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Abstract

Quantitative diffusion tensor imaging (DTI) has become the major imaging modality to study
properties of white matter and the geometry of fiber tracts of the human brain. Clinical studies
mostly focus on regional statistics of fractional anisotropy (FA) and mean diffusivity derived
from tensors. Existing analysis techniques do not sufficiently take into account that the mea-
surements are tensors, and thus require proper interpolation and statistics of tensors, and that
regions of interest are fiber tracts with complex spatial geometry. We propose a new framework
for quantitative tract-oriented DTI analysis that systematically includes tensor interpolation and
averaging, using nonlinear Riemannian symmetric space. A new measure of tensor anisotropy,
called geodesic anisotropy (GA) is applied and compared with FA. As a result, tracts of interest
are represented by the geometry of the medial spine attributed with tensor statistics (average and
variance) calculated within cross-sections. Feasibility of our approach is demonstrated on vari-
ous fiber tracts of a single data set. A validation study, based on six repeated scans of the same
subject, assesses the reproducibility of this new DTI data analysis framework.

Preprint submitted to Medical Image Analysis


gerig
Text Box
Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis, Isabelle Corouge, P.Thomas Fletcher, Sarang Joshi, Sylvain Gouttard, Guido Gerig, in print MedIA Journal, Elsevier, to appear Sept. 2006


Key words: Diffusion tensor interpolation, diffusion tensor statistics, DTI analysis, fiber tract
modeling.

* Corresponding author.

Email addresses:
icorouge@gmail.com  (Isabelle Corouge),
fletcher@sci.utah.edu (P. Thomas Fletcher),
sjoshi@unc.edu  (Sarang Joshi),
sylvain _gouttard@yahoo.fr (Sylvain Gouttard),
gerig@cs.unc.edu (Guido Gerig).



1 Introduction

Diffusion Tensor Imaging (DTI) of brain structures measures diffusion properties by the
local probability of self-motion of water molecules. A tensor field characterizes amount
and locally preferred directions of local diffusivity. While diffusion can be considered
isotropic in fluid it appears highly anisotropic along neural fiber tracts due to inhibition
of free diffusion of intra- and extra-cellular fluid [Beaulieu, 2002]. DTI has become the
preferred modality to explore white matter properties associated with brain connectivity
in vivo.

The literature proposes a variety of DTI processing techniques, ranging from tensor
field computation to quantitative analysis, and including visualization, regularization,
registration, tractography and population statistics. Few of these methods make use
of the full tensor information though most would benefit from an appropriate mathe-
matical framework for tensor operations and tensor statistics calculation. For instance,
tensor interpolation is of high interest for regularization, which is a crucial compo-
nent in DTI in view of the high sensitivity to noise and to partial voluming effects.
However most approaches proposed so far do not directly regularize the tensor mea-
surements. The diffusion weighted images are smoothed before tensor calculation in
[Parker et al., 2000], only the vector field defined by the principal direction diffusion
(PDD) is filtered in [Poupon et al., 2001]. In [Coulon et al., 2004], the PDD field and
the three eigenvalue maps are restored in a decoupled manner. Registration and spa-
tial normalization [Alexander et al., 2001], [Jones et al., 2002] are another typical ex-
amples where tensor interpolation is required. Moreover, tensor statistics calculation
also becomes necessary for statistical DTl analysis in population studies. So far, anal-
ysis schemes have mostly focused on measuring properties in regions of interest and to a
lesser extent along fiber bundles [Ding et al., 2003], [Fillard et al., 2003], [Corouge et al., 2004],
[Jones et al., 2006] and they have not made use of the full tensor information. Conse-
guently, clinical studies have mostly been limited to statistics of fractional anisotropy or
mean diffusivity maps on a voxel-by-voxel basis [Lim and Helpern, 2002].

In this paper, we design a new framework for quantitative DTI data analysis. First, we
use the full tensor information and include tensor interpolation and tensor averaging.
We choose the affine-invariant Riemannian metric to define tensor operations and ten-
sor statistics out of the various tensor metrics proposed in the literature. Second, as
opposed to voxel-based analysis, we propose an object-oriented approach in which the
fiber tracts act as coordinate systems for quantitative DTI analysis. Such a structural
approach is superior for data representation of DTI if it is to be used for analysis of
functional properties of anatomical structures, in this case white matter fiber tracts. Our
concept provides a complete representation of each individual bundle, describing both
geometry and diffusion properties. The representation includes model of the geometry of
individual bundles and statistics of diffusion tensors to be associated with the geometric
model. The tract geometry is modeled by estimation of a prototype shape and character-
ization of shape variability. Tensor information is integrated across cross-sections and



represented along bundles. Each location along the template curve is attributed with a
template tensor (an average tensor), from which we derive diffusion properties.

The next sections motivates our choice for the affine invariant Riemannian metric and
summarizes the key principles of the Riemannian framework, which has been fully de-
scribed elsewhere, for tensor operations and tensors statistics. It also presents a new mea-
sure of tensor anisotropy consistent with the chosen tensor metric. Section 3 describes
the geometric modeling of fiber tracts and explained how such a theoretical framework

is used to attribute the mean geometric model with diffusion tensor statistics. Section 4
illustrates our methodology on a single data set before presenting a validation study.

2 Theoretical Framework

2.1 Motivation

We denote the space of all diffusion tensors, i.e., the space &f :alB symmetric,
positive-definite matrices, aBD(3). Averaging and interpolation of diffusion tensors

can be formulated as a least-squares minimization problem in this space. This definition
depends on the choice of metric, or distance, on the spagg). Various metrics have

been proposed to measure the distance between two tensors. Some of them are based
on scalar features extracted from the diffusion tensor, like in [Guimond et al., 2002]
where DTI data registration is driven by eigenvalues maps. Such approaches unfortu-
nately ignore the directional information contained in the tensor. Out of several sim-
ilarity measures based on the full diffusion tensor, the tensor Euclidean distance, or
Frobenius norm, is empirically shown to perform the best for matching diffusion ten-
sor images [Alexander et al., 1999]. It compares with the tensor metric proposed by
Zhang [Zhang et al., 2004], [Zhang et al., 2005], which is derived from diffusion pro-
files and expressed as a weighted sum of the Euclidean distance and the trace distance
(absolute value of the difference of the tensors’ traces). The Frobenius norm is used
in [Jones et al., 2002] to compute statistics of a distribution of tensors. The average ten-
sor is defined as the &chet mean of a set of tensors and coincides with the linear
averaging of the tensors coefficients under the chosen metric. Linear averaging is also
applied in [Westin et al., 2002] for Gaussian filtering of a tensor field.

However, tensors with the standard addition and scalar multiplication, i.e., as defined
on square matrices, do not form a vector space. For example, the negation of a positive-
definite matrix is not positive-definite. Accordingly, standard linear operations and statis-
tics are not appropriate: they do not preserve the natural properties of the tensors. The
determinant, resp. the positive-definiteness, of the diffusion tensors is not preserved by
linear first, resp. second, order statistics. In particular, linear averages suffer from a
“swelling” effect where diffusion tensors with the same determinant will have an av-
erage with a larger determinant. This can be thought of as introducing diffusion when
averaging, which is not physically acceptable. Linear interpolation of diffusion tensors



suffers from this same effect.

Lately, several groups have overcome these shortcomings by describing the space of dif-

fusion tensorsPD(3), as a curved manifold, or more specifically, a Riemannian sym-

metric space and by deriving on this space a more natural metric for tensor operations:

the affine-invariant Riemannian metric [Fletcher and Joshi, 2004], [Batchelor et al., 2005],[Penne:
Another family of Riemannian metrics, the Log-Euclidean metrics, has very recently

been proposed [Arsigny et al., 2005]. Being Euclidean in the domain of tensor loga-

rithms, these metrics simplify calculations on tensors and lower the computational cost.
Averages of a set of tensors with Log-Euclidean and affine-invariant metrics are theoret-

ically and practically very similar. However, the affine-invariant Riemannian metric is

the only one with full affine invariance.

In this paper, we adopt the affine-invariant Riemannian metric as its mathematical prop-
erties makes it an appropriate choice for computation of tensor operations and tensor
statistics. The symmetric space metric does not suffer from the swelling effect of the
linear metric, that is, diffusion tensors with the same determinant will have an aver-
age with the same determinant. Synthetic examples of weighted averages of tensors are
provided in Fig. 1. We use tensor averaging and interpolation methods, first presented
in [Fletcher and Joshi, 2004], [Fletcher, 2004], that are based on the notion of geodesic

distance within this space.

Figure 1. Synthetic examples of weighted averages of tensors. The white ellipsoids average to
the red ellipsoid with the geodesic method (top) and to the blue ellipsoid with the linear method
(bottom). Left: weights =0.5,0.5. Right: weights ={0.75,0.25. It can be observed that the
linear method does not preserve the determinant.

2.2 Statistics and Interpolation of Diffusion Tensors

In Appendix B, we further develop the notion of symmetric space and the computation
of geodesic distance oRD(3). We define statistics, average and variance, of a set of
diffusion tensors based on the geodesic distanc®bxi3). Interpolation of diffusion
tensors follows as an extension to weighted averaging.



Figure 2. Comparison of FA (solid line) and GA (dashed line) values for the tensors with eigen-
valuesexp(t), exp(—t), exp(—t).

2.3 Geodesic Anisotropy

An important widely used function for characterizing the anisotropy of a tensor is frac-
tional anistropy (FA). Although FA characterizes anisotropy, it is not based on the intrin-
sic geometry of the space of diffusion tensors. We now describe a new anisotropy mea-
sure for diffusion tensors, first defined in [Fletcher, 2004], cafjeddesic anisotropy
(GA) that is based on the geodesic distance in the symmetric dpace). Geodesic
anisotropy is intuitively a measure of how far away a diffusion tensor is from being
isotropic. Therefore, a natural measurement of the anisotropy of a diffusion femsor
PD(3) is the geodesic distance betweeand the closest isotropic diffusion tensor. The
geodesic anisotropy gfcan be written as

GA(p) = (Zaogw _ mw) ; o

=1

where)\; denotes the eigenvalues pfaindlog A denotes the average of the logs of the
eigenvalues (see Appendix B for mathematical details).

Geodesic anisotropy, like FA, is invariant to uniform scaling of a diffusion tensor. Unlike
FA, which is in the rangé€D, 1], the GA is unbounded and can take valuegimo). FA

and GA represent a different mapping of the eigenvalues. Equation (1) shows that the
geodesic anisotropy is equivalent to the standard deviation of the log of the eigenvalues
(times a scale factor). This is similar to how the fractional anisotropy is defined via
the standard deviation of the eigenvalues, which are treated as linear entities. The GA
is consistent with the thinking aPD(3) as a symmetric space, where the eigenvalues
are treated as multiplicative entities rather than linear ones. A comparison of FA and
GA values of the one-parameter family of tensors that have eigenvajuesexp(t),

Ay = A3 = exp(—t) is shown in Fig. 2.



3 Analysis Methodology

Interpolation and averaging of tensors is applied for quantitative fiber tract-oriented anal-
ysis of DTI. The geometry of an individual fiber tract is modeled, basically with what is
commonly called a point distribution model (PDM) [Cootes et al., 1995]. Diffusion ten-

sor statistics are computed across fiber tract sections and are associated with the mean
geometric model, resulting in a compact description of diffusion properties along the
fiber tract. An overview of our framework is illustrated in Fig. 3.

DT images Tensor field Fiber tract
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Figure 3. Overview of the DTI analysis framework.

3.1 Preprocessing: Tensor Field Computation and Fiber Extraction

The tensor field, defined by3ax 3 symmetric definite-positive matrice in each voxel,

is computed from DTI data by solving the Stejskal-Tanner’s diffusion equation system
as described in [Westin et al., 2002]. A tractography algorithm [Fillard and Gerig, 2003]
extracts streamlines following the principal diffusion tensor directions between source
and target regions of interest. The tracking is performed under local continuity con-
straints [Xu et al., 2002], backwards, and provides sub-voxel precision. Our latest ver-
sion of the tractography tool includes tensor interpolation as described in Sec. 2. Ex-
cept at branching or crossing points, the extracted 3D curves are assumed to represent
the most likely pathways through the tensor field. Note that the term “fibers” is used
for streamlines in the vector field which do not represent real anatomical fibers. Since
the robustness of fiber tracking remains limited at junctions and in noisy low-contrast
regions, the extracted fiber set contains outlier curves. We developed an iterative algo-
rithm to reject outliers and to cluster curves to fiber bundles based on pairwise distance
metrics measuring position and shape similarity of pairs of fibers [Corouge et al., 2004].



3.2 Geometric Modeling

An individual fiber tract, described by a set of streamlines, acts as a training set from
which we estimate a template shape, the mean shape, and statistical deviations by learn-
ing its inherent shape variability. Representation and matching of the training set relies
on the definition of common end points and on a data reparametrization from which we
establish correspondences. Pose parameters are then estimated by a Procrustes analy-
sis [Goodall, 1991]. A principal component analysis is subsequently applied to charac-
terize statistical shape variation.

3.2.1 Parameterization and Correspondences

First, for each fiber tract under analysis, we specify common start and end points, which
can be reliably identified across subjects. The start and end points are defined as the inter-
section of the fiber tract with a plane. Most often, the orientation of the plane is chosen
orthogonal to the fiber tract direction. Its position is determined either by anatomical
information or by a geometric criterion, like the location where fibers start dispersing
towards various cortical regions. Note that multiple cutting planes with different orien-
tations can be used for a given fiber tract. Second, fibers represented as polylines are
reparametrized by cubic B-spline curves. This choice is well adapted to model a wide
range of curves. It provides each fiber with a continuous representation and ensures a
regular sampling along each fiber as well as a consistent sampling for all fibers in the
tract. We slightly oversample the observations in order to prevent any loss of shape in-
formation but also to avoid any undesirable increase of dimensionality. Finally, points
with the same arc length along the fiber tract are defined as homologuous. Given this
correspondence, the alignment of all curves in the training set is achieved by Procrustes
analysis.

3.2.2 Pose Parameter Estimation: Procrustes Analysis

LetF ={F,,1 <n <N, F, € M;,,} be asetotV fibers, each defined by a set/of
corresponding points im = 3 dimensions, and represented by:am matrix. ForN =

2, an Ordinary Procrustes Analysis (OPA) gives the optimal similarity transformation
parameters in a least squares sense by minimizing

doypp(F1,Fy) =|| Fo — (sF1R + 1,t") |17, (2)

wheres € R** is a scaling parametdR. € SO(m) is a rotationt is am x 1 translation
vector andl, is ak x 1 vector of ones. Minimization of (2) over the similarity group
has an algebraic solution when shapes are centeredijle.= 0, and normalized to

unit size, i.e.|| F ||= \/trace(F'F) = 1: t = 0, R = UV', s = trace(D) where
VDU'! = FLF, is the singular value decomposition B§F;. In the actual case where
N > 2, a Generalized Procrustes Analysis (GPA) estimates the similarity transformation



parameters which minimize the sum of squared norms of pairwise differences

N N
depa(Fr, . Fy) = =3 > ||(suFuRy + Lith) — (s,F,R,, + 1;t,) 1>, (3)
n=1 p=n+1

The optimization is performed iteratively:

(1) Translation. Fibers are centered with respect to their center of mas$S =
Fn — En-

(2) Scaling. Centered data is normalized to unit sSB&:=F¢/ || F¢ ||.

(3) Rotation. Lef9'd = Fe. The N shapes are rotated in turn. For each < n < N:
@) Fr = gq Zpn
() s, =1,t, =0, R,, = arg ming d3p, (FI4 F,,),
(c) Frev = Fo4R,, andFod = Frev,

Step 3 is iterated until the Generalized Procrustes distdpgg(Fs'd, ..., F{4) can

not be reduced further. The alignment of the training set is achieved by applying the
estimated rotations to the centered but non unit-scaled initial sifpessulting in the

set of aligned fiberg4 = {FA 1 < n < N }.Indeed, the scaling is needed to optimally
estimate the rotation but a size normalization is not desirable since the training fibers
belong to the same individual fiber tract.

In summary, le” be the set of Procrustes estimated transformatiéns, {(—g,,, I',,),

1 <n < N } with g,, the translation vector defined by the center of mass ofithiiber
andT,, the resulting rotation for fiber: T',, = IR, with R{?) the rotation computed
in thei" step 3 iteration of the GPA. Then,

FA={F4=(F, — gl 1 <n< N} )

3.2.3 Estimation of the Mean Shape

Given the set of aligned shapes, the mean sliajseestimated by averaging the spatial
coordinates at each corresponding location over the tract:

_ 1 N 4
F=—> F/ (5)
¥

Additionally, statistical shape deviations from this template shape along the tract can
be characterized by extracting the principal modes of deformation relative to the mean
shape via a principal component analysis.



3.3 Attributing the Geometric Model with Diffusion Tensor Statistics

The estimated mean shape models the geometry of the fiber tract. A complete repre-
sentation of the tract, describing both geometry and diffusion properties, is obtained by
attributing each location along the mean curve with statistics of diffusion tensors calcu-

lated over cross-sections.

3.3.1 Computing the mean tensor over fiber tract cross-sections at each location of the
tract

First, each sample pointfrom the set of reparameterized fibers is assigned a tensor
Since the tensor field is defined on the discrete voxel grid whlles on a continuous
curve, a geodesic interpolation (see Sec. 2.2 and Appendix B) is required to compute
the tensorp at the locationz. The tensomp is given by the weighted average of the
eight voxel tensor values in the neargst 2 x 2 neighborhood of;, the weights being
defined by trilinear interpolation (see Eq. (B.3)). [22tbe the set of obtained tensors,

P = {pn.} with n indexing the set of reparameterized fibgrsind: the location along

each reparameterized fiber. Then, the tensofPsit aligned by rotation. Usind',, €

SO(3), the rotation estimated by Procrustes analysis for the reparameterized fiber
each tensop,,; lying onF,, is rotated to the tensgr, ; by the group actiol™: Phi =

I p,.T,, Vi. Last, at each corresponding locatioalong the tract, the mean tensar

is computed from the set of aligned tensdis) ; }, as defined by Eq. (B.1). In addition,
cross-sectional tensor diffusion variability can be assessed at each location of the average
curve by computing the geodesic standard deviation (see Eq. (B.2)).

Just note that, for visualization purposes, each average tensor is translated to its corre-
sponding average location on the average curve. Since diffusion tensors are invariant to
translation, this does not affect any diffusion property.

3.3.2 Deriving Diffusion Properties

At each location along the template curve, diffusion properties are derived from the
average tensor. We consider the following measures:

- the three eigenvalueg;, A\, and 3, of the average diffusion tensor. They represent
the diffusivities along the three principal directions of the tensor.

- the mean diffusivity (MD), defined by the first moment of the diffusion tensor eigen-
values.

- the fractional anisotropy (FA). FA is a normalized measure of the shape of the diffu-
sion tensor and defines a distance to isotropy:

3 C_)\)2
FA _ @ i:l()‘z )‘) (6)
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- the geodesic anisotropy (GA), defined in Sec. 2.3.

3.4 Towards Cross-Population Studies

So far, the proposed fiber tract modeling applies to an individual bundle. It provides a
compact representation of the geometry of a tract and of associated diffusion properties.
Ultimately, it aims at being used for inter-subject comparison and statistical analysis.
This implies correspondence issues that are currently investigated by arc length param-
eterization and could include local shape features of curves which have been shown to
yield typical patterns along major fiber tracts [Corouge et al., 2004]. Applications of the
methodology, particularly for group comparison in clinical studies, would require more
advanced statistical techniques, for instance for comparison of probability distributions
of tensors and hypothesis testing.

4 Experiments and Results

We first apply our quantitative DTl analysis to a single data set to demonstrate feasibility;
second we proceed to a validation study to assess the reproducibility of our framework.

4.1 Experiments on a single data set

4.1.1 Data

We selected one case out of a 3 Tesla high resolufionX x 2 mm?) DT MRI database

of healthy controls and applied tractography. The regions of interest are specified follow-
ing [Mori et al., 2002] and [Jellison et al., 2004] and defined on the FA image using our
SNAP tool [Yushkevich et al., 2006]. Nine fiber tracts were extracted. They represent:

e Three commissural sub-bundles passing repectively throuh the genu, the splenium and
the body of the corpus callosum (BCC),

e Two projection tracts part of the corona radiata, from the internal capsule to superior
central cortical areas of the left (LIC) and right hemisphere (RIC),

e Four association bundles: the left and right cingulum (LCG and RCG), and the left
and right uncinate fasciculus (LUF and RUF).

The extracted bundles were filtered to remove potential outliers or streamlines imprac-

ticable for the subsequent analysis, e.g., clusters composed of very short uncinate fibers
hooking around the lateral fissure were discarded.
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4.1.2 Average of diffusion tensors in cross-sections along tracts

The geometric model and associated diffusion tensor statistics are computed for each of
the nine tracts as described in Sec. 3. Figure 4 illustrates the application of our method-
ology on tract BCC. Figure 5 shows the nine extracted bundles after start and end points
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Figure 4. Quantitative analysis is applied to tract B@E.DTI data with fiber tract overlaid

on a coronal slice of FA image (right-left orientatiob). Streamlines are reparameterized and
associated tensors are computed by interpolatipnThe fiber tract is aligned by Procrustes
analysis.d) The geometric model is built and tensors statistics are computed along the tract.
For visualization purposes, average tensors are displayed along the average-gyrv8calar
diffusion properties are derived from the average tensors and are plotted as a function of location
along the tract, the start point being set at the superior left side of the bjaMD, f) FA, g)
eigenvaluesi; (solid lines), )\, (dashed lines) and; (dotted lines).

were placed at locations where the fibers start dispersing towards various cortical areas
using cutting planes perpendicular to the bundle directions. Figure 6 shows the mean
tensors along the estimated mean shape for each selected fiber tract. For visualization
purposes, the mean curve has been translated back to the center of mass of the corre-
sponding bundle in the original coordinate system. To assess the representativity of the
estimated mean curve shape, we reconstruct an approximation to the initial fiber tract by
applying to the average curve the inverse rigid transformations estimated by Procrustes
analysis for each fiber. Given (4), the reconstructed fiber fFastdefined by

F={F,=FI! +g, 1 <n<N} @)
whereF is the estimated mean fiber. Let us define the distal{fe F) between an

original and a reconstructed fiber as the mean point to point distance between the two

12



Figure 5. Axial, coronal, sagittal and 3D views of the nine extracted fiber tracts on a single
dataset. Yellow: tract BCC, red: genu, cyan: splenium, dark yellow and orange: tracts LIC and
RIC, dark cyan and green: LUF and RUF, dark blue and blue: LCG and RCG.

fibers. The mean and standard deviationi(¥, F') are presented in Table 1. For all
tracts, the error is less than one voxel. Figure 7.a shows the geodesic standard deviation

Table 1

Mean and standard deviation of the distance (in voxels) between an original and a reconstructed
fiber for the nine tracts of the single data set. Voxel siz2is2 x 2 mn?,

Tract Average| Standard deviation
BCC 0.33 0.10
Genu 0.53 0.12
Splenium 0.63 0.24
LIC 0.49 0.13
RIC 0.60 0.15
LUF 0.62 0.25
RUF 0.54 0.17
LCG 0.17 0.08
RCG 0.20 0.06

13



Figure 6. Average tensors calculated in cross-sections displayed along central spine of each bun-
dle. For visualization purposes, each central spine has been translated back in the original coor-
dinate system. Yellow: tract BCC, red: genu, cyan: splenium, dark yellow and orange: tracts LIC
and RIC, dark cyan and green: LUF and RUF, dark blue and blue: LCG and RCG.

for all mean locations of tract BCC. Description of variability will be important for
hypothesis testing in group studies.

Geodesic std deviation

[¢] £0 26 36 4‘0 50 éO 7‘0 éﬂ 0 16 26 ?;0 4‘0 5;0 éD 7‘0 8‘0
Tract arc length Tract arc length

-a- -b-

Figure 7.a) Geodesic standard deviation corresponding to tract BCC of the single ddt set.
FA (solid line) and GA (dashed line) plot corresponding to tract BCC of the single data set.
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4.1.3 Diffusion properties along tracts

The diffusion properties computed from the mean tensors are plotted in Fig. 4 for tract
BCC and in Fig. 8 for tract RIC and RUF. Figure 8 top displays FA along the fiber tract
for all bundles. The FA plots clearly reflect the pattern shown in the color display. Such
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Figure 8. Diffusion properties along fiber tracts. Top: FA is diplayed along the nine tracts of the
single data sets. Plots: MD, FA and eigenvalues éolid line, A,: dashed lineAs: dotted line)

are plotted for tract RIC (top row) and tract RUF (bottom row) as a function of tract arc length.
The start point for RIC, resp. RUF, corresponds to the most inferior, resp. anterior, location.

visualizations demonstrate that the diffusion properties vary significantly as a function
of location along the tract. This might be explained by the coarse sampling of the under-
lying macroscopic structures, partial voluming and also natural variation of fiber density.
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4.2 Validation study

4.2.1 Data

One subject is imaged six times using slightly different head position. DTI imaging is
done on a 3.0 Tesla whole-body MRI system (Trio, Siemens Medical Systems, Malvern,
PA, USA) using the 8-channel head coil. Diffusion tensor axial images included 6 dif-
fusion directions with & value of 1000 setmn¥, plus an acquisition wherg = 0
se¢mn¥, using the parameters of 25.6 cm FOV; 2 mm slice, 0 gap; Tr = 10000, Te =
80; 1345 Hz/pixel bandwidth; 128 x 128 matrix.

4.2.2 Evaluation framework

An average DTI is computed from all 6 scans after alignment. One scan is arbitrarily
chosen as a target. For each of the five other scans, a rigid transformation (i.e., translation
and rotation) towards this target is estimated from the baseline images using the RView
software [Rueckert, 2002]. The maximal translation and rotation were respectively 3
voxels and 0.5 Baseline and sensitized to diffusion images are then registered to the
target coordinate system and averaged. An average tensor field is then computed.

OO0
OCQ0O

Figure 9. DTI data sets used in the validation study: callosal fiber tracts extracted from the six
repeated scans (left) and from the average DTI (right).

For all six scans and the average DTI, a callosal bundle connecting left and right motor
cortices is extracted by tractography as shown in Fig. 9. Regions of interest are specified
on the target scan and transformed by rigid registration onto the five other scans. The
processing pipeline is applied to each single scan and to the average DTI as described
in Sec. 3. Number of streamlines, mean shape of the geometric model and diffusion
properties derived from the average tensors are compared.
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4.2.3 Results

Table 2 lists the number of streamlines obtained for each experiment. Table 3 gives the
mean and standard deviation of the distance between the average curves of the six scans,
as well as the mean and standard deviation of the distance between the average curve of
one scan and of the average DTI. The distance between two average curves is defined as
in Sec. 4.1.2, i.e., as the mean point to point distance between the two curves.

Table 2
Number of streamlines obtained for each experiment.

Scans Scanl| Scan2| Scan3| Scan4| Scan5| Scan6| Average

Number of streamlines 197 165 163 194 219 135 296

Table 3

Left: Mean and standard deviation of the distance between the average curves of the six scans.
Right: Mean and standard deviation of the distance between the average curve of one scan and
of the average DTI.

d(Scan, Scan) | d(Scan, Average
Mean 0.57 0.40
Std 0.16 0.10

Figure 10 presents the diffusion properties derived from tensors statistics along the bun-
dle. The plots show the mean and standard deviation calculated from the 6 scans as a
function of arc length. We also compare the mean values with results fom the average
DTI image. Results at the center, i.e., at the position of the midsagittal plane, are pre-
sented in Table 4.

Table 4
Diffusion properties at the position of the midsagittal for each of the 6 scans and the average
DTI.

Scanl| Scan2| Scan3| Scan4| Scan5| Scan6|| Mean| Std | %Std || Average
MD | 871 | 943 | 9.39 | 9.62 | 10.09| 9.90 || 9.52 | 0.48| 5.05 8.93
FA | 060 | 0.58 | 0.54 | 0.53 | 0.51 | 0.53 | 0.55 | 0.03| 5.90 0.60
GA| 090 | 085 | 0.79 | 0.78 | 0.74 | 0.77 || 0.80 | 0.06| 7.16 0.88
A1 1454 | 15.12| 15.08 | 15.58 | 16.09 | 15.68 || 15.35| 0.54| 3.55 14.97
A | 537 | 576 | 6.46 | 6.65 | 7.13 | 6.89 || 6.38 | 0.68| 10.66|| 5.48
A3 468 | 543 | 549 | 580 | 6.22 | 587 | 558 | 0.52] 9.39 5.01
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Figure 10. Diffusion properties derived from average tensors plotted as a function of arc length
(left-right orientation). From top to bottom: MD, FA, GA, Eigenvalues (s in blue, s in red

and A3 in black). From left to right: mean and standard deviation calculated from the six scans,
standard deviation calculated from the 6 scans, comparaison of the values calculated from the
six scans and from the average DTI.

4.2.4 Discussion

The number of obtained streamlines distinctly differs from one scan to the other, and
is the largest when tractography is applied to the average DTI. This has to be expected
since fiber tract reconstruction is an ill-posed problem and so, highly sensitive to noise
and to partial voluming effects. Consequently, the shape of the average curve is also more
variable: the standard deviation of the distance between average curves appear relatively
high in regards to its mean which is small (less than a voxel). However, in spite of the
instability of tractography, the average diffusion tensor values are approximately within
5%Std for MD and FA and only 3.5%Std for the first eigenvalue at the position of the
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midsagittal plane. It is interesting to note that the second and third eigenvalues are the
most variable in the center area. Along the bundles, average diffusion properties accross
the six scans appear quite stable and are very close to the diffusion properties of the
average DTI.

5 Conclusion

We have presented a new framework for fiber-tract oriented quantitative analysis of DTI
data. It combines a geometric model of fiber tracts with diffusion tensor statistics. We
use non linear statistics for tensor interpolation and averaging. Unlike most other statis-
tical analyses of DTI data, we do not compute statistics on scalar measurements derived
from tensors but we do compute statistics on diffusion tensors followed by calculation
of tensor properties. The different behaviour of FA and the new geodesic anistropy,
GA, which are both measures of anisotropy, is shown in Fig. 7.b. GA, which is a non-
normalized measure, lies in a wider range of values. This indicates a higher sensitivity
to anisotropy changes and would suggest a higher discriminative power. This will be
further investigated in future work.

Results obtained on a single data set proves the feasibility of our pipeline on various
white matter fiber tracts. The validation study demonstrates a good reproducibility of
diffusion tensor measurements and statistics in regions of interest defined by fiber tracts.
Besides variability of diffusion properties along fiber bundles is clearly shown. It indi-
cates that region of interest analysis is not sufficient and might be very sensitive to the
exact definition of cross-sections.

Fiber tract modeling will potentially serve for improved inter-individual registration and
comparison of diffusion tensor properties along and across fiber tracts. Clinical research
is interested in a quantitative analysis which finally might lead to answer questions in
regard to fiber integrity or fiber disruption and its effect on brain connectivity. Moreover,
modeling of fiber tracts in healthy controls will help to study geometric and diffusion
changes of white matter tracts in the presence of pathology, e.g. tumor and edema or
white matter lesions.
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Appendices

A Glossary

PD(3) space of diffusion tensors

GL"(3)  group of positive-determinant matrices

d(p1,p2) geodesic distance between two tengarg, € PD(3)
det(p) determinant of the tenser

I3 3 x 3 identity matrix

SO(3) rotation group for three-dimensional space

A1, A2, A3 eigenvalues of a tensor in decreasing order

MD mean diffusivity
FA fractional anisotropy
GA geodesic anisotropy

B Theoretical Framework: Mathematical Details

Symmetric spaces [Helgason, 1978] arise from transformation groups on manifolds. The
Riemannian metric is chosen to be invariant under the group transformations. The sym-
metric space structure d?D(3) arises from transformations b§/L" (3), the group of
positive-determinant matrices. The transformation of a diffusion temsoPD(3) by a
matrix g € GL*(3) is given byp — gpg”. Because of the algebraic nature of the sym-
metric space structure, distance and geodesic computatioR® () are also algebraic

in nature. For instance, the geodesic distance between two tenspssc PD(3) can

be computed using singular-value decomposition (SVD) as follows:

- Letp; = UAUT be the SVD ofp;, setg = UV/A.
- Compute the action of ' onp,: y = g7 'pa(g7)7.
- Again using SVD, compute the eigenvalugsf y.

N|—=

The geodesic distanced$p:, p2) = (Z?Zl 1Og(0i)2> :
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B.1 Statistics of Diffusion Tensors

We now define the mean and variance of diffusion tensors respecting the geometry of the
space. Following Frchet [FEchet, 1948], we define the average as the minimum mean
squared error estimator under the natural Riemannian metric defined above. Given a set

of diffusion tensorg, ..., py € PD(3) the mean is defined as
N
p=argmin Y d(p,p;)>. (B.1)
pEPD(3) =1

This minimization problem can be solved using a gradient descent method as described
in [Fletcher and Joshi, 2004]. This is analogous to the algorithm for computing the in-
trinsic mean given by Pennec [Pennec, 1999]. Having defined the mean, we define the
sample variance of the data as the expected value of the squared geodesic distances from
the mean. Given a set of diffusion tenseis. .., py € PD(3), we define the sample
variance as

1 N
o = N > d(p, pi)*. (B.2)
i—1

B.2 Interpolation of Tensors

For developing consistent interpolation between diffusion tensors we extend the defini-
tion of the mean defined above to weighted averaging. Using a least-squares criterion,
we define the weighted average of diffusion tengars. ., py € PD(3) as

N
Ave({w;}, {p;}) = arg min Zwid(papi>2a (B.3)
pEPD(3) =1
wherew, . .., wy are positive real weights that sum to 1.

For interpolating tensors within a voxel, trilinear weights may be used fowthin this
paper, we only focus on trilinear weights although higher order interpolation may be
defined using the same concept. This interpolation is a natural generalization of trilin-
ear interpolation of scalar values, i.e., if we replaced the diffusion tensors in the above
definitions with real numbers, we would arrive at trilinear interpolation. It follows easily
from the use of trilinear weights that the interpolation function does indeed interpolate
the corner points. It can also be shown that the interpolation function is continuous on
[0, 1] (see [Fletcher, 2004] for a proof).

B.3 Geodesic Anisotropy

As introduced in Sec. 2.3, the geodesic anisotropy of a diffusion tensaPD(3) is the
geodesic distance betwegrand the closest isotropic diffusion tensor. Thus we define
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the geodesic anisotropy as
GA(p) = mind(sls, p). (B.4)

It turns out that the nearest isotropic diffusion tensopts the one with the same
determinant ap, i.e., the matrix(det(p))3 - I5. With this observation we can explicitly
write the GA of the tensor based on the eigenvalues L denote the eigenvalues pf

and letlog A denote the average of the logs of the eigenvalues. The geodesic anisotropy
of p can be written as

GA(p) =d((det(p))3 - I, p)

=( <log<xi>—1ogA>2) . (8.5)

1=

[N

—
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