

4 2.06 1.63 7.97 7.18

5 1.79 1.56 11.94 10.68

6 1.91 1.65 N/A N/A

Average 1.99 1.54 10.15 9.56

User 2 1 2.24 1.81 3.88 3.56

2 2.00 1.74 4.37 4.28

3 1.76 1.59 6.88 6.34

4 2.11 1.85 4.75 4.51

5 2.21 1.90 3.08 2.53

Average 2.06 1.78 4.59 4.35

Table II. Error statistics of predicted shapes for Bone 2.

Bone 2

Trial

Number

Pointer-based

error (mm)

Ultrasound-based

error (mm)

Mean Median Mean Median

User 1 1 2.95 2.78 5.63 5.72

2 2.78 2.62 4.19 4.33

3 2.77 2.59 2.90 2.58

4 2.91 2.53 6.54 6.35

5 2.56 2.39 3.48 3.51

Average 2.80 2.58 4.55 4.50

User 2 1 2.83 2.68 2.94 2.12

2 3.66 3.45 5.30 4.98

3 3.06 2.96 3.79 3.48

4 3.30 3.17 4.57 4.54

5 3.59 3.43 3.12 2.84

Average 3.29 3.14 3.95 3.59
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population produced better results, the difference in

mean error was of the order of 0.1–0.2 mm.

Figure 4 shows the mean errors obtained for each

population, averaged over all nine bones, and it can

be seen that, globally, the large population performed

better than the small one.

CT-based error

For Bone 1, the CT-based deformation error con-

sisted of a mean surface error of 1.72 mm and a

median surface error of 1.49 mm for 30 surface

points. In the case of Bone 2, the CT-based error

comprised a mean error of 2.30 mm and a median

error of 2.07 mm for 30 surface points.

Evaluation of pointer-based anatomical prediction

For Bone 1, we did not notice a large observable

discrepancy between the two users (average differ-

ence in mean error ¼ 0.07 mm), as can be inferred

from Table I. On average, the predicted errors

using this technique were within 0.3 mm of the

CT-based error. All the results here were deemed

acceptable in terms of accuracy (,2.5 mm mean

error for large bones) for potential surgical

applications.

For Bone 2, we noticed a larger discrepancy

between the two users’ trials (average

difference ¼ 0.49 mm) (Table II). The averaged

mean errors for both users were .2.5 mm, and it

can be noted that for the small population, they

would have been acceptable (Figure 3b). The discre-

pancy between these error results and the CT-based

error is larger than for Bone 1. The first user had,

on average, mean error 0.5 mm greater than the

CT-based error, and the second user had, on

average, mean error 0.99 mm greater than the CT-

based error.

Figure 5 shows one case of shape prediction for

each bone using the pointer-based approach, with

the predicted shape overlaid on its respective ‘gold’

reference.

Evaluation of ultrasound-based anatomical prediction

Considering Bone 1, the first user obtained the worst

results of the entire experiment (Table I). These pre-

dicted models were quite erroneous with respect to

the pointer-based reference, and we found that this

was largely due to inadequate localization of the

initial three landmark points. The second user fared

better with Bone 1, and in the best trial (mean error

3.08 mm) the result is comparable to that for the

pointer-based approach.

For Bone 2, there was not a large discrepancy

between the results of the users’ ultrasound trials,

as seen in Table II. The second user’s results were

slightly better than those of the first user, with an

average difference of 0.6 mm in mean error between
Figure 4. For each population, the average mean error is plotted

against the number of digitized points.

Table III. Mean surface errors for nine dry cadaver bones in the CT-based error scheme.

Cadaver bone

number

Mean error (mm) w.r.t. number of points

Large population Small population

3 27 54 3 27 54

1 2.08 1.9 1.72 2.57 2.02 1.85

2 0.96 0.91 0.85 2.03 1.49 1.23

3 2.44 2.28 2 3.02 2.69 2.5

4 2.55 2.45 2.03 2.92 2.63 2.12

5 2.18 1.99 1.85 1.98 1.87 1.72

6 3.49 3.1 2.54 4.44 3.79 2.65

7 1.73 1.59 1.39 3.15 2.61 2.23

8 2.01 1.87 1.67 1.91 1.75 1.58

9 2.06 2.04 1.83 2.22 2.14 1.64

Average 2.17 2.01 1.76 2.69 2.33 1.95
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users. In this scenario, there were four trials (mean

errors of 2.90, 3.48, 2.94 and 3.12 mm, respectively)

that produced results comparable to, if not better

than, some of the pointer-based trials.

Discussion

Considering the size difference of the training popu-

lations, we can see that the modes of shape variation

in the large population better represented Bone 1,

whereas the converse was true for Bone 2

(Figure 3). Considering Bone 2, it can be supposed

that the large population became biased against accu-

rate prediction of this shape. This is the effect of the

insufficient size of the training population and high-

lights the need for large databases for statistical

model construction.

The pointer-based trials produced results that were

very close to those for the CT-based error, although

they represent a less realistic clinical situation in

which access to the bone surface is limited.

We have seen above that ultrasound-based predic-

tion under our experimental conditions can provide

a stable and repeatable prediction for bone visualiza-

tion, although the accuracy is still not up to the level

needed for clinical applications. We identified a

severe cause of error to be the inaccurate localization

of the initial three landmarks. With 2D ultrasound as a

visual guide, it is quite an arduous task to accurately

identify a defined landmark. The users who per-

formed these experiments were neither medical

experts nor sonographers. As such, the greatest

source of error became a human one, and a different

approach must be taken for localization of the initial

landmarks using tracked 2D ultrasound. A study con-

ducted by Cannon et al. [13] highlights the limitations

of using tracked 2D ultrasound for surgical guidance,

arguing that real-time 3D systems provide improved

accuracy when precise visualization is required. In

our scenario, one further step for future work could

be to initialize the shape prediction algorithm using

a digitizing pointer and obtain further surface points

with the use of 2D ultrasound. The location of the

initial landmarks can be defined according to a given

procedure to lie in areas where there would be surgical

access. In a noninvasive manner, ultrasound can

therein be used to obtain surface points on unexposed

regions of bone that make up the anatomy of interest.

In a clinical situation, although the landmarks may

be defined with flexibility (they should span the

Figure 5. Pointer-based prediction: predicted models overlaid onto ‘gold’ references. Bone 1 (left): mean error ¼ 1.76 mm; and Bone 2

(right): mean error ¼ 2.78 mm.

Figure 6. Ultrasound-based prediction: predicted models overlaid onto ‘gold’ references. Bone 1 (left): mean error ¼ 3.08 mm; and Bone 2

(right): mean error ¼ 2.90 mm.
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object space), localizing them can be a challenge due

to limited surgical access and possibly high patient-

to-patient variability. We have so far avoided using a

registration algorithm in conjunction with our bone

deformation technique, because a geometric match-

ing of points to a surface does not necessarily reflect

an anatomical correspondence. Nevertheless, we

intend to reduce the method’s dependency on the

initial landmarks by implementing a recursive regis-

tration algorithm, such as ICP, which could

improve prediction and has been shown to yield

good results in similar work [1]. From our experi-

ence, it is feasible to obtain landmark points within

2–3 mm of their actual location using ultrasound-

based techniques, which would then provide a

reasonable initialization of the ICP registration.

Finally, increasing the size of the model’s training

population would also improve the shape prediction

accuracy for a larger set of ‘unknown’ bones.
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