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Introduction

We consider the problem of constructing a natural diffeomorphic flow between
hypersurfaces M0 and M1 of Rn which is in some sense both “natural”and “geo-
desic”viewed in some appropriate space (as in figure ).

M0 M
1

M t

Figure 1. Diffeomorphic Flow between hypersurfaces of Eu-
clidean space induced by a “Geodesic Flow”in an associated space

There are several approaches to this question. One is from the perspective
of a Riemannian metric on the group of diffeomorphisms of Rn. If the smooth
hypersurfaces Mi bound compact regions Ωi , then the group of diffeomorphisms
Diff(Rn) acts on such regions Ωi and their boundaries. Then, if ϕt, 1 ≤ t ≤ 1, is a
geodesic in Diff(Rn) beginning at the identity, then ϕt(Ω) (or ϕt(Mi)) provides a
path interpolating between Ω0 = ϕ0(Ω) = Ω and Ω1 = ϕ1(Ω). Then, the geodesic
equations can be numerically solved to construct the flow ϕt. This is the method
developed by Younes, Trouve, Glaunes, Mumford, Michor, etc.

An alternate approach requires that we have established a correspondence be-
tween M0 and M1, which is given by a diffeomorphism χ : M0 → M1, which need
not be the restriction of a global diffeomorphism of R

n. Then, if we may map M0

and M1 to submanifolds of a natural ambient space Λ, then we can seek a geodesic
flow from M0 and M1, viewed as submanifolds of Λ, sending x to ϕ(x) along a
geodesic. Then, we use this geodesic flow to define a flow between M0 and M1 back
in Rn.
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grant DMS-0706941.
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The simplest example of this is the “radial flow”from M0 using the vector field U
on M0 defined by U(x) = ϕ(x)−x. Then, the radial flow is the geodesic flow in Rn

defined by ϕt(x) = x+ t ·U(x). The analysis of the nonsingularity of the radial flow
is given in [D1] in the more general context of “skeletal structures”. This includes
the case where M1 is a generalized offset surface of M0 via the generalized offset
vector field U .

M0

M
1

U

Figure 2. Hypersurface M0 and radial vector field U define a
generalized offset surface M1 obtained from a radial flow of the
skeletal structure (M0, U). This is a “Geodesic Flow”in Rn.

In this paper, we give an alternate approach to interpolation between hypersur-
faces with a given correspondence. While the radial flow views the hypersurface as
a collection of points, we will instead view it as defined by the collection of tangent
spaces. This leads to the “dual variety”, which we shall represent as a subspace
of a Lorentzian space Λ. Then, the geodesic flow will be for the Lorentzian metric
on Λ. Then, we transform that geodesic flow back to a flow between the original
manifolds in Rn.

We shall give conditions that the resulting flow is nonsingular. Furthermore, we
deduce the form of the flow when M1 is obtained from M0 by standard transfor-
mations of Rn, exhibiting them as appropriate geodesic flows.

This applies even to the case of manifolds with boundaries and provides an
answer to a question posed by Stephen Pizer for medial surfaces of regions in R3

about whether there is a natural flow between surfaces in R3 which generalizes
transformations such as translations, homotheties, and rotations.
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1. Overview

As mentioned in the introduction there are two main methods for deforming
one given hypersurface M0 ⊂ Rn to another M1. One is to find a path ψt in G,
which is some specified a group of diffeomorphisms of Rn, from the identity so that
ψ1(M0) = M1 (and ψ0(M0) = M0).

Another approach involves constructing a geometric flow between M0 and M1.
Several flows such as curvature flows do not provide a flow to a specific hypersurface
such as M1. An alternate approach which we shall use will assume that we have a
correspondence given by a diffeomorphism χ : M0 →M1 and construct a “geodesic
flow”which at time t = 1 gives χ. The geodesic flow will be on an associated space
Y. We shall consider natural maps ϕi : Mi → Y , where Y is a distinguished space
which reflects certain geometric properties of the Mi.

M0
ϕ0

−→ Y

χ ↓ ր
ϕ1

(1.1)

M1

Definition 1.1. Given smooth maps ϕi : Mi → Y and a diffeomorphism χ : M0 →
M1 A geodesic flow between the maps ϕi is a smooth map ψ̃t : M0 × [0, 1] → Y

such that for any x ∈M0, ψ̃t(x) : [0, 1] → Y is a (minimal) geodesic from ϕ0(x) to
ϕ1 ◦ χ(x)

Remark . We shall also refer to the geodesic flow as being between the M̃i =
ϕi(Mi). However, we note that it is possible for more than one xi ∈ M0 to map
to the same point in y ∈ Y, however, the geodesic flow from y can differ for each
point xi.

Then, we will complement this with a method for finding the corresponding flow
ψt between M0 and M1 such that ϕt ◦ ψt = ψ̃t, where ϕt : ψt(M0) → ψ̃t(M0).
We furthermore want this flow to satiafy certain properties. The main property
is that the flow construction is invariant under the action of the group formed
from rigid transformations and homotheties (scalar multiplication). By this we
mean: if M ′

0 = A(M0) and M ′
1 = A(M1) are transforms of M0 and M1 by a rigid

transformation or homothety A, and Mt is the flow between M0 and M1, then
A(Mt) gives the flow between M ′

0 and M ′
1. Also, it would be desirable if uniform

translations, homotheties, and rotations would also give geodesic flows.
We are specifically interested in a “geodesic flow”which will be a flow defined

using the tangent bundles TM0 to TM1 so that we specifically control the flow of
the tangent spaces. At first, an apparent natural choice is the dual projective space
RPn∨. Via the tangent bundle of a hypersurface M ⊂ R

n there is the natural map
δ : M → RPn∨, sending x 7→ TxM . The natural Riemannian structure on the real
projective space RPn∨ is induced from Sn via the natural covering map Sn → .RPn,
so that geodesics of Sn map to geodesics on RPn∨. However, simple examples show
that the induced geodesic slow on RPn∨ is not invariant under translation in Rn.
In fact, this Riemannian geodesic flow between the hyperplanes Given by n ·x = c0
and n ·x = c1 is given by n ·x = ct, where ct = tan(t arctan(c1)+(1− t) arctan(c0)).
It is easily seen that if we translate the two planes by adding a fixed amount d to
each ci, then the corresponding formula does not give the translation of the first.
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We will use an alternate space for Y, namely, the Lorentzian space Λn+1 which
is a Lorentzian subspace of Minkowski space Rn+2,1. In fact the images will be in
a special subspace R ⊂ Λn+1. On Λn+1 it is classical that the geodesics are inter-
sections with planes through the origin in Rn+2,1. This allows a simple description
of the geodesic flow on Λn+1. We transfer this flow to a flow on R

n using an in-
verse envelope construction, which reduces to solving systems of linear equations.
We will give conditions for the smoothness of the inverse construction which uses
knowledge of the generic Legendrian singularities.

We shall furthermore see that the construction is invariant under the action
of rigid transformations and homotheties. In addition, uniform translations and
homotheties will be geodesic flows, and a variant of uniform rotation is also a
geodesic flow.

2. Semi-Riemannian Manifolds and Lorentzian Manifolds

A Semi-Riemannian manifold M is a smooth manifold M , with a nondegenerate
bilnear form < ·, · >x on the tangent space TxM , for eaxh x ∈M which smoothly
varyies with x. We do not require that < ·, · >x be positive definite. We denote the
index of < ·, · >(x) by ν, In the case that ν = 1, M is referred to as a Lorentzian
manifold.

A basic example is Minkowski space which is Rn+1 and bilinear form defined for
v = (v1, . . . , vn+1) and w = (w1, . . . , vn+1)

< v,w >L =

n
∑

i=1

vi · wi − vn+1 · wn+1

There are a number of different notations for Minkowski space. We shall use Rn+1,1.
We shall also use the notation < ·, · >L for the Lorentzian inner product on Rn+1,1.

A submanifold N of a semi-Riemannian manifold M is a semi-Riemannian sub-
manifold if for each x ∈ N , the restriction of < ·, · >(x) to TxN is nondegenerate.

There are several important submanifolds of Rn+1,1. One such is the Lorentzian
submanifold

Λn = {(v1, . . . , vn+1) ∈ R
n+1,1 :

n
∑

i=1

v2
i − v2

n+1 = 1},

which is called de Sitter space (see Fig. 3). A second important one is hyperbolic
space Hn defined by

H
n = {(v1, . . . , vn+1) ∈ R

n+1,1 :

n
∑

i=1

v2
i − v2

n+1 = = 1 and vn+2 > 0}.

By contrast the restriction of < ·, · >L to Hn is a Riemannian metric of constant
negative curvature −1. There is natural duality between codimension 1 subman-
ifolds of Hn obtained as the intersection of Hn with a “time-like”hyperplane Π
through 0 (containing a “time-like”vector z with < z, z >L < 0) paired with the
points ±z′ ∈ Λn given where z′ lies on a line through the origin which is the
Lorentzian orthogonal complement to Π.

Many of the results which hold for Riemannian manifolds also hold for a Semi-
Riemannian manifold M .
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Hn+1

Λn+1

Figure 3. In Minkowski space Rn+2,1, there is the Lorentzian
hypersurface Λn+1 and the model for hyperbolic space Hn+1. Also
shown is the “light cone”.

2.1 (Basic properties of Semi-Riemannian Manifolds (see [ON]).
For a Semi-Riemannian manifold M , there are the following properties analogous

to those for Riemannian manifolds:

(1) Smooth Curves on M have lengths defined using | < ·, · > |.
(2) There is a unique connection which satisfies the usual properties of a Rie-

mannian Levi-Civita connection.
(3) Geodesics are defined locally from any point x ∈ M and with any initial

velocity v ∈ TxM . They are critical curves for the length functional, and
they have constant speed.

(4) If N is a semi-Riemannian submanifold of M , then a constant speed curve
γ(t) in N is a geodesic in N if the acceleration γ′′(t) is normal to N (with
respect to the semi-Riemannian metric) at all points of γ(t).

(5) Any point x ∈ M has a “convex neighborhood”W , which has the property
that any two points in W are joined by a unique geodesic in the neighbor-
hood.

(6) If γ(t) is a geodesic joining x0 = γ(0) and x1 = γ(1) and x0 and x1 are
not conjugate along γ(t), then given a neighborhood W of γ(t), there are
neighborhoods of W0 of x0 and W1 of x1 so that if x′0 ∈W0, and x′1 ∈W1,
there is a unique geodesic in the neighborhood W from x′0 to x′1.

As an example, it is straightforward to verify that for any z ∈ Λ, the vector
z is orthogonal to Λ at the point z. Suppose P is a plane in Rn+1,1 containing
the origin. Let γ(t) be a constant Lorentzian speed parametrization of the curve
obtained by intersecting P with Λ. Then, by a standard argument similar to that
for the case of a Euclidean sphere, γ(t) is a geodesic. All geodesics of Λ are obtained
in this way. It follows that the submanifolds of Λ obtained by intersecting Λ with
a linear subspace is a totally geodesic submanifold of Λ.
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3. Dual Varieties and Singular Lorentzian Manifolds

Given a smooth hypersurface M ∈ R
n, we define a natural map from M to

Λn+1. First, we let Sn+1 denote the unit sphere in Rn+1 centered at the origin,
and we let en+1 = (0, . . . , 0, 1) ∈ Rn+1. Then, stereographic projection defines
a map p : Sn+1\{en+1} → Rn sending y to the point where the line from en+1

to y intersects Rn. Given a hyperplane Π in Rn, it together with en+1 spans a
hyperplane Π′ in Rn+1 ×{en+2}. The intersection of this plane with Sn+1 is an n-
sphere. Identifying Rn+1 with the hyperplane in Rn+2 1 defined by xn+2 = 1. Then,
Π′ together with 0 spans a hyperplane Π′′ in Rn+2 1. This hyperplane is time-like
because Π′′ intersects Rn+1 × {en+2} in a hyperplane Π′ which intersects the unit
sphere in Rn+1 × {en+2} in a sphere, hence it intersects the interior diisk. Then,
the duality associates a pair of points z and −z in Λn+1 which lie on a common
line through the origin.

In order to obtain a single valued map, there are two possibilities: Either we
consider the induce map to Λ̃n+1 = Λn+1/ ∼, where ∼ identifies each pair of points
z and −z of Λn+1; or we need on M a smooth normal unit vector field n orienting
M . Given the normal vector field n, it defines a distinguished side of TxM . If this
is Π, then we obtain a distinguished side for Π′ and then Π′′, which singles out one
of the two points in Λn+1 on the distinguished side. We shall refer to this second
case as the oriented case.

We shall use both versions of the maps. In fact, the image lies in the submanifold
R of Λn+1 defined by

R = {(n, cǫ) : n ∈ Sn−1, c ∈ R}

which we can view as a submanifold R ⊂ Λn+1; or in the general case it lies in R̃.
We denote the general form of the map by L̃ : M → R̃, and the oriented form by
L : M → R.

We can give a coordinate definitions for the maps. If TxM is defined by n ·x = c,
where x = (x1, . . . , xn). Then, Π′ contains TxM and en+1 and so is defined by
n · x + cxn+1 = c. Then, Π′′ contains Π′ × {en+2} and the origin so it is defined
by n · x + cxn+1 − cxn+2 = 0. Thus, the Lorentzian orthogonal line is spanned by
(n, c, c), which we write in abbreviated form as (n, cǫ) with ǫ = (1, 1). Hence,
the map L : M → Λn+1 sends x to (n, cǫ), and the general case sends it to

the equivalence class in R̃ determined by (n, cǫ). We shall be concerned with
a subspace of Λn+1 where this duality corresponds to hypersurfaces of R

n. The
general correspondence is used in [OH] to parametrize (n− 1)-dimensional spheres
in Rn.

Definition 3.1. Given a smooth hypersurface M ∈ Rn, with a smooth normal
vector field n on M , the (oriented) Lorentz map is the natural map L : M → R
defined by L(x) = (n, cǫ), where TxM is defined by n·x = c. In the general case, we

choose a local normal vector field and then L̃(x) is the equivalence class of (n, cǫ)

in R̃.

In the following we shall generally concentrate on the oriented case and the
map L, with the general case just involving considering the map to equivalence
classes. There are two questions concerning L. One is when L is nonsingular, and
at singular points what can we say about the local properties of L when M is



LORENTZIAN GEODESIC FLOWS 7

generic. The second question is how we may construct the inverse of L when it is
a local embedding (or immersion).

Relation with the Dual Variety. Suppose that M ⊂ Rn is a smooth hyper-
surface. There is a natural way to associate a corresponding “dual variety”M∨

in the dual projective space RPn∨ (which consists of lines through the origin in
the dual space Rn+1 ∗). Given a hyperplane Π ⊂ Rn, it is defined by an equa-
tion

∑n
i=1 aixi = b. We associate the linear form α : R

n+1 → R defined by
α(x1, . . . , xn+1) =

∑n
i=1 aixi − bxn+1. As the equation for Π is only well defined

up to multiplication by a constant, so is α, which defines a unique line in Rn+1 ∗.
This then defines a dual mapping δ : M → RPn∨, sending x ∈ M to the dual of
TxM .

In the context of algebraic geometry in the complex case, this map actually ex-
tends to a dual map for a smooth codimension 1 algebraic subvarietyM ⊂ CPn, and
then the image M∨ = δ(M) is again a codimension 1 algebraic subvariety of CPn∨.
There is an inverse dual map δ∨ for smooth codimension 1 algebraic subvarieties
of CPn∨ to CPn defined again using the tangent spaces. Hence, δ∨ : M∨ → CPn.
It is only defined on smooth points of M∨ (which may have singularities); however
it extends to the singular points of M∨ and its image is the original M .

In our situation, we are working over the reals and moreover M will not be
defined by algebraically. Hence, we need to determine what properties both δ and
M∨ have. We also will explain the relation with the Lorentz map.

Legendrian Projections. Given M , we let P (Rn+1 ∗) denote the projective bun-
dle Rn × RPn∨, where as earlier RPn∨ denotes the dual projective space. Then,
we have an embedding i : M → P (Rn+1 ∗), where i(x) = (x,< αx >), with αx the

linear form associated to TxM as above. We let M̃ = i(M). There is a projection
map π : P (Rn+1 ∗) → RPn∨. Then, by results in Arnol’d, π is a Legendrian pro-

jection, and for generic M , M̃ is a generic Legendrian submanifold of P (Rn+1 ∗)

and the restriction π|M̃ : M̃ → RPn∨ is a generic Legendrian projection. This

composition π|M̃ ◦ i is exactly δ. Hence the properties of δ are exactly those of the

Legendrian projection. In particular the singularities of M∨ = π(M̃) are generic
Legendrian singularities, which are the singularities appearing in discriminants of
stable mappings [Arnold ].

In the case of surfaces in R3, these are: cuspidal edge, a swallowtail, transverse
intersections of two or three smooth surfaces, and the transverse intersection of a
smooth surface with a cuspidal edge (as shown in Fig. 4). The characterization
of these singularities implies that as we approach a singular point from one of the
connected components, then there is a unique limiting tangent plane, and in the
case of the cuspidal edge or swallowtail, the limiting tangent plane is the same for
each component. Hence, for generic smooth hypersurfaces M ⊂ Rn, the inverse
dual map δ∨ extends to all of M∨, and again will have image M .

Finally, we remark about the relation between the dual variety M∨ and the
image ML = L(M) (or M

L̃
= L̃(M)). To do so, we introduce a mapping involving

RPn∨ and R̃. In RPn∨, there is the distinguished point ∞ =< (0, . . . , 0, 1) >. On
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a) b) c)

d) e)

Figure 4. Generic Singularities for Legendrian projections of
Legendrian surfaces: a) cuspidal edge, b) swallowtail, c) transverse
intersection of cuspidal edge and smooth surface, d) transverse
intersection of two smooth surfaces, and e) transverse intersection
of three smooth surfaces.

RPn∨\{∞}, we may take a point < (y1, . . . , yn, yn+1) >, and normalize it by

(y′1, . . . , y
′

n, y
′

n+1) = c · (y1, . . . , yn, yn+1), where c = (

n
∑

i=1

y2
i )−

1

2 .

Then, ny = (y′1, . . . , y
′
n) is a unit vector. We then define a map ν : RPn∨\{∞} → R̃

sending < (y1, . . . , yn, yn+1) > to (ny, y
′
n+1ǫ). This is only well defined up to

multiplication by −1, which is why we must take the equivalence class in the pair
of points. If we are on a region of RPn∨\{∞} where we can smoothly choose a
direction for each line corresponding to a point in RPn∨, then as for the case of
the Lorentzian mapping, we can give a well-defined map to R. This will be so
when we consider M∨ for the oriented case. In such a situation, when the smooth
hypersurface M has a smooth unit normal vector field n, it provides a positive
direction in the line of linear forms vanishing on TxM .

Then, we have the following relations.

Lemma 3.2. The smooth mapping ν̃ : RPn∨\{∞} → R̃ is a diffeomorphism.

Second, there is the relation between the duality map δ and the Lorentz map L̃
(or L).

Lemma 3.3. If M ⊂ Rn is a smooth hypersurface, then the diagram 3.1 commutes,
i.e. ν̃ ◦ δ = L̃. If, in addition, M has a smooth unit normal vector field n, then
there is the oriented version of diagram 3.1, ν ◦ δ = L.

M
δ

−→ RPn∨

ց
L̃

↓ ν̃(3.1)

R̃
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Figure 3.1 Commutative diagram relating the dual map and Lorentzian map.

As a consequence of these Lemmas and our earlier discussion about the singu-
larities of M∨, we conclude that M

L̃
(or ML) have the same singularities. Thus,

we may suppose they are generic Legendrian singularities. Although we have by
Lemma 3.2 that RPn∨\{∞} is diffeomorphic to R̃, the first space has a natural

Riemannian structure while on R̃ we have a Lorentzian metric.

Proof of Lemma 3.2. There is a natural inverse to ν̃ defined as follows: If z = (n, cǫ)
and n = (a1, . . . , an), then we map z to < (a1, . . . , an,−c) >. We note that
replacing z by −z does not change the line < (a1, . . . , an,−c) >. This gives a well-

defined smooth map R̃ → RPn∨\{∞} which is easily checked to be the inverse of
ν̃. �

Proof of Lemma 3.3. If TxM is defined by n · x = c with n = (a1, . . . , an), then
δ(x) =< (a1, . . . , an,−c) >. Then, as ‖n‖ = 1, ν̃(< (a1, . . . , an,−c) >) =
(a1, . . . , an, c, c) = (n, cǫ), which is exactly L(x). �

Inverses of the Dual Variety and Lorentzian Mappings. We consider how
invert both δ and Λ̃. We earlier remarked that in the complex algebraic setting,
the inverse to δ is again a dual map δ∨. As ν̃ is a diffeomorphism, and diagram 3.1
commutes, inverting δ is equivalent to inverting Λ̃. Also, constructing an inverse is
a local problem, so we may as well consider the oriented case.

Proposition 3.4. Let M ⊂ Rn be a generic smooth hypersurface with a smooth unit
normal vector field n. Suppose that the image ML under L is a smooth submanifold
of R. Then, M is obtained as the envelope of the collection of hyperplanes defined
by n · x = c for L(x) = (n, cǫ).

Proof of Proposition 3.4. We consider an (n − 1)-dimensional submanifold of R
parametrized by u ∈ U given by (n(u), c(u)ǫ). The collection of hyperplanes are
given by Πu defined by F (x, u) = n(u) ·x− c(u) = 0. Then, the envelope is defined
by the collection of equations Fui

= 0, i = 1, . . . , n − 1 and F = 0. This is the
system of linear equations

(3.2) i) n(u) · x = c(u) and ii) nui
(u) · x = cui

(u), i = 1, . . . , n− 1

A sufficient condition that there exist for a given u a unique solution to the
system of linear equations in x is that the vectors n,nu1

, . . . ,nun−1
are linearly

independent. Since nui
= −S(

∂

∂ui

), for S the shape operator for M , linear inde-

pendence is equivalent to S not having any 0-eigenvalues. Thus, x is not a parabolic
point of M . For generic M , the set of parabolic points is a statified set of codi-
mension 1 in M . Thus, off the image of this set, there is a unique point in the
envelope.

Also, if we differentiate equation (3.2)-i) with respect to ui we obtain

(3.3) nui
(u) · x + n(u) · xui

= cui
(u)

Combining this with (3.2)-ii), we obtain

(3.4) n(u) · xui
= 0,

and conversely, (3.4) for i = 1, . . . , n−1 and (3.3) imply (3.2)-ii). Thus, if we choose
a local parametrization of M given by x(u), then as x(u) is a point in its tangent
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space, it satisfies (3.2)-i), and hence (3.3), and also n being a normal vector field
implies that (3.4) is satisfied for all i. Thus, (3.2)-ii) is satisfied. Hence, M is part
of the envelope. Also, for generic points of M , by the implicit function theorem,
the set of solutions of (3.2) is locally a submanifold of dimension n− 1. Hence, in
a neighborhood of these generic points of M , the envelope is exactly M . Hence,
the closure of this set is all of M and still consists of solutions of (3.2). Thus, we
recover M .

Second, to see that the equations (3.2) describe the inverse of the dual mapping,

we note by Lemmas 3.2 and 3.2 that ν̃ is a diffeomorphism, δ−1 = L̃−1 ◦ ν̃, and the
preceding argument gives the local inverse to L̃. �

4. Lorentzian Geodesic Flow on Λn+1

We give the general formula for the geodesic flow between z0 = (n0, d0ǫ) and
z1 = (n1, d1ǫ). We let −π

2 < θ < π
2 be defined by cos θ = n0 · n1. Then, we define

the function λ(x, θ) by

(4.1) λ(x, θ) =

{

sin(xθ)
sin(θ) θ 6= 0

x θ = 0

Then, sin(z) is a holomorphic function of z, and the quotient sin(xθ)
sin(θ) has removable

singularities along θ = 0 with value x. Hence, λ(z, θ) is a holomorphic function of
(z, θ) on C× (−π, π), and so analytic on R× (−π, π). Also, directly computing the
derivative we obtain

(4.2)
∂λ((x, θ)

∂x
=

{

cos(xθ) · θ
sin θ

θ 6= 0
1 θ = 0

Using λ(t, θ) we determine the geodesic curve between z0 and z1.

Proposition 4.1. The geodesic curve γ(t) in Λ from γ(0) = z0 and γ(1) = z1 for
the Lorentzian metric on Λ is given by

(4.3) γ(t) = λ(t, θ) z1 + λ(1 − t, θ) z0 for 0 ≤ t ≤ 1

This curve lies in R for 0 ≤ t ≤ 1.

Remark 4.2 (Invariance of Lorentzian Geodesic Flow). The Geodesic flow given
in Proposition 4.1 is invariant under the group of rigid transformations and scalar
multiplications. By this we mean the following. Suppose zi = (ni, ci) ∈ R, i = 1,
2. Let Πi be the hyperplane determined by zi. Let ψ be a composition of scalar
multiplication by b followed by a rigid transformation so ψ(x) = bA(x) + p, with
A an orthogonal transformation. Then, Π′

i = ψ(Πi) is defined by

ψ̃(zi) = ψ̃(ni, ci) = (A(ni), bci + ni · p).

If γ(t) = (nt, ct) is the Lorentzian geodesic flow between z0 and z1, then ψ̃(γ(t)

is the Lorentzian geodesic flow between ψ̃(z0) and ψ̃(z1). See §7.

We can expand the expression for γ(t) and obtain the family of hyperplanes Πt

in Rn. Expanding (4.3) we obtain

nt = λ(t, θ)n1 + λ(1 − t, θ)n0 and

ct = λ(t, θ) c1 + λ(1 − t, θ) c0(4.4)
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Then the family Πt is given by

(4.5) Πt = {x = (x1, . . . , xn) ∈ R
n : x · nt = ct}

We can also compute the initial velocity for the geodesic in (4.3).

Corollary 4.3. The initial velocity of the geodesic (4.3) with θ 6= 0 is given by

(4.6) γ′(0) =
θ

sin θ
· (proj

n0
(n1), (c1 − cos θ c0)ǫ)

where proj
n0

denotes projection along n0 onto the line spanned by w. If θ = 0,
then n0 = n1 and the velocity is (0, (c1 − c0)ǫ) (with Lorentzian speed 0).

Remark . Note that

‖(proj
n0

(n1), (c1 − cos θ c0)ǫ)‖L = ‖proj
n0

(n1)‖

which equals sin θ. We conclude the Lorentzian magnitude of γ′(0) is θ. Since
geodesics have constant speed, the geodesic will travel a distance |θ|. Hence, |θ| is
the Lorentzian distance between z0 and z1.

Proof of Proposition 4.1. Let P be the plane in Rn+1,1 which contains 0, z0 and
z1. The geodesic curve between z0 and z1 is obtained as a constant Lorentzian
speed parametrization of the curve obtained by intersecting P with Λ. We choose
a unit vector w ∈ Π such that n1 is in the plane through the origin spanned by
n0 and w. Let θ be the angle between n0 and n1 so cos θ = n0 · n1. Then,
n1 − (n1 · n0)n0 is the projection of n1 along n0 onto the line spanned by w. It
equals n1 − cos θ n0 = sin θw.

Then, a tangent vector to Λn+1 ∩ P at the point z0 is given by

(4.7) (n1 − cos θ n0, (c1 − cos θ c0)ǫ) = (sin θw, (c1 − cos θ c0)ǫ)

Then, we seek a Lorentzian geodesic γ(t) in the plane P beginning at (n0, c0ǫ) with
initial velocity in the direction (sin θw, (c1 − cos θ c0)ǫ). Consider the curve

(4.8) γ(t) = (cos(tθ)n0 + sin(tθ)w, (cos(tθ)c0 +
sin(tθ)

sin(θ)
(c1 − cos θ c0))ǫ)

First, note that γ(0) = z0, and γ(1) = z1. Also, This curve lies in the plane spanned
by z0 and (4.7). Also,

‖γ(t)‖L = ‖ cos(tθ)n0 + sin(tθ)w‖ = 1

as n0 and w are orthogonal unit vectors. Hence, γ(t) is a curve parametrizing
Λn+1∩P . It remains to show that γ′′ is Lorentzian orthogonal to Λn+1 to establish
that it is a Lorentzian geodesic from z0 to z1. A computation shows

γ′′(t) = −θ2(cos(tθ)n0 + sin(tθ)w,
sin(tθ)

sin(θ)
(c1 − cos θ c0)ǫ)

which is −θ2γ(t), and hence Lorentzian orthogonal Λn+1.

Because of the fraction sin(tθ)
sin(θ) , we have to note that when θ = 0, then n0 = n1

and γ(t) takes the simplified form

γ(t) = (n0, c0 + t(c1 − c0))ǫ)

which is still a Lorentzian geodesic between z0 to z1.
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Lastly, we must show that this agrees with (4.3). First, consider the case where
θ 6= 0.

w =
1

sin θ
(n1 − cos θ n0)

Substituting this into the first term of the RHS of (4.8), we obtain

1

sin θ
(sin θ cos(tθ) − cos θ sin(tθ))n0 +

sin(tθ)

sin θ
n1

which by the formula for the sine of the difference of two angles equals

sin((1 − t)θ)

sin θ
n0 +

sin(tθ)

sin θ
n1

Analogously, we can compute the second term in th RHS of (4.8), to be

sin((1 − t)θ)

sin θ
c0 +

sin(tθ)

sin θ
c1

This gives (4.3) when θ 6= 0. When θ = 0, n0 = n1 and the derivation of (4.3) from
(4.8) for θ = 0 is easier. �

5. Sufficient Condition for Smoothness of Envelopes

To describe the induced “geodesic flow”between hypersurfaces M0 and M1 in
Rn, we will use the Lorentzian geodesic flow in R and then find the corresponding
flow by applying an inverse to L. We begin by constructing the inverse for a (n−1)-
dimensional manifold in R parametrized by (n(u), c(u)ǫ), where u = (u1, . . . , un−1).
We determine when the associated family of hyperplanes Πu = {x ∈ Rn : n(u) ·x =
c(u)}. has envelope a smooth hypersurface in Rn.

We introduce a family of vectors in R
n+1 given by ñ(u) = (n(u),−c(u)). We also

denote
∂ñ

∂ui

by ñui
. Next we consider the n-fold cross product in Rn+1, denoted

by v1 × v2 × · · · × vn, which is the vector in Rn+1 whose i-th coordinate is (−1)i+1

times the n × n determinant obtained from the entries of v1, . . . , vn by removing
the i-th entries of each vj . Then, for any other vector v,

v · (v1 × v2 × · · · × vn) = det(v, v1, . . . , vn)

We let

h̃ = ñ× ñu1
× · · · × ñun−1

We let H(ñ) denote the (n − 1) × (n − 1) matrix of vectors ñui uj
. Then we can

form H(ñ) · h̃ to be the (n− 1)× (n− 1) matrix with entries ñui uj
· h̃. Then, there

is the following determination of the properties of the envelope of {Πu}.

Proposition 5.1. Suppose we have an (n−1)-dimensional manifold in R parametrized
by (n(u), c(u)ǫ), where u = (u1, . . . , un−1). We let {Πu} denote the associated fam-
ily of hyperplanes. Then, the envelope of {Πu} has the following properties.

i) There is a unique point x0 on the envelope corresponding to u0 provided
n(u0),nu1

(u0), . . . ,nun−1
(u0) are linearly independent.

ii) Provided i) holds, the envelope is smooth at x0 provided H(ñ) · h̃ is non-
singular for u = u0.

iii) Provided ii) holds, the normal to the surface at x0 is n(u0) and Πu0
is the

tangent plane at x0.
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Proof of Proposition 5.1. We use the line of reasoning for Proposition 3.4. the
condition that a point x0 belong to the envelope of {Πu} is that it satisfy the system
of equations (3.2). A sufficient condition that these equations have a unique solution
for u = u0 is exactly that n(u0),nu1

(u0), . . . ,nun−1
(u0) are linearly independent.

Furthermore, if this is true at u0 then it is true in a neighborhood of u0. Thus,
we have a unique smooth mapping x(u) from a neighborhood of u0 to Rn. By the
argument used to deduce (3.4), we also conclude

(5.1) n(u) · xui
= 0, i = 1, . . . , n− 1

Hence, if x(u) is nonsingular at u0, then n(u0) is the normal vector to the envelope
hypersurface at x0, so the tangent plane is Πu0

. Thus iii) is true.
It remains to establish the criterion for smoothness in ii). As earlier mentioned

the envelope in the neighborhood of a point x0 is the discriminant of the projection
of V = {(x, u) : F (x, u) = n(u)·x−c(u) = 0} to Rn. It is a standard classical result
that at a point (x0, u0) ∈ V , which projects to an envelope point x0, the envelope
is smooth at x0 provided (x0, u0) is a regular point of F (so V is smooth in a

neighborhood of (x0, u0)) and the partial Hessian (
∂2F

∂ui uj

(x0, u0)) is nonsingular.

For our particular F this Hessian becomes H(n) · x0 − H(c), where H(n) is the
n× n matrix (nui uj

), and H(n) · x0 is the (n − 1) × (n− 1) matrix whose entries
are nui uj

· x0.
Now x0 is the unique solution of the system of linear equations (3.2). This

solution is given by by Cramer’s rule. Let N(u0) denote the n × n matrix with
columns n(u0), ,nu1(u0), . . . ,nun−1(u0). Then, by Cramer’s rule, if we multiply x0

by det(N(u0)) we obtain (−1)nh̃. Thus, multiplying H(n)·x0−H(c) by det(N(u0))

yields (−1)n(H(n),−H(c)) · h̃ which is exactly (−1)nH(ñ) · h̃. Hence, the nonsin-

gularity of H(ñ) · h̃ implies that of (
∂2F

∂ui uj

(x0, u0)). �

Although Proposition 5.1 handles the case of a smooth manifold in R, we saw
in §3 that usually the image in R of a generic hypersurface M in Rn will have
Legendrian singularities and the image itself is a Whitney stratified set M̃ . Next,
we deduce the condition ensuring that the envelope is smooth at a singular point
x0.

Because M̃ has Legendrian singularities, it has a special property. to expain it
we introduce a special property for Whitney stratified sets.

Definition 5.2. An m-dimensional Whitney stratified set M ⊂ Rk has the Unique
Limiting Tangent Space Property (ULT property) if for any x ∈ Msing, a singular
point of M , there is a unique m-plane Π ⊂ R

k such that for any sequence {xi} of
smooth points in Mreg such that lim xi = x, we have limTxi

M = Π

Lemma 5.3. For a generic hypersurfaces M ⊂ R
n, if z ∈ M̃ , then M̃ can be locally

represented in a neighborhood of z as a finite transverse union of (n−1)-dimensional
Whitney stratified sets Yi each having the ULT property.

Transverse union means that if Wij is the stratum of Yi containing z than the
Wij intersect transversally.

Proof. The Lemma follows because M̃ consists of generic Legendrian singularities,
which are either stable (or topologically stable) Legendrian singularities. These are
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either discriminants of stable unfoldings of multigerms of hypersurface singularities
or transverse sections of such. Such discriminants are transverse unions of discrimi-
nants of individual hypersurface singularities, each of which have the ULT property
by a result of Saito [Sa]. This continues to hold for transverse sections. �

We shall refer to these as the local components of M̃ in a neighborhood of z.
There is then a corollary of the preceding.

Corollary 5.4. Suppose that M̃ is an (n − 1)–dimensional Whitney stratified set

in R such that: at every smooth point z of M̃ , the hypotheses of Proposition 5.1
holds; and M̃ is at all singular points locally the finite union of Whitney stratified
sets Yi each having the ULT property. Then,

i) The envelope of M of M̃ has a unique point x ∈M for each z ∈ M̃reg, and

M is smooth at all points corresponding to points in M̃reg.

ii) At each singular point z of M̃ , there is a point in M corresponding to each

local component of M̃ in a neighborhood of z.

Proof. First, if z ∈ M̃reg and satisfies the conditions of Proposition 5.1, then there
is a unique envelope point corresponding to z and the envelope is smooth at that
point.

Second, via the isomorphism ν̃ and the commutative diagram (3.1), the envelope
construction corresponds to the inverse δ∨ of δ (or rather a local version since

we have an orientation). Under the isomorphism ν̃, for each point z ∈ M̃sing

there corresponds a unique point in the envelope for each local component of M̃
containing z. It is obtained as δ∨ applied to the unique limiting tangent space of z
associated to the local component in M̃reg. �

6. Induced Geodesic Flow between Hypersurfaces

We can bring together the results of the previous sections to define the Lorentzian
geodesic flow between two smooth generic hypersurfaces with a correspondence. We
denote our hypersurfaces by M0 and M1 and let χ : M0 →M1 be a diffeomorphism
giving the correspondence. Note that we allow the hypersurfaces to have bound-
aries.

We suppose that both are oriented with unit normal vector fields n0 and n1. We
also need to know that they have a “local relative orientation”.

Definition 6.1. We say that the oriented manifolds M0 and M1, with unit normal
vector fields n0 and n1, and with correspondence χ : M0 → M1 are relatively
oriented if for each x0 ∈M0, n0(x0) 6= −n1(χ(x0)).

Theorem 6.2. 1) Suppose smooth generic hypersurfaces M0 and M1 are oriented
by smooth unit normal vector fields ni, i = 0, 1 and are relatively oriented. Then
,there is a unique Lorentzian geodesic flow Mt between M̃0 = M0L and M̃1 = M1L

which is smooth.
2) Moreover, the association is stable in the following sense. Let χs : M0 s →

M1 s be a smooth family of diffeomorphisms between smooth families of hypersur-
faces for s ∈ S, a smooth manifold (i.e. Mi s is the image of Mi×S under a smooth
family of embeddings) so that M0 s and M1 s are relatively oriented for χs for each

s. Then, the family of Lorentzian Geodesic flows ψ̃s,t between M̃0 s and M̃1 s is a
smooth function of x, t, and s.
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Proof. For x ∈ M0, suppose the tangent space TxM0 is defined by n0(x) · x =
c0(x), and similarly TyM1 is defined by n0(y) · x = c1(y). It follows from relative
orientation that for each x0, there is a unique shortest geodesic (nt(x0), ct(x0)) in
Λn+1 from (n0(x0), c0(x0)) to (n1(χ(x0)), c1(χ(x0))).

First, to establish the smoothness of the geodesic flow, we note that by (6) of
(2.1) if n0(x0) 6= −n1(χ(x0)), then there is a neighborhood x0 ∈ W ⊂ M0 where
the shortest geodesic between (n0(x), c0(x)ǫ) and (n1(χ(x)), c1(χ(x))ǫ) depends
smoothly on the end points. Here for x ∈M0, we suppose the tangent space TxM0

is defined by n0(x) · x = c0(x), and similarly TyM1 is defined by n0(y) · x = c1(y).
Hence, the Lorentzian flow is locally smooth and by the relative orientation, it

is well–defined everywhere. Hence it is a globally smooth well-defined flow between
(n0(x), c0(x)ǫ) and (n1(χ(x)), c1(χ(x))ǫ) for each x ∈M0.

For 2), we use an analogous argument. Given the unique geodesic joining
(n0 s0

(x0), c0 s0
(x0)ǫ) and (n1 s0

(χs0
(x0)), c1 s0

(χs0
(x0))ǫ), then there exists a neigh-

borhood W of (x0, s0) so that for (x, s) ∈ W there is a unique minimal geodesic
between (n1 s(χs(x)), c1 s(χs(x))ǫ) and (n1 s(χs(x)), c1 s(χs(x))ǫ), and the geodesics
depend smoothly on (x, s).

Thus, the global Lorentzian geodesic flow is uniquely defined and locally depends
smoothly on (x, s); hence so does the global flow. �

Remark . We note there are two consequences of 2) of Theorem 6.2. First, M0

and M1 may remain fixed, but the correspondence χ varies in a family. Then the
corresponding Lorentzian geodesic flows vary in a family. Second, M0 and M1 may
vary in a family with a corresponding varying correspondence, then the Lorentzian
geodesic flow will also vary smoothly in a family.

It remains to determine when the corresponding Lorentzian geodesic flows in Rn

will have analogous properties.
We consider the vector fields on M0, n0(x) and n1(χ(x)). For any vector field

n(x) on M0 with values in Rn, we let N(x) = (n(x) | dn(x)) be the n × n matrix
with columns n(x) viewed as a column vector and dn(x) the n× (n− 1) Jacobian
matrix.. If we have a local parametrization x(u) of M0, then we may represent the
vector field n as a function of u, n(u). Then N(x(u)) is the n × n matrix with
columns n(u),nu1

(u), . . . ,nun−1(u). We denote the matrix for n0 by N0(x), and
that for n1(χ(x)) by N1(x) (or N0(u) and n1(χ(u)) if we have parametrized M0.

Consider the Lorentzian geodesic flow ψ̃t(x) = (nt(x), ct(x)) between L(x) =

(n0(x), c0(x)) and L(χ(x)) = (n1(χ(x)), c1(χ(x))) for all x ∈ M0. We let M̃t =

ψ̃t(M0), and we let Mt denote the envelope of M̃t.
We introduce one more function.

σ(x, θ) =
cos((1 − x)θ) sin(xθ) − x sin θ

sin(xθ) sin θ
=

cos((1 − x)θ)

sin θ
−

x

sin(xθ)

if 0 < |θ| < π, and

σ(x, 0) = 0

Then there are the following properties for the envelopes Mt of the flow for all time
0 ≤ t ≤ 1.

Theorem 6.3. Suppose smooth generic hypersurfaces M0 and M1 are oriented by
smooth unit normal vector fields ni, i = 0, 1 and are relatively oriented. Let ψ̃t be
the Lorentzian geodesic flow between M̃0 and M̃1 is smooth. If Mt is the family of
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envelopes obtained from the flow M̃t = ψ̃t(M̃0), then suppose that for each time t,

M̃t has only generic Legendrian singularities as in §3 (as e.g. in Fig. 4). Then,

(1) Mt will have a unique point corresponding to z = ψ̃t(x) ∈ M̃t provided

(6.1) N ′

t(x)
def
= λ(t, θ)N1((x)) + λ(1 − t, θ)N0(x) + σ(t, θ)

∂θ

∂u
n0

is nonsingular. Here
∂θ

∂u
n0 is the matrix whose first column equals the

vector 0 and whose j+1–th column is the vector
∂θ

∂uj

n0, for j = 1, . . . , n−1.

(2) The envelope Mt will be smooth at points corresponding to a smooth point

z ∈ M̃t satisfying (6.1) provided H(ñt(x))·h̃t(x) is nonsingular. Here h̃t(x)
is defined from ñt(x) as in §5.

(3) At points corresponding to singular points z ∈ M̃t, there is a unique point

on Mt for each local component of M̃ in a neighborhood of z. This point
is the unique limit of the envelope points corresponding to smooth points of
the component of M̃t approaching z.

Proof of Theorem 6.3 . For 2), given that 1) holds, we may apply ii) of Proposition
5.1. For 3) we may apply Corollary 5.4. To prove 1), we will apply i) of Proposition
5.1. We must give a sufficient condition that N(x) is nonsingular. We choose local
coordinates u for a neighborhood of x0. For a geodesic (nt(u), ct(u)ǫ) between
(n0(u), c0(u)ǫ) and (n1(u), c1(u)ǫ) given by (4.3), we must compute nt ui

(u). We
note that not only ni, i = 1, 2 but also θ depends on u. We obtain

(6.2) nt ui
= λ(t, θ)n1 ui

+ λ(1 − t, θ)n0 ui
+
∂λ(t, θ)

∂ui

n1 +
∂λ(1 − t, θ)

∂ui

n0

Then,
∂λ(t, θ)

∂ui

=
∂θ

∂ui

∂λ(t, θ)

∂θ
. First suppose θ 6= 0, then we compute

(6.3)
∂λ(x, θ)

∂θ
=

x sin(θ) cos(xθ) − sin(xθ) cos θ

sin2 θ

Applying (6.3) with x = t and 1 − t, we obtain for the last two terms on the RHS
of (6.2).

�

Remark . If n1(χ(x0)) 6= n0(x0), then there is a neighborhood x0 ∈ W ⊂M0 such
that n1(χ(x)) 6= n0(x) for x ∈ W . Then, there is a smooth unit tangent vector field
w defined on W such that n1(χ(x)) lies in the vector space spanned by n0(x) and
w(x), and n1(χ(x)) · w(x) ≥ 0 for all x ∈ W . Then, smoothness follows explicitly
using the geodesics given in (4.3).

7. Flows in Special Cases

We determine the form of the Lorentzian geodesic flow in several special cases.
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Hypersurfaces Obtained by a Translation. Suppose that we obtain M1 from
M0 by translation by a vector p and the correspondence associates to x ∈ M0,
x + p ∈ M1. Let n0 be a smooth unit normal vector field on M0. The derivative
of the translation map is the identity; hence, under translation n0 is mapped to
itself translated to x′ = x + p. Thus, under the correspondence, n1 = n0. Also,
If n0 · x = c0 is the equation of the tangent plane for M0 at a point x, then the
tangent plane of M1 at the point x′ is

n1 · x
′ = n0 · (x + p) = c0 + n0 · p

Hence, c1 = c0 + n0 · p.
As n0 = n1, θ = 0. Thus the geodesic flow on R is given by

t(n0, c1ǫ) + (1 − t)(n0, c0ǫ) = (n0, c0ǫ) + (0, (tn0 · p)ǫ) = (n0, (n0 · (x + tp))ǫ)

Thus, at time t the tangent space is translated by tp. Thus the envelope of these
translated hyperplanes is the translation of M0 by tp. Hence, we conclude

Corollary 7.1. If M1 is the translation of M0 by p, then the Lorentzian geodesic
flow is translation by tp.

Second we consider the case of a homothety.

Hypersurfaces Obtained by a Homothety. Suppose that we obtain M1 from
M0 by multiplication by a constant b and the correspondence associates to x ∈M0,
x′ = cx ∈M1. The derivative of the multiplication map by b is multiplication by b;
hence, under the multiplication map TxM0 is mapped to Tx

′M1. If n0 is a smooth
unit normal vector field on M0, then n0 remains normal to Tx

′M1. Hence, n1 = n0

translated to x′. Also, if n0 · x = c0 is the equation of the tangent plane for M0 at
a point x, then the tangent plane of M1 at the point x′ is

n1 · x
′ = n0 · (bx) = bc0

Hence, c1 = bc0.
Again n0 = n1 so θ = 0. Thus the geodesic flow on R is given by

t(n0, c1ǫ) + (1 − t)(n0, c0ǫ) = (n0, (tb+ (1 − t))c0ǫ)

Thus, at time t the tangent plane is transformed by multiplication by (tb+(1− t)).
Thus the envelope of these hyperplanes is M0 multiplied by (tb + (1 − t)). Hence,
we conclude

Corollary 7.2. If M1 is obtained from M0 by multiplication by the constant b, then
the Lorentzian geodesic flow is the family of hypersurfaces obtained by applying to
M0 the family of homotheties, multiplication by (tb+ (1 − t)).

Third, we consider the case of a rotation.

Hypersurfaces Obtained by a Rotation. Suppose that we obtain M1 from M0

by a rotation A about the origin in a plane (which pointwise fixes an orthogonal
subspace. Choosing coordinates, we may assume that the rotation A is in the
(x1, x2)–plane and rotates by an angle ω. We also suppose the correspondence
associates to x ∈ M0, x′ = A(x) ∈ M1. Consider a tangent space at x ∈ M0,
defined by n0 · x = c0. As A(n0) ·A(x) = n0 · x = c0, if we let x′ = A(x), then the
equation of the tangent plane for M1 at x′ is defined by A(n0) · x

′ = c0. Hence,
n1 = A(n0) and c1 = c0.
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To express the geodesic flow, we write n0 = v + p where v is in the rotation
plane and p is fixed by A. Hence, n1 = A(v) + p. Thus, the angle θ between n0

and n1 satisfies

cos θ = n1 · n0 = A(v) · v + p · p

As ‖n0‖ = 1, we obtain v · v + p · p = 1. Also, A(v) · v = ‖v‖2 cosω. Hence,

(7.1) cos θ = 1 + ‖v‖2(cosω − 1)

We also compute µ(t, θ) = λ(t, θ)+λ(1− t, θ) using the formula sin(x)+sin(y) =
2 cos(1

2 (x + y)) sin(1
2 (x− y)) and sin θ = 2 sin(1

2θ) cos(1
2θ), and obtain

(7.2) µ(t, θ) = λ(t, θ) + λ(1 − t, θ) =
cos((1

2 − t)θ)

cos(1
2θ)

Using the expressions for n0 and n1, we find the geodesic flow is given by

= λ(t, θ) (A(n0), c0ǫ) + λ(1 − t, θ) (n0, c0ǫ)

= ((λ(t, θ)A(v) + λ(1 − t, θ)v) + µ(t, θ)p, µ(t, θ)c0ǫ)(7.3)

We note that µ(t, θ) is a function on [0, 1] which has value = 1 at the end points,
and has a maximum = sec(1

2θ) at t = 1
2 . Thus, the geodesic flow (nt, ctǫ) has the

contribution in the rotation plane given by λ(t, θ)A(v) + λ(1 − t, θ)v which is not
a true rotation from v to A(v). Also, the other contribution to nt is from µ(t, θ)p
which increases and then returns to size p (see Fig. 5). In addition, the distance
from the origin will vary by µ(t, θ)c0. These form a type of “pseudo rotation”. This
yields the following corollary.

Corollary 7.3. If M1 is obtained from M0 by rotation in a plane (with fixed orthog-
onal complement), then the Lorentzian geodesic flow is the family of hypersurfaces
obtained by applying to M0 the family of pseudo rotations given by (7.3).

Figure 5. Lorentzian Geodesic Flow between a surface and a
rotated copy is given by a “pseudo–rotation”. The path of the
rotation is indicated by the dotted curve, while that for the pseudo
rotation is given by the broken curve, which lifts out of the plane
of rotation before returning to it.
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Invariance under Scalar Multiplication and Rigid Motions. We can use
the calculations used in the preceding to establish the invariance of the Lorentzian
geodesic flow under scalar multiplication and rigid motions.

Suppose Π is a hyperplane in Rn defined by (n, c). If φ is a transformation de-
fined by: multiplication by b; respectively translation by p; respectively orthogonal
transformation A, then Π′ = φ(Π) is defined by: (n, bc); respectively (n, c+ n · p);
respectively (A(n), c) Now suppose Πt, defined by ψ(t) = (nt, ct), is a Lorentzian
geodesic flow between Π0 and Π1.

Let φ be one of: multiplication by b; respectively translation by p; respectively
orthogonal transformation A. Let Π′

t = ψ(Πt). Then, by (4.3)

(7.4) (nt, ct) = (λ(t, θ)n1 + λ(1 − t, θ)n0, λ(t, θ) c1 + λ(1 − t, θ) c0)

First, in the case of multiplication by b, Π′
t is given by

(7.5) (nt, bct) = (λ(t, θ)n1 + λ(1 − t, θ)n0, λ(t, θ) bc1 + λ(1 − t, θ) bc0)

which is the Lorentzian geodesic flow between (n0, bc0) and (n1, bc1).
An analogous argument works for the other two cases using the forms of Π′ given

above. As a general composition of scalar multiplication and rigid transformations
is given as a composition of these three, the invariance follows.

8. Results for the Case of Surfaces in R3 (still to be completed)

First, suppose that M ⊂ R3 is a generic smooth surface with n = (a1, a2, a3)
a smooth unit normal vector field on M . We assume that X(u1, u2) is a local
parametrization of M . Also, let n(u) · x = c(u) define the tangent plane to M at
X(u1, u2).

Let L : M → R be the Lorentz map, and let M̃ = L(M).
generic Legendrian singularities as in §3 (as e.g. in fig. 3.1)

(1) Mt will have a unique point corresponding to z = ψ̃t(x) ∈ M̃t provided

(8.1) N ′

t(x) = λ(t, θ)N1((x)) + λ(1 − t, θ)N0(x) + σ(t, θ)
∂θ

∂u
n0

is nonsingular (as in (6.1)).

(2) At points on cuspidal edges or swallowtail points z ∈ M̃t, there is a unique
point on Mt which is the unique limit of the envelope points corresponding
to smooth points of M̃t approaching z.

(3) At points z ∈ M̃t which are tranverse intersections of two or three smooth
(n−1)-dimensional submanifolds, or the transverse intersection of a smooth
manifold ans a cuspidal edge, there is a unique point in Mt for each smooth
(n−1)-dimensional submanfold passing through z (and one for the cuspidal
edge).

(4) The envelope Mt will be smooth at points corresponding to a smooth point

z ∈ M̃t satisfying (6.1) provided H(ñt(x)) ·h̃t(x) is nonsingular. Here h̃t(x)
is defined from ñt(x) as in §5.
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