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Abstract. We present a novel approach to statistically characterize his-
tograms of model-relative image regions. A multiscale model is used as
an aperture to define image regions at multiple scales. We use this im-
age description to define an appearance model for deformable model
segmentation. Appearance models measure the likelihood of an object
given a target image. To determine this likelihood we compute pixel in-
tensity histograms of local model-relative image regions from a 3D image
volume near the object boundary. We use a Gaussian model to statisti-
cally characterize the variation of non-parametric histograms mapped to
Euclidean space using the Earth Mover’s distance.

The new method is illustrated and evaluated in a deformable model
segmentation study on CT images of the human bladder, prostate, and
rectum. Results show improvement over a previous profile based appear-
ance model, out-performance of statistically modeled histograms over
simple histogram measurements, and advantages of regional histograms
at a fixed local scale over a fixed global scale.

1 Introduction

Multiscale image descriptors are important for understanding and segmenting
deep structures in images. Deformable geometric models have also been shown to
be a powerful tool for segmentation. Geometric models generate model-relative
image descriptors, which are often used in the human visual system and whose
importance is argued in the companion paper by Pizer et al [11]. In this pa-
per, we use a multiscale model-relative image description for the segmentation
of 3D deformable objects in medical images. Automatic segmentation methods
that statistically learn the likelihood of an object given an image have several
desirable qualities. We define an image likelihood measure using non-parametric
histograms as our basic image measurement and describe a new method to sta-
tistically learn their variation. These histograms are measured in model-relative
regions defined at a particular scale using the geometric model as an aperture.

Appearance models at extremely local scale levels are based on the correlation
of pixel intensities. Intensities are acquired along profiles normal to the object
boundary [4, 15] or from entire model-relative image regions [3, 6]. These methods
can be used in conjunction with image filters to summarize information at a
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larger spatial scale and to measure image structure such as texture, gradients,
or corner strength [14]. Local methods, however, have difficulty capturing the
inter-relations among pixel intensities in a region.

Region based methods, which are at larger spatial scales, are better than local
methods at capturing pixel inter-relations. This is accomplished by aggregating
pixel intensities over global image regions such as object interior or exterior, in
one of two ways. In the first, region statistics, such as mean and variance, are
computed. These statistics are either learned during training or functions of them
are defined to be minimized [2, 16]. Although the variation of region statistics can
be learned during training, the statistics themselves capture limited information.
In the second, each region is represented by a histogram, and a distance to a
learned reference histogram is defined. Histograms provide a rich estimate of
a region’s intensity distribution but previous work only specifies a reference
histogram and not its expected variation [5].

In this paper, we use a region based method that defines several model-
relative regions. This allows a multiscale image description that can be used
at a large scale level with one or two global regions defined per object, or at
more local scale levels with many smaller regions per object. We segment im-
ages using this image description at three fixed scale levels. First, we use global
image regions as in previous methods. Then, we describe two approaches to
define increasingly local regions. These novel local region approaches have the
advantage of histogram measurements with increased locality and tighter distri-
butions, which help drive our segmentation algorithm to a more clearly defined
optimum. In order to define these local regions we need a shape model that spec-
ifies a voxel to voxel correspondence near the object boundary; for this we use
m-reps (see section 3.1) [9, 10]. To form a statistical description of each region,
we map non-parametric histograms to points in Euclidean space using the Earth
Mover’s distance (EMD) [1, 7, 13]. Then, we apply standard statistical tools to
model histogram variation. Straight-line paths between histograms in the result-
ing space provide interpolated histograms representing plausible distributions.
The lack of distribution assumptions allow inhomogeneous regions to be mod-
eled, though this typically results in loose distributions. In this case, we define
local regions to reduce distribution variability. Therefore, we have an image de-
scriptor that can model any intensity distribution while maintaining tightness
using regions at an appropriate scale.

Appearance models allow two simplifying assumptions when defining the
probability of an image given a model. Image dependence on a model can be
decomposed into describing the image relative to the model and further correla-
tions between the image and object shape. Appearance models can reasonably
assume that model-relative images have intensities with no further probabilistic
dependence on object shape. The probability of a model-relative image is deter-
mined using several image measurements, which are also often assumed to be
independent. However, local measurements are highly interrelated due to their
small scale so it is inaccurate to consider them as independent. It is also diffi-
cult to model local measurement inter-relations, since this requires a global high



dimensional appearance representation with a complicated and hard to train co-
variance [3]. On the other hand, as argued in the companion paper [11] we can
reasonably assume that larger scale regional measurements of a model-relative
image are independent, if the image is divided into anatomically based local
regions and geometric variation is entirely captured by the shape prior.

Thus, we assume regional image measurements relative to object shape are
conditionally independent. This defines image likelihood as the product of the
probability densities derived from each region.

In section 2 we introduce our histogram methodology and construct a sta-
tistically learned histogram likelihood measure. In section 3 we overview our
segmentation framework and give segmentation results using global image re-
gions. In section 4 we extend this work to local image regions.

2 Statistical Modeling of Non-Parametric Histograms

We fully train a non-parametric histogram based appearance model. To do this
we map histograms to points in Euclidean space in such a way that straight-line
paths between two points produce a natural interpolation between the corre-
sponding histograms. This mapping allows us to use standard statistical tools,
such as Principal Component Analysis (PCA) and Gaussian modeling.

In section 2.1 we construct this mapping and consider properties of the re-
sulting space. In section 2.2 we define the likelihood of a histogram. In section
2.3 we provide an example.

2.1 Mapping Histograms to Euclidean Space

Our mapping can be understood by considering the similarity measure defined
between two histograms that will correspond to Euclidean distance. We use
the EMD, which was introduced by Rubner et al. for image retrieval [13] and
has since been shown to be equivalent to the Mallows distance [8]. The EMD
representation we use is described for texture classification in [7] and used to
build statistical models in [1].

The EMD, and the Mallows distance for discrete distributions, can be thought
of as measuring the work required to change one distribution into another, by
moving probability mass. The position, as well as frequency, of probability mass
is therefore taken into account yielding two major benefits. First, over-binning
a histogram, or even using its empirical distribution, has no additional con-
sequences other than measuring any noise present in the distribution estimate.
Second, this distance measure to some extent mimics human understanding [13].

The Mallows distance between continuous one-dimensional distributions q
and r, with cumulative distribution functions Q and R, respectively, is defined
as

Mp(q, r) =
(∫ 1

0

|Q−1(t)−R−1(t)|pdt

)1/p

.



For example, consider the Mallows distance between two Gaussian distrib-
utions N(µ1, σ

2
1) and N(µ2, σ

2
2). For p = 2, this distance can be shown to be√

(µ1 − µ2)2 + (σ1 − σ2)2.
For discrete one-dimensional distributions, consider two distributions x and

y represented by empirical distributions with n observations, or equi-count his-
tograms with n bins and the average value of each bin stored. Considering these
values in sorted order, x and y can be represented as vectors x = n−1/p ∗
(x1, . . . , xn) = (x′1, . . . , x

′
n) and y = n−1/p ∗ (y1, . . . , yn) = (y′1, . . . , y

′
n) with

x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn. The Mallows distance between x and y is then
defined as the Lp vector norm between x and y

Mp(x, y) =

(
1
n

n∑
i=1

‖xi − yi‖p

)1/p

=

(
n∑

i=1

‖x′i − y′i‖p

)1/p

.

Therefore, this representation maps histograms to points in n-dimensional
Euclidean space in which distances are understood as M2 histogram distances.
In this space, there is a particular straight line path of interest. The mean of
any histogram can be changed by an arbitrary amount by adding this amount to
every bin in the histogram. Since the mean of a histogram represents its position,
changes in histogram position are orthogonal to changes in shape.

Another property of this space is that Gaussian distributions exist in a lin-
ear two-dimensional subspace. As for general distributions, one axis of this space
represents the Gaussian’s mean. As shown above, the remaining orthogonal di-
rection is linear in the Gaussian’s standard deviation.

Points in a convex portion of this space represent valid histograms. That is,
a point x is a valid histogram if and only if x1 ≤ . . . ≤ xn. Therefore, the mean
of a set of histograms, or any interpolated histogram, will always be valid. In the
next section, the likelihood of a histogram is computed assuming that the mean
of a set of histograms and straight-line paths from the mean are representative
of the input set. In section 2.3 we demonstrate this with an example.

2.2 Histogram Likelihood

In this section, we statistically define a histogram’s likelihood. We can use stan-
dard statistical tools for this task since we have sensibly mapped histograms to
Euclidean space. For each region, we construct a multi-variate Gaussian model
as a parametric estimate of a histogram’s likelihood. Gaussian models stretch
space, modifying the M2 metric, to account for the variability in the training
data. Thus, Gaussian models naturally enhance the M2 metric even though they
are not proper in the sense that points representing invalid histograms are as-
signed a non-zero probability.

When constructing a multi-variate Gaussian model, we cannot estimate a full
covariance matrix since we are in a high dimension low sample size situation.
This is a standard problem in medical imaging since large training sets are often
unavailable, which are required to accurately estimate the covariance of a model



containing a desirable number of histogram bins. Therefore, we estimate a non-
singular covariance of the form

k =
m∑

i=1

UiU
T
i + σI

where each Ui is a vector and I is the identity matrix. We compute the maximum
likelihood estimate of k for a fixed m given the training histograms in each region.
This estimate can be computing using PCA. The Ui vectors correspond to the
principal directions with the m largest eigenvalues, λi. These vectors are scaled
by λi − σ. σ corresponds to the average squared projection error normalized by
the number of remaining dimensions.

As discussed in the companion paper [11], regions contain incorrectly labeled
voxels as a consequence of the object model having its own scale. When col-
lecting training histograms for each region, we remove such voxels. This allows
us to model the true variability in each region and to define a more accurate
optimum for segmentation. This approach does not, however, take into account
the expected variation of the actual training segmentations. This can result in a
covariance estimate that biases segmentations towards either the object interior
or exterior. Therefore, we create an unbiased covariance estimate by normaliz-
ing each covariance matrix such that the average Mahalanobis distance of the
training histograms is the same in each region.

2.3 Global Regions Example

We present the following example to demonstrate the construction of a his-
togram’s likelihood. We use 17 CT images of the pelvic region from a single
patient. The interior and exterior of the bladder, prostate, and rectum, within 1
cm of each boundary, define six global regions. For each region, figure 1 shows
the 17 25 bin histograms. In general, the interior of the bladder, which consists
of bladder wall and urine, has higher CT values than its exterior. The bladder
exterior consists of fatty and prostate tissue, with the heavy tail representing the
latter. We only model a portion of the rectum and hence its exterior contains
interior rectum intensities, making the exterior rectum histogram bimodal.

For each region, we compute the mean of the 17 histograms, m = 2 principal
directions of variation, and σ. Figure 2 shows each region’s mean and ±1.5
standard deviations along each principal direction from the mean. The mean
and each mode appear representative of the training data.

3 Segmentation using Global Regions

In this section we use global regions, as defined in section 2.3, for segmentation.
To do this we first discuss in section 3.1 our shape model and segmentation
framework. In section 3.2 we then present segmentation results using these global
image regions.
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Fig. 1. Histograms from interior (red) and exterior (blue) bladder, prostate, and rectum
regions in 17 images of the same patient.

3.1 The Segmentation Framework

Our goal is to automatically segment the bladder, prostate, and rectum in CT
images. We use the m-rep model of single 3D figures, as in [10], to describe
the shape of these deformable objects. As detailed in the companion paper [12],
the object representation is a sheet of medial atoms, where each atom consists
of a hub and two equal-length spokes. The representation implies a boundary
that passes orthogonally through the spoke ends. Medial atoms are sampled
in a discrete grid and their properties, like spoke length and orientation, are
interpolated between grid vertices. The model defines a coordinate system which
dictates surface normals and an explicit correspondence between deformations
of the same m-rep model and the 3D volume in the object boundary region. This
allows us to capture image information from corresponding regions.

M-reps are used for segmentation by optimizing the posterior of the geometric
parameters given the image data. This is equivalent to optimizing the sum of
the log prior and the log likelihood, which measure geometric typicality and
image match, respectively. Geometric typicality is based on the statistics of m-
rep deformation over a training set, described in the companion paper [12]. We
use the method described in section 2 for the image match.

In this paper, our primary concern is to determine the quality of the image
likelihood optimum defined by our appearance model. We evaluate this by seg-
menting the bladder, prostate, and rectum from an intra-patient dataset consist-
ing of 17 images. Each image is from the same CT scanner and has a resolution
of 512×512×81 with voxel dimensions of 0.977×0.977×3.0 millimeters. These
images are acquired sequentially during the course of the patient’s treatment
for prostate cancer. As an initial test of our framework, we segment each image
using a leave-one-out strategy, which supplies sufficient training data to estimate
adequate and stable statistics. We estimate the model prior and likelihood us-
ing m-reps fit to manual segmentations of the training images. We gather shape
statistics for the combined bladder, prostate, and rectum object ensemble and
define a shape space using six principal geodesics, which captures approximately
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Fig. 2. Histograms representing the mean of 17 interior and exterior regions. Shown
along with each mean is ±1.5 standard deviations along the first (left) or second (right)
principal direction from the mean (slightly smoothed). The first mode often contains
more tail and less peak movement than the second mode. Some of these tail movements
have been cropped out of the graphs.



94% of the shape variance. We ignore the model prior and perform a maximum
likelihood segmentation within the shape space.

We compare our segmentation results to a profile based method. This profile
method uses normalized correlation with profiles from the first image and is
described in [15]. All other aspects of these segmentation algorithms are identical,
including the shape space and automatic rigid body initialization. Comparisons
are made relative to manual segmentations and put into context by showing our
shape model’s ability to represent the manual segmentations during training.
Training performance serves as a baseline for the best expected performance of
our appearance model.

3.2 Segmentation Results using Global Regions

We now evaluate the performance of three versions of our appearance model. For
all three, we use two global regions for each object, defined as the object interior
and exterior within a fixed 1 cm collar region of the boundary. We represent
each region using a 25 bin equi-count histogram.

The three versions of our appearance model learn increasingly more infor-
mation during training. The Simple Global model creates a reference histogram
for each region from the first image. The image match is the sum of M2 dis-
tances to each reference histogram. This model can be directly compared with
the profile approach, since only the first image is supplied to both. The Mean
Global model calculates the average histogram for each region using all the other
images. In this case, the image match is the sum of M2 distances to each average
histogram. The last model, Gaussian Global, uses the fully trained likelihood
measure introduced in section 2.2. The image match for this model is the sum
of Mahalanobis distances in each Gaussian model. Each model independently
learns two principal directions of variation and σ.

Table 1 reports volume overlap, defined as intersection over union, and av-
erage surface distance, defined as the average shortest distance of a boundary
point on one object to the boundary of the other object. Results show segmen-
tation accuracy improves with increased statistical training. Table 1 also shows
a significant improvement of the global histogram based appearance models over
the previous profile based model. Directly comparing the profile and histogram
based methods, Simple Global achieves better results for all three objects. In the
next section we further improve these results using local image regions.

4 Defining Local Image Regions

Next, we use the appearance model described in section 2 with local model-
relative image regions. Local regions have tighter intensity distributions than
global regions since intensities are more locally correlated. This results in an
image likelihood measure with a more clearly defined optimum, especially when
global regions consist of multiple homogeneous tissue regions. Since smaller re-
gions are summarized, however, local regions provide less accurate distribution



Table 1. Segmentation results of our appearance model using global image regions.
Results are measured against manual contours, and compared against a previous profile
based method and the ideal of our shape model attained during training.

Volume Overlap Ave. Surface Dist. (mm)
Appearance Model Bladder Prostate Rectum Bladder Prostate Rectum

Training 88.6% 87.8% 82.8% 1.11 1.05 1.15
Profile 79.8% 76.0% 64.8% 2.07 2.20 2.72
Simple Global 80.7% 78.4% 67.1% 1.97 1.94 2.47
Mean Global 81.8% 79.4% 68.0% 1.84 1.86 2.42
Gaussian Global 84.8% 79.6% 72.1% 1.53 1.86 2.00

estimates. They also require a shape model that defines a voxel correspondence
near the object boundary.

Our dataset contains at least two examples of global region inhomogeneity.
First, the exterior bladder region consists of both prostate and fatty tissue.
The bowel can also be present, though this is not the case in this dataset. A
second example is the exterior rectum region. We only model the portion of the
rectum near the prostate, so there are two arbitrary cutoff regions with exterior
distributions matching those of the rectum’s interior.

We describe two approaches to define local regions. In section 4.1 we man-
ually partition the global interior and exterior regions. In section 4.2 we define
overlapping regions centered around many boundary points. In section 4.3 we
give results using both methods.

4.1 Partitioning Global Image Regions

Local regions can be defined by partitioning an object’s surface, and hence the
3D image volume near the surface, into local homogeneous tissue regions. Such
a partitioning can either be specified automatically, based on distribution esti-
mates from a training set (see future directions), or manually delineated using
anatomic knowledge.

In this section, we manually define several interior and exterior local regions
for the bladder, prostate, and rectum using limited anatomic knowledge. We used
several heuristics to create our manual partitions, which are shown in figure 3.
First, more exterior regions are defined since there is more localized variability
in the object exterior. For the bladder model a local exterior region is defined
near the prostate. A local region is also defined for the portion of the bladder
opposite the prostate since this region experiences the most shape variability
between images. Lastly, for the rectum model a local exterior region is defined
in each arbitrary cutoff region.
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Fig. 3. Manual surface partitions of the bladder, prostate, and rectum defining local
interior (a) and exterior (b) regions. For the bladder, prostate, and rectum we define
6, 3, and 4 interior regions, and 8, 5, and 8 exterior regions, respectively.

4.2 Local Image Regions

An alternative method to define local regions is to consider a set of boundary
points that each describe the center of a region. Define an interior and exterior
region for each point by first finding the portion of the surface within a radius of
each point. Then, each region consists of all the voxels within a certain distance
to the boundary that have model-relative coordinates associated with the re-
gion’s corresponding surface patch. This approach can define overlapping image
regions at any scale and locality, and learning boundaries between local regions
is unnecessary.

For the bladder, prostate, and rectum we use 64, 34, and 58 boundary points,
respectively. Each region is set to a radius of 1.25 cm and the collar region is
kept at ± 1 cm, as in previous results.

4.3 Results

Table 2 gives segmentation results using the Gaussian appearance model from
section 2 for both local region approaches. The Partition method refers to the
approach described in section 4.1, and the Local method refers to the approach
described in section 4.2. Both methods use 25 histogram bins and Gaussian mod-
els restricted to 2 principal directions of variation. These results show that both
the Local and Partition methods are roughly equivalent to the Global method.
However, there is a consistent improvement by the Local method in the segmen-
tation of the rectum.

5 Conclusions

In this paper we defined a novel multiscale appearance model for deformable ob-
jects. We have shown that our histogram based appearance model outperforms a



Table 2. Segmentation results using local image regions. The Gaussian appearance
model using the two local region methods is compared to the global region method.

Volume Overlap Ave. Surface Dist. (mm)
Appearance Model Bladder Prostate Rectum Bladder Prostate Rectum

Training 88.6% 87.8% 82.8% 1.11 1.05 1.15
Gaussian Global 84.8% 79.6% 72.1% 1.53 1.86 2.00
Gaussian Partition 83.0% 80.5% 72.1% 1.74 1.77 2.01
Gaussian Local 83.2% 80.5% 73.0% 1.67 1.78 1.95

profile based appearance model for a segmentation task when only one training
image is available. We also described a method to statistically train histogram
variation when multiple training images are available and demonstrated its im-
proved segmentation accuracy. Finally, we considered regions at different scales
and showed that local image regions have some benefits over global regions,
especially for rectum segmentation.

6 Future Directions

We only present initial segmentation results in this paper. Our next step is to
validate these findings in a more comprehensive intra-patient study of the pelvic
region. Then, we plan to consider other anatomical objects including the kidneys.

In the pelvic region, gas and bone produce outlying CT values. When there
is a significant amount of these extreme values our mapping can produce unnat-
ural interpolations. Therefore, we will investigate a technique to identify these
intensities in advance and compute a separate estimate of their variation.

As described in [11], we plan to do a multiscale optimization. Such an ap-
proach could use the three region scales described in this paper. Furthermore, we
will use geometric models to describe soft instead of hard apertures. For exam-
ple, a voxel’s contribution to a measurement could be weighted by a Gaussian,
based on its distance to the object’s boundary. Using multiscale regions and
soft apertures should smooth the segmentation objective function, resulting in
a more robust optimization.

We desire a more principled approach considering tissue composition for
defining regions in the Partition method. We hope to characterize the inten-
sity distributions of particular tissue types, to estimate the tissue mixtures over
image regions using mixture modeling, and finally to optimize the regions for
maximum homogeneity. In addition, we may train on the model-relative position
of these regions, to help capture inter-object geometric statistics.

We only considered histograms of pixel intensities in this paper. We will
extend this framework to estimate the distribution of additional features, such
as texture filter responses or Markov Random Field estimates. Although the
EMD defines a distance measure between multi-dimensional distributions, we



plan to assume the independence of these features and then apply the same
techniques described in this paper.
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