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INTRODUCTION

For 2D objects in R? or 3D objects in R® with (smooth) boundaries B, the
Blum medial axis M [BN], or an appropriate variant, is a fundamental object for
describing shape. There has been a significant body of work devoted to methods for
computing it, including the grassfire method (Kimia et al [KTZ]), the Hamilton—
Jacobi skeleton (Siddiqi at al [SB]), and Voronoi methods (Szekely et al [SN]) among
others.

FIGURE 1. Blum Medial Axis and Radial Vector Field for an Object

Once we have the medial axis at our disposal, we may then work with it as if it
were a basic object which can be manipulated, compared, deformed, or statistically
analyzed as e.g. done by Pizer and coworkers [P1], [P2], [Yu] etc. When such
operations are applied to a medial axis, we would like to directly deduce geometric
properties of the resulting boundary, including whether or not it remains smooth.
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In this paper, we will determine how the geometric properties of B can be directly
computed from medial data for the Blum medial axis M, including the question
of smoothness. This will provide a medial quantitative description of geometric
properties of objects, making precise typically descriptive terms for objects as being
thick or thin, lopsided, or their having bulges or indentations.

Already M alone determines certain features such as protrusions, provided the
corresponding curvature of the boundary changes sufficiently rapidly. However, for
a variety of objects which have approximately the same Blum medial axis, there
are significant differences in shapes arising from variations in the radius function.
These may involve differences in the intrinsic geometry, e.g. the sign of the Gaussian
curvature, differential geometry such as principal curvatures and directions, and
“relative geometry”such as identifying regions where  is thickest or thinnest.

In the generic case, the medial axis itself M is a “branched manifold” (which
can be described more formally as a “Whitney stratified set”). Associated to it is
a multivalued radial vector field U from points of M to the corresponding points
of tangency on the boundary, and the radial distance function r = ||U||. There is
the associated (multivalued) unit vector field Uy such that U = rU;. As well there
are differential geometric properties of M, and natural orthonormal frames on M
can be constructed from r (see [P1]). How do we extract intrinsic medial structures
from this medial data which explicitly determine the geometric properties of B?

One natural approach has been to seek the relation between the differential
geometry of the boundary and that of the (smooth part of the) medial axis using
information about the radius function r and its derivatives. Results obtained by this
approach include: curvature of boundary curves in the 2D case, originating with
Blum and Nagel [BN]; the Gaussian and Mean curvatures of boundary surfaces
in 3D by Nackman and Pizer [Na] [NaP]; and in the opposite direction, deriving
differential geometric properties of the medial axis from the differential geometry of
the boundary by Siersma, Sotomayor and Garcia [Si] [SSG]. In both of the surface
cases, the relationship actually involves the differential geometry of a parallel surface
of the boundary (rather than the boundary itself).

We shall determine the differential geometry of the boundary, in any dimension,
directly from medial structures we introduce; however, we take what appears to
be a counterintuitive approach to this problem by , not explicitly involving the
differential geometry of the medial axis itself [D1] and [D2].

The pair (M,U) consisting of the Blum medial axis and associated multivalued
radial vector field is a special case of a “skeletal structure” which satisfies additional
conditions, see Fig. 1. For a skeletal structure (M,U), we define “radial and
edge shape operators” S;.,q4 and Sg, and a “compatibility 1-form” 7. These “shape
operators” determine the “geometric properties of the radial vector field U; "relative
to M and are defined using only the first derivatives of U;. The shape operators
together with the radius function r allow us to determine the differential geometry
of the boundary in the Blum case. We transfer information provided by these medial
operators to geometric properties of the boundary via a “radial flow”, which is a
backwards version of the “grassfire flow” [KTZ] and yields a radial map from M to
the associated boundary.

To begin, we apply the dimension independent results from [D1] and [D2] to
2D and 3D objects to give explicit formulas for the differential geometric shape
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FIGURE 2. Radial Flow versus Grassfire Flow

operator for the object boundary (Theorem 3.1). For points corresponding to non—
edge points of M, the formula is in terms of the radial shape operator, while at
“crest points”, which correspond to edge points of M, the formula is in terms of
the edge shape operator (Theorem 3.4). We deduce explicit formulas for both the
principal curvatures and principal directions for the boundary. Thus, we deduce all
intrinsic and extrinsic differential geometry of the boundary using the radial and
edge shape operators.

Second, we introduce a “geometric medial map” on the medial axis which iden-
tifies both intrinsic and “relative geometry”of the corresponding regions on the
object boundary. This map can be thought of as the analogue of a weather map
which provides information about the atmosphere above a region of the earth. A
weather map typically shows regions of high and low pressure, curves of constant
temperature, and arrows indicating wind direction, all exhibited on a map of that
region on the ground. In an analogous fashion, the geometric map on the medial
axis will provide geometric information about the boundary, but its measurements
only involve the unit radial vector field on the medial axis.

We need only use the radial shape operator S,,q to construct the “intrinsic
geometry portion”of the geometric medial map. Since S,.,4 depends upon the choice
of a value of Uy, for each side of each smooth sheet of M there will be a different
Sraqd- Thus, the intrinsic portion of the geometric medial map will be different on
each side of a smooth sheet of M. Although S,,4 is not a differential geometric
shape operator and is not even symmetric, we treat it as if it were and introduce
analogous terminology: det(S,.q) is the “radial curvature”; the eigenvalues and
eigendirections of S,,4 are “principal radial curvatures and directions”; the curves
with tangent lines the principal radial directions are “principal radial curves”on M,
etc. The geometric medial map on each side of a smooth sheet of the medial axis M
consists of the following objects: regions of positive and negative radial curvature
separated by radial parabolic curves, distinguished radial umbilic points, and at
each point pairs of principal radial directions with principal radial curves, with the
signs of the principal radial curvatures. What is surprising is that under the radial
map these properties correspond to the same differential geometric properties on
the object boundary (Theorem 4.2). More specific numerical geometric information
can be added with the inclusion of r (Theorems 3.1 and 3.4).

The second portion of the geometric medial map captures relative geometry of
the boundary. Already relative geometry on the medial axis appears when we seek
to compare the sizes of principal curvatures of the boundary at distinct points or
determine how principal curvatures change along curves. This cannot be done solely
in terms of principal radial curvatures alone, but also involve r as expressed by the
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FiGURE 3. Part of the Intrinsic Geometric Medial Map on the
Blum Medial Axis

radii of curvatures equation (see §5). The properties of r as a function on M are
key to relative geometry of the boundary.

For example, if we are asked where an object such as an egg or a potato is thickest,
we would not choose along the long axis where it has the greatest diameter, but
rather where the width is greatest relative to the central axis of the object. This is
relative as opposed to intrinsic geometry. We introduce on the smooth sheets of M
a discrete network of curves along which r is relatively largest and smallest (ridges
of thickness and valleys of thinness) and where these properties undergo transitions.
This system is defined using the “relative critical set”of r. This extends the notion
of “ridge of a function”, defined by Pizer and Eberly (see [Eb] and [PE]), to a
complete set of relative critical data whose generic properties have been determined
for functions on R" for all n, see Damon [D3], [D4], Miller [Mi] and Keller [Ke].

In our case, we define the relative critical set of r on M,.g, the smooth part of
M. This classification places one of four labels on each part of a curve indicating
the behavior of the radial function r on that part. These properties are defined and
capture relative geometric properties even in the non-Blum case. Since r is defined
on the smooth sheets of M rather than Euclidean space, the definition involves the
Hessian operator of r; however, the generic properties continue to hold by [D5].

In the Blum case, we reduce the calculation of these curves to calculations involv-
ing the first derivative of Uy 44, the tangential component of U;. Specifically this in-
volves the eigenvalues and eigenvectors of the Hessian operator H,.(v) = —V,U1tan-
In the Blum case, both r and Uy ¢4, are single—valued at smooth points of M. Thus,
the relative critical set has the same structure on each side, and hence is intrinsic
to each smooth sheet of M. For example we see in Figure 4, the ridges and valleys
along with the connectors curves indicating where the object is thickest and thinnest
and where transition behavior occurs. The added data of the critical behavior of
r on the relative critical set completely determines the thickness properties of the
object.

When these two parts of the geometric map are combined, they give a precise
decomposition of the medial axis which reflects via the radial map both the intrinsic
and relative geometric properties of the object boundary.

We conclude by considering the effect on the associated boundary of distorting
or deforming the Blum medial axis by a diffeomorphism. This effect is determined
through the introduction of distortion operators which determine how the radial
and edge shape operators are changed as a result of the diffeomorphism. This allows
us to determine the smoothness and geometry of the new boundary in terms of the
original shape operators and the distortion operators.
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FIGURE 4. Relative part of a Geometric Map on the Blum Medial Axis
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smoothness properties of boundary in terms of the differential geometry of the
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here.
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1. BLuM MEDIAL AXIS AND THE RADIAL FLow

We begin by briefly recalling the standard properties of the Blum medial axis of
a region ) with smooth boundary B. First, we consider the properties that occur
generically, i.e. for almost all 2 which do not otherwise satisfy any special symmetry
conditions. These properties have been worked out in general by several workers
besides Blum and Nagel [BN], including Yomdin [Y] (as a “central set”), Mather
[M2] (as the Maxwell set for the “distance to the boundary function”), Bruce-
Giblin—Gibson [BGG] , [BG] (for the more general symmetry set), and Bogaevski
[Bg] (for transitions under variations). A recent paper by Giblin [Gb] very clearly
describes the main properties, and [P3] surveys the properties in the multiscale
context.

For 2D objects, the Blum medial axis consists of smooth curves which may branch
or end [BN]. For generic 3D objects, the Blum medial axis M consists of pieces of
smooth surfaces which may either: join in a Y—shaped configuration along a branch
curve; have edges; or have an edge appear (end) at a “fin creation point” (which
is an example of an edge—closure point in [D1]). These possibilities are shown in
Fig. 5. The part of M formed from smooth points is denoted M,., while the set of
points of M where the three nonsmooth possibilities occur is the singular set of M,
denoted M,ing. Although we shall describe results for the smooth case, the results
continue to hold for M and U which are C* for k > 1.

— /

a) edge b) Y-branching c) fin creation point

FIGURE 5. Possible local generic structure for Blum Medial axes
in R® and the associated Radial Vector Fields

M as well satisfies additional properties describing how exactly the smooth sheets
behave at singular points. These are described by M being a “Whitney stratified
set” (see e.g. [M1] or [Gi]) and more specifically a “skeletal set” (see [D1, §1]).
These extra conditions rule out possible exotic behavior that does not correspond
to our intuitive ideas as presented in Fig. 5. However, in what we do here we allow
nongeneric behavior as might result from finite symmetry as exhibited in Fig. 6.

On M is defined a multivalued radial vector field U from points of M to the
corresponding points of tangency on the boundary, and radial distance function (or
radius function) r = ||U||. For a smooth boundary B, r > 0 so we may express
U = rUy, for a (multivalued) unit vector field on M. On smooth points of M
(denoted M,.,), U has two values (called “sails”by Pizer et al in work on “M-
reps”[P1]). At a singular point zo of M, the number of values of U is determined
by the number of connected components (the “complementary components”) into
which M divides its complement in a small ball about zo. For example, Y—shaped
branch points have three local complementary components while fin creation points
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FIGURE 6. Possible Nongeneric Blum Medial axes in R®

have two. For edge points of M (denoted M), there is only a single value for U
which is tangent to M and points away from M.

For a function or vector field to be differentiable on M requires the usual notion
of differentiablity on M,.,. At points of My;,, which are not edge (closure) points,
a smooth sheet of M can be extended smoothly through the branch curve. Then,
for a function or vector field on the sheet to be differentiable at a point on the
branch curve, it must also extend smoothly. At edge (closure) points, the usual
notion of smoothness at an edge point of a surface no longer suffices. Tom Fletcher
pointed out that U will not be smooth in this sense. Instead, we must introduce
edge coordinates as in [D1, §1]. These coordinates correspond to the projection of
a half-parabolic surface as shown in Fig. 7. Then, as shown in [D1, Example 1.5],
for edge coordinates, both U and r are smooth at edge points. Of course Blum
medial axes do not naturally come with these coordinates. Thus, we will state
results at edges which use edge coordinates and then explain (in §2) how to use
standard coordinates for surfaces with edges to compute objects such as the edge
shape operator.

oM

FIGURE 7. Projection defining an Edge Parametrization for edge
of Blum medial axis

The pair consisting of the Blum medial axis together with the radial vector field,
(M,U), forms a skeletal structure as defined in [D1]. For such a skeletal structure
we define the associated boundary as B = {z + U(z) : * € M} where we allow for
each z all possible values of U(z).

Radial Flow from the Blum Medial Axis. There is a way to relate the medial axis M
and the boundary B by the radial flow, which is a backward version of the “grassfire
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flow” [KTZ] (also see [SB]). Locally it is defined using a smooth value of U in some
neighborhood of a point g € M and given by the local radial flow Y (z) = z+tU(z).
The time one value of this map defines a radial map 11 (depending on the local
choice of U) from a region of M to a corresponding region of B. We note that as
U is multivalued, the radial flow cannot be globally defined from M to B (instead
it is globally defined on the “double of M”, see [D1, §3]).

We compare the radial flow versus the grassfire flow from the boundary to the
medial axis. First, for the grassfire flow: i) the flow is along normals to the boundary
at unit speed; ii) the level surfaces remain normal to the lines of flow; iii) the level
sets are smooth manifolds while they are defined until shocks occur; iv) then shocks
occur at points of the Blum medial axis; v) thus, for each point the flow is defined
for a time that varies. By contrast, for the radial flow: i) the flow is along the
radial lines from the medial axis which correspond to normal lines to the boundary;
ii) the flow occurs at speeds which depend upon the the radius function; iii) the
level sets B; are not smooth but are stratified sets and only become smooth at the
boundary; iv) the level sets are not normal to the radial lines ; and v) the flow is
defined from all points of the medial axis for 0 < ¢ < 1 and reaches the boundary
when t = 1.

Thus, we can think of the radial flow as “inflating the Blum medial axis”to fill
out the region €2, much as we inflate a balloon; with a crucial difference that for the
level surfaces B; at time ¢ < 1 fail to be smooth at all points coming from Mgiyg.
Only at t = 1 do all of the singularities disappear and the level surface of the flow
becomes the smooth boundary B.

Compatibility 1-form and Compatibility Condition. Two key properties of the bound-
ary are captured by a compatibility condition on the Blum medial axis. The com-
patibility 1-form ny is defined by ny (v) = Uy -v+dr(v); this is multivalued because
U is. M satisfies the compatibility condition at a point zy with smooth value U if
nu = 0 at zg. Then, by [D1, Lemma 6.1] or [D2, Lemma 3.1],

Proposition 1.1. The compatibility condition at a smooth point xo for the value
U implies the orthogonality of U to the boundary at the associated boundary point;
and the compatibility condition at a singular point xo for a value of U, implies that
the boundary is weakly C' at the point associated to xo via U.

Example 1.2 (Compatibility Condition for 2D Medial Axis). Let M be a 2D
Blum medial axis. At a point z¢ on a branch curve v of M, the compatibility
condition has two implications. Both are consequences of (1.1) which follows from
the compatibility condition.

(1.1) dr(v) = =Ur-v = =Uitan-v

where U ¢qn, is the tangential component of U; for the smooth sheet in question
and v is tangent to the sheet at zg.

First, U; - v is independent of the choice of smooth value U at x¢ when v is
tangent to v (by (1.1) because r is uniquely defined on 7). Second, equation (1.1)
also applies on each smooth sheet meeting -y, with v tangent to a smooth sheet at
zo but normal to . The first condition fixes a common tangential projection onto
v for all values of U at the given point xg.

The second gives independent conditions for the tangential component of each
value of U; on each sheet. Let Vr denote the “Riemannian gradient”of r as a
function on M (see §6). Then the compatibility condition also asserts that on any
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smooth sheet the tangential component Uy 4., = —Vr. Hence, for v a unit vector
and 6 the angle between Uy ¢qy, and v, (1.1) is equivalent to Vr - v = —cos(f) .
Thus, the angle Vr makes with unit vectors is also fixed by Uj.

Also, ||Vr|| < 1 off edge points as U; is not tangent. By contrast, at an edge
point, U and hence U; are tangent to M, so ||Vr|| = 1 on edge points. This can
only make correct sense at edge points if Vr is computed using edge coordinates.

Remark 1.3. Often the Blum medial axis is approximated using triangular or
rectangular pieces. The edges of these pieces are then included as part of the
singular set of M. Hence, the compatibility condition must also be satisfied at these
points in order to have smoothness of the boundary. The difficulty of obtaining
smoothness is investigated in [Yu].

Finally, we mention that the Blum medial axis satisfies additional special prop-
erties not possessed by a general skeletal structure. These include : r being the
same for all values of U at a given point, and at smooth points zo € Mg, the two
values of U making equal angles with T, M. We will find that these conditions are
not crucial for understanding the geometry of the boundary.

2. RADIAL AND EDGE SHAPE QPERATORS FOR 1D AND 2D MEDIAL
STRUCTURES

Shape Operators and Principal Radial/Edge Curvatures. We begin by recalling from
[D1] the definition of the radial and edge shape operators as they apply to 1D and
2D medial axes.

Radial Shape Operator : Let (M,U) denote a Blum medial axis with radial vector
field. Suppose we choose in a neighborhood of a non—edge point zy € M, a smoothly
defined value for U. Then, the radial shape operator (for this value of U) is defined
by

Sraal®) = —projy (1)
with proj;; denoting projection onto T, M along U (in general, this is not orthogo-
nal projection, see Fig. 8). Unlike the differential geometric shape operator, Sy,q is
in general not symmetric. For a basis v of T,, M, we let Sy denote the matrix rep-
resentation of S,.q. The principal radial curvatures and principal radial directions
are the eigenvalues and eigendirections of S;.,q4.

F1GURE 8. Projection for Defining the Radial Shape Operator
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Example 2.1. We first consider M a 1-dimensional Blum medial axis of an object
in R%. If ~(s) is a local parametrization of one of the smooth curve components of
M, then write

ol
s
Then k, is principal radial curvature and the radial shape operator is then just
multiplication by k.

(2.1) = a-U—k-v(s)

Example 2.2. Second, let M be a 2—dimensional Blum medial axis of an object
in R%. Let X (u1,u2) be a local parametrization of an open set W of one of the

0X
smooth sheets of M. Then, v; = i =1,2gives a basis for T,, M at each point

ou;
zg € W. We write
(22) ggl = CLi'Ul—bh'-’l)l _sz'"UQ 1= 1,2
Then,
bll b12
2. Sy =
(2:3) (bzl b22>

The principal radial curvatures are the two eigenvalues k,1 and k,o of Sy.

We remark that if we had used a different basis w = {wy,ws}, then if C' denotes
the transformation for the change of basis from v to w, then Sy, = CS,C~1.
Edge Shape Operator: Again we first give a dimension independent definition and
then consider its meaning for 1D and 2D Blum medial axes. Let z¢ be an edge
point, with a smooth value of U at z¢ corresponding to one side of M. Also, let n
be a unit normal vector field to M pointing on the same side of M as smooth value
of U. We define

., 0U
Se) = —proj(5))

Here proj’ denotes projection onto T,,0M@® < n > along U (again this is not

U . .
orthogonal). We emphasize that L has to be computed using edge coordinates.

For v € T,,0M, there is no problenqu, it is only for v pointing out from M that we
must be careful. For a matrix repesentation of Sg we use a special basis v for T, M
consisting of a basis v for T,,0 M combined with a vector in edge coordinates that
maps to a multiple of Uy (z¢). For T,,0M& < n > we use for a basis v and n. We
denote the matrix by Sg .

To define the principal edge curvatures, we let I,_q ; denote the n X n—-matrix
obtained from the identity matix by changing the last entry to 0. For n x n—
matrices A and B, a generalized eigenvalue of (A, B) is a A such that A — AB is
singular. The principal edge curvatures are defined to be the generalized eigenvalues
of (SEva In—l,l)-

Example 2.3. For a 1-dimensional Blum medial axis M of an object in R?, let
~(s) be a local edge parametrization of M with say v(0) = g € OM. Then, we
write

oU
(2.4) 6—31 = a-Up—c¢cn-n
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The edge shape operator is then multiplication by cn. As Ig; is the 1 x 1 0—matrix,
provided ¢, # 0, there are no principal edge curvatures. Which is not surprising
as the edge is 0-dimensional. The degenerate case would correspond to ¢, = 0,
in which case all values are generalized eigenvalues. By Proposition 4.7 of [D1],
the Blum medial axis satisfies the edge condition (see §3), which implies that all
positive generalized eigenvalues are bounded from below by %, a contradiction.

Example 2.4. For M a 2-dimensional Blum medial axis of an object in R?, we
let X (ui,u2) be a local edge parametrization of an open set W with X (0,0) =
0X
To € OM. We suppose X chosen so that if v; = 8—,@' = 1,2, then vy € T,,0M
W
and vy maps under the edge parametrization to c - Uzlt,m, for Uyien the tangential
component of U; and ¢ > 0. We write

oU-
(2.5) 81; a; Uy —cnj-n—bi-vy i=1,2
K3
Then, the edge shape operator has the matrix representation
_ by by
(2.6) Spv = ( )

When ¢n2 # 0, the single principal edge curvature is the generalized eigenvalue kg
of (Sgv,I1,1), which we can compute as kp = c,5 - det(Sgv). We shall explain in
Proposition 3.7 how we may carry out computations while avoiding the use of edge
coordinates.

Conditions Implying the Smoothness of the Boundary. Before stating how to use
the radial and edge shape operators to compute the differential geometric shape
operator, we first indicate a second important application of these operators. In
the case that (M, U) is a skeletal structure, we can still ask when the associated
boundary B is smooth. Figure 9 illustrates how the boundary associated to a
skeletal structure may have singularities. We describe how we may ensure the
smoothness of the associated boundary for general skeletal structures.

FIGURE 9. Singularities on a Boundary Associated to a skeletal structure

We define :
(1) (Radial Curvature Condition ) For all points of M off OM

1
r < min{

}  for all principal positive radial curvatures &, ;
Kri
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(2) (Edge Condition ) For all points of M

r < min{ }  for all positive principal edge curvatures kg ;

KEi
(3) (Compatibility Condition ) For all singular points of M (which includes edge
points), ny = 0.

Then, the smoothness of the boundary is guaranteed by the following consequence
of [D1, Theorem 2.3 ].

Theorem 2.5. Let (M,U) be a skeletal structure in B2 or R® which satisfies:
the Principal Curvature Condition, Edge Condition, and Compatibility Condition.
Then,
i) For M in R?, the associated boundary B is a C' curve which is smooth at all
points corresponding to smooth points of M and which only has nonlocal intersec-
tions from distant points in M. If there are no nonlocal intersections then B is an
embedded curve.
ii) For M in R3:
(1) the associated boundary B is an immersed surface which is smooth at all
points except possibly at those corresponding to points of Mgin,.
(2) At points corresponding to points of Myin,, B is weakly C*, which means
that it has a well defined limiting tangent space at such boundary points
(this implies that it is C* except possibly at edge closure points).
(3) Also, if there are no nonlocal intersections, B will be an embedded surface.

For both cases, at smooth points, the projection along the lines of U will locally map
B diffeomorphically onto the smooth part of M.

Remark 2.6. In the case (M, U) is a Blum medial axis, Proposition 4.7 and Lemma
6.1 of [D1] imply that (M, U) satisfies the radial curvature, edge and compatibility
conditions. The compatibility condition will be satisfied at all points of M.

Example 2.7. For a 1-dimensional Blum medial axis M (or more generally a
skeletal structure), by Example 2.1, the radial curvature condition becomes:

1
r < — if k. > 0, and no condition otherwise.
T

The edge condition reduces to ¢, 7# 0 (otherwise all values are generalized eigen-
values). Finally, if (s) is a unit speed parametrization of a smooth compo-

nent of M with say v(0) = zo € M, then the compatibility condition becomes

0
Ui -+'(0) + a—r = 0. As z¢ approaches an edge point, the compatibility condition
s

has limiting form 1 + @ = 0, which is a well-known property of the Blum medial

0s

or
axis. Except there is the proviso that the meaning of the derivative 95 has to be
S
reinterpreted using edge coordinates.
Example 2.8. For a 2-dimensional Blum medial axis M, by Example 2.2, the

radial curvature condition becomes:

1
r <min{—} for those k,; >0 i=1, 2.

T
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The edge condition becomes by Example 2.4, for kg = c;é - det(Sgv)

1
r < — if kg >0 otherwise no condition.
KE

For example, if both k,; < 0 then as we see in §4, the boundary is convex and there
is no condition. If instead both x,; > 0 then (by §4) the boundary is concave and
both k,; place restrictions on .

3. INTRINSIC DIFFERENTIAL GEOMETRY OF THE BOUNDARY

Differential Geometric Shape Operator in terms of the Radial Shape Operator. We
begin by expressing the differential geometric shape operator for the boundary B
at a boundary point z{, € B associated to a non-edge point zg € M. We let v/ be
the image under the radial map diy of a basis v = {v1,...,v,} of Ty, M (or for
TzoMy in case £ € Mging, where the value of U extends smoothly to the smooth
sheet M,) We can apply Theorem 3.2 of [D2] to the special case of Blum medial
axes.

Theorem 3.1. Suppose (M,U) is a Blum medial axis with radial vector field. Let
xy € B correspond to the non—edge point o € M as in the preceding situation.

(1) The differential geometric shape operator Sp of B at x{, has a matriz rep-
resentation with respect to v' given by

(3.1) Sgy = (I—7r-8,)'8,

(2) There is a bijection between the principal curvatures k; of B at z{ and
the principal radial curvatures k,; of M at xo (counted with multiplicities)
given by

Kri Ki

3.2 Ki= — —_—

( ) ’ (1 - T’irz’) (1 + T’Iii)

(3) The principal radial directions corresponding to k,; are mapped by dipy to
the principal directions corresponding to k;

or equivalently Kp; =

Remark . A simpler way to express (3.2) is in terms of the signed radii of cur-
vatures and radial curvatures, see §5. This alternate form immediately reveals
the “relative nature” of comparing principal curvatures at distinct points using the
relations (3.2).

Example 3.2. For a 1D Blum medial axis, we obtain that the curvature for the
boundary curve B at a point which corresponds to a non—edge point (and particular

value of U) is given by
Kr

K =
1—rk,

Example 3.3. For a 2D Blum medial axis, the boundary points corresponding to
edge points of M are crest points. For a non—crest point zj corresponding to a
non—edge point o, we compute Sy as in (2.3) by the 2 x 2-matrix (b;;). We obtain
the principal radial curvatures and directions from the eigenvalues and eigenvectors
of Sy. Then, we obtain the principal curvatures of B by applying (3.2), and the
principal directions by applying di; to the eigenvectors. Finally, we obtain the
matrix representation Sy for the differential geometric shape operator by (3.1).
In doing this, we determine the differential geometry using what is essentially the
minimal amount of medial information possible (see also §6).
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We also note that from Spy+ we can easily compute the Second Fundamental
Form II(v;,v}) = v; - Sp(v}). A matrix representation of II with respect to the
basis v’ is given by G - Sgv where G = (g;;) is given by the metric on B by
gij = v; - v;. G can be computed using di1 by [D1, §4]. However, it follows from
the formula (3.1) that shape operators give the most direct relation between the

differential geometry of B and medial data.

Next, we consider how the differential geometric shape operator at a crest point
zg on B (corresponding to an edge point zg) can be determined from the edge shape
operator. For a special basis v at zo with corresponding basis v/, we may apply
[D2, Corollary 3.6].

Theorem 3.4. Suppose (M,U) is a Blum medial azis and radial vector field of a
region with smooth boundary. For a crest point xj, on B corresponding to an edge
point g as above, the differential geometric shape operator for B at x{, has a matric
representation with respect to v' given in terms of the edge shape operator by

(33) SBV’ = (Infl,l —-T- SEv)il'SEv

Hence, the principal curvatures k; and principal directions of B at x{ are the eigen-
values and eigendirections (after identification by diy ) of the RHS of (3.3).

Example 3.5. For a 1D Blum medial axis, at a point of the boundary curve B
corresponding to an edge point, we obtain from (3.3) that
-1

k= (0—rcn) ten = -

which is the curvature of the oscillating circle of radius r (with minus sign resulting
from an outward pointing normal vector).

Example 3.6. For a 2D Blum medial axis, at a crest point of the boundary surface
B, we computed the edge shape operator in Example 2.4. Thus, by (3.3) we compute
the differential geometric shape operator. Let K = det(Sg+v). Then,

(1 —rby  —7rby )_1 ( by b )
SBV' =
—rcn1  —TCn2 Cnl Cn2

(34) = Cn QC;";KE 1
r(rKg—cn1) T
Hence, we see that
1 K
(3.5) the principal curvatures are : — - and ———
T ctn2 —TKE

oU
We note the special case where 8—1 is orthogonal to n. This implies ¢,1 = 0,
v

1
50 in (3.4) Kg = bicna. Then, by (3.4), Sgv becomes diagonal with eigenvalues

- and -1,
BT T

To compute the differential geometric shape operator at a crest point, we must
use edge coordinates, which we are not a priori given. A way around this is to com-
pute Spy as a limiting value. We let v; be a smooth vector field on a neighborhood
W of the edge point xo which is tangent to M. Here smoothness is only in the
sense of a surface with edge. We also let va = Uj4q, the tangential component
of U;. Then, both Uy e, and vy are smooth for edge coordinates. Then, we can
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compute at smooth points € W near zy, a related operator S}, extending Sg as

follows.
oUy

(36) Sis(v) = —projiy(51)

where now projg; denotes projection along U but onto L, the subspace spanned by
{v1,n}. Then, we apply Proposition 3.9 of [D2] to conclude

Proposition 3.7. In the preceding situation Sg, the differential geometric shape
operator at a crest point x{, with respect to the basis v' associated to v is given by

(3.7) Spy = lm (I —7-Sk,) 'Sk,
T—T0

Hence, the principal curvatures at x{, are the limits as t — xo of the eigenvalues
of the RHS of (3.7). Moreover, if the principal curvatures at xo are distinct, then
the principal directions are the limits of the eigendirections of the RHS of (3.7) as
T — Zg.

Although we cannot computationally take a limit as in Proposition 3.7. By
choosing z sufficiently close to zg, we can compute the RHS of (3.7) to determine
good approximations to both the eigenvectors and eigenvalues for the crest point
zg.

Geometry in the Non—Blum Case. To express the differential geometric shape oper-
ator of the boundary in the non-Blum case requires in addition to S,,q both 1y and
its first derivatives. We do not explicitly give the formula here. However, suppose
that (M, U) is “almost Blum”, which means that although ny is not identically zero
on M, both ny and its first derivatives are small. Then, the formulas in Theorems
3.1 and 3.4 approximately give the correct differential geometric shape operator.
Hence, since Sy.q is as easy to compute in the non—-Blum case as in the Blum case,
we are able to approximately determine the geometry of the boundary in the “al-
most Blum case”. We shall see in the next sections this has further consequences for
constructing a geometric medial map in the almost Blum case which approximately
determines the intrinsic and relative geometry of the associated boundary.

4. INTRINSIC PART OF THE GEOMETRIC MEDIAL MAP

In the preceding section, we explicitly expressed the differential geometric shape
operator in terms of the radial or edge shape operators by formulas which also
involved r. We go further in this section to construct the portion of the geometric
medial map which is defined solely in terms of the radial shape operator to construct
geometric objects on the medial axis which correspond under the radial map to the
corresponding ojects for the differential geometry of the associated boundary B.

In light of the results from the preceding section, it is sufficient to establish the

following.
Lemma 4.1. Suppose (M,U) is a Blum medial azxis of a region Q with smooth
boundary B. Let zo € M be a smooth point with associated point x{, € B. Under
the correspondence (3.2), the principal radial curvatures at xo have the same sign
as the corresponding principal curvatures at xjy, and one is zero iff the other is.

Proof. By Proposition 4.7 of [D1], (M,U) satisfies the radial curvature condition
at all smooth points of M. Thus, r < min{#} for all k,.; > 0. First, from (3.2) it
immediately follows that x,; = 0 iff k; = 0.
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Relation between Geometric Medial Map and Differential Geometry of the

Boundary
Radial Shape Operator & Differential Geometry of Boundary
i) regions of positive (negative) i) regions of positive (negative)
radial curvature Gaussian curvature
ii) parabolic radial curves ii) parabolic curves
iii) radial umbilic points iii) umbilic points
iv) signs of principal radial curvatures iv) signs of principal curvatures
v) principal radial directions v) principal directions
vi) principal radial curves vi) principal curves

Table 1: Intrinsic Part of Geometric Medial Map

Second, if both are nonzero, suppose first «,.; < 0. Then, 1 — r&,; > 0; and
hence by (3.2) k; < 0. If instead k,; > 0, then by the radial curvature condition
1—rk.; > 0s0by (3.2) k; > 0. O

Given the Blum medial axis M of a region 2 with smooth boundary B, we can
use Srqq to define on M,., the “radial analogues”of the corresponding objects for
classical differential geometry of surfaces. For example, K, = det(S;44) is the radial
curvature; the curve where det(S;44) = 0 is the radial parabolic curve; etc. Define
the intrinsic part of the geometric medial map to consist of the radial versions of
geometric objects given in the left hand column of Table 1. Then the relation
between the two columns of Table 1 is provided by the radial map /.

Theorem 4.2. For the Blum medial axis (M,U) of a region Q with smooth bound-
ary B, the radial map sends the radial objects in the geometric medial map (in the
first column of Table 1) to the corresponding differential geometric objects for B in
the second column of Table 1.

Proof. First, by Lemma 4.1, the sign of a principal curvature k; agrees with that of
the corresponding principal radial curvature k,;; and k; = 0 iff k,.; = 0. Hence, for
a point z{, € B which corresponds to zg € My, via the radial map, any property
at z which can be given in terms of the signs of the principal curvatures can
be expressed in terms of the same conditions for the signs of the corresponding
principal radial curvatures. In particular the correspondence in Table 1 involving
i), ii) and iv) follows. For iii) we use the formulas in (3.2) relating x; and &, ;. Since
the same r is used at a point, k1 = ko iff k.1 = Ky o.

Lastly, by Theorem 3.1, di); sends the principal radial directions to principal
directions giving v), and hence a principal radial curve will map by %; to a curve
whose tangent lines are principal directions, and so is a principal curve. |

In Fig. 10, we see that distinct properties of boundaries can be detected by the
intrinsic part of the geometric medial map.

5. INTRINSIC VERSUS RELATIVE GEOMETRY OF THE BOUNDARY

To understand the role of r for the relative geometry of the boundary B, we
begin by considering how we compare the values of principal curvatures at different

points of B in terms of medial data. To compare their values, we consider the signed

.. def . . .. .
radii of curvature r; = ni and the corresponding signed radii of radial curvature
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- (==,

FiGURE 10. Detecting Geometric Properties of the Boundary
using the Geometric Medial Map

d . . .
Tri e/ ﬁ We note that in terms of the signed curvatures, (3.2) can be rewritten

in the follbwing radii of curvature equation:
(5.1) rr; = r+r; foralli

We next see this gives us an immediate comparison of principal curvatures at
distinct points in terms of medial data. Consider two points z and z in B which
correspond to points zg, 1 € M., and a smooth value of U defined at both points
(so zf, and z} lie on the same side of the smooth sheet of M). We let «; be a principal
curvature at x with k,.; the corresponding principal radial curvature at zo and let 7
be the radial function. For 2} we add primes to denote the corresponding objects,
e.g. k; will be the corresponding principal curvature at zi, etc. To compare k;
and k}, we suppose they have the same sign (otherwise we can use Theorem 4.2 to
distinguish which is larger).

Proposition 5.1. If k; and &} have the same sign, then
1

1
(5.2) ki < Kj iff r— <r'——=
Krj

T

In particular, if k,; < KL, and r <7v', then k; < K}.

Proof. Let r; and r} denote the corresponding signed radii of curvatures. As ;
and k; have the same sign, x; < &} iff »; > rf. Then, by (5.1), this is equivalent
to rp; —r > rl; —r', and hence to r — ﬁ <r - n,l'. Thus, if k,; < kl.; then

Hii > nii . Together with » < 7, this implies the right hand inequality in (5.2). O

A second consequence of (5.1) is to identify critical points of x; along curves in B.
A critical point z{ of k; along a curve v;(s) is also a critical point for r; (provided
k; # 0). Suppose 71 is the image of v under 1; with zy = 91 (20). Then, by (5.1),

T o OTrs  OF .
6—; =0 iff 6: = 55 Thus, we summarize.
Corollary 5.2. In the preceding situation, a critical point z{ = 1p(xo) of k; along

67‘1-1' _ or
ds  0s’

The preceding is relevant for various “ridges of principal curvature”considered
by Bruce-Giblin—Tari [BGT]. One such is the crest curve, which corresponds to
the edge of the medial axis. However, there are others which can be identified from
medial data using the principal radial curvatures and radial function. These curves
concern the geometry B as an embedded surface, but not the relative geometry of
B as the boundary of an object. We next introduce a method for analyzing this
geometry.

a curve y; = 1) oy corresponds to the point xo where
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Remark 5.3. Suppose (M,U) is partially Blum satisfying the radial, edge, and
compatibility conditions. The associated boundary will be smooth in the sense of
Theorem 2.5. The spheres of radius r at points M will be tangent to the associated
boundary; however, they may not lie entirely in the region. As observed by Tom
Fletcher, we may ensure the spheres are within the boundary, at least locally in a
neighborhood of the points of tangency, by requiring that r < |r;| for all principal
radii ; < 0. We claim this is guaranteed by the radial curvature condition together
with the radii of curvature equation (3.2). To see this we note that if r; < 0, then
by (3.2) r < |r;| iff r.; < 0. However, if r,.; > 0, then by Lemma 4.1, r; > 0, a
contradiction.

6. RELATIVE GEOMETRY OF THE BOUNDARY VIA RELATIVE CRITICAL SETS

We saw in the previous section that r plays an important role in the relative
geometry of the boundary when we compare geometry at distinct points of the
boundary in terms of medial data. We now turn more generally to the relative
geometry as captured by properties of r on the medial axis. To capture such
relative geometry we use the “relative critical set of r”.

We first recall how the relative critical set captures geometry of a function f on
R2, and then explain how it extends to r on the medial axis.

Relative Critical Sets on R?. Consider a smooth function f : W — R, for W an
open subset of R?. For a point zop € W, let A\; < )2 denote the eigenvalues of
the Hessian H(f)(zo), with eigenvectors e; and ep. First, zq is called a (height)
ridge point of f if V f(xo) is orthogonal to e; and A\; < 0. The (height) ridge,
which we henceforth call the ridge of f, is the set of (height) ridge points of f. It
was introduce by Pizer and Eberly to investigate properties of gray—scale “medial
functions” [PE], [Eb]. The ridge will generally consist of pieces of smooth curves.
They carry information about where the graph of f, viewed as a surface, has ridges,
in such a way that the dependent variable remains distinguished.

However, the ridge curves consist of disjoint pieces without any structure to
relate them. This is because they are only part of the complete structure needed
to reveal the full geometry of f. This structure is called the relative critical set of
f. We consider in addition to the ridge set the following sets of points consisting
of those g which are:

(1) walley points for which V f(xo) is orthogonal to ex and A2 > 0,
(2) r—connector points for which V f(zo) is orthogonal to e; and A; > 0, and
(3) v—connector points for which V f(zo) is orthogonal to e; and A2 < 0.

Then, the relative critical set, denoted RC(f) is the closure of the four ridge, valley,
r—connector, and v—connector sets; it contains, in addition, critical points, singular
Hessian points (where one of the A\; = 0), and (partial) umbilic points (where
A1 = A2). For higher dimensions one can analogously define relative critical sets,
except they become increasingly more varied as the dimension increases (see [D3],
[D4], [Mi], and [Ke]).

Remark 6.1. For generic f on R?, the relative critical set has the following generic
properties: each of the four types form smooth curves ; these curves only cross at
critical points which are nondegenerate; the types of curves which can cross are
determined by the type of the critical point (see Fig. 11); the curves can change
from one type to another as they pass through singular Hessian or (partial) umbilic
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FI1GURE 11. Crossings of Relative Critical Set at Critical Points

points ; and the specific changes are uniquely determined (see Fig. 12). This
network of curves does not end (as e.g. Blum medial axes do) but continues to the
end of the open set.

Singular Hessian —_— - et ————
(partial) Umbilic S e = = -

FiGure 12. Changing Type for Relative Critical Set at Singular
Hessian and (partial) Umbilic Points

Furthermore, they satisfy stability properties under perturbation of f [D3] and
generic transitions which can occur in one parameter families are also determined
[D3] and [Ke].

Relative Critical Sets for Functions on Surfaces. We wish to extend the preceding
to r on the medial axis. As an intermediate step, we consider a function f: N — R
where N is a smooth surface (in R?). N is a special case of a Riemannian manifold
and the dot product on the tangent space of N is denoted <,>. In [Eb], Eberly
used generalized eigenvalues and tensor index notation to define the (height) ridge
of f on any Riemannian manifold. We are going to give a formulation of the relative
critical set for f which for the ridge part will be equivalent to that given by Eberly.

We let V f be the Riemannian gradient so that < V f,v >= df(v). Also, the Rie-

mannian Hessian is defined by H(f)(v,w) e V(Vf),w >. Here “V,”denotes

0X
the covariant derivative of the vector field V f (we note that V, X (z¢) = projn(%)

for a vector field X, where proj,, denotes orthogonal projection onto T,N). By
properties of the covariant derivative, H(f) is symmetric in v and w. We define
the Hessian operator Hy : T, N = TN by Hf(v) = Vo(Vf). As < Hy(v),w >=
H(f)(v,w), it follows that Hy is self-adjoint, and so it has real eigenvalues, and the
eigenvectors for distinct values are orthogonal.

We again let A\; < Ay denote the eigenvalues of the Hessian operator Hy at
xp, with eigenvectors e; and e;. Then, we repeat the definition for ridge, valley, r—
connector, and v—connector sets. It is shown in [D5] that the same generic properties
for functions on R? which we listed in Remark 6.1 continue to hold for generic
smooth functions on a given smooth surface N. This brings us to the case of r on
the medial axis M.
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Relative Geometry in the non-Blum Case. If (M,U) is a general skeletal structure,
then M is a stratified set. We can consider the relative critical set of r on M.,.
In the general case r need not be the same for each side of M. Hence, for each
side of each smooth sheet of M4, the relative critical set RC(r) is a network of
curves which generically will have the properties in Remark 6.1. Here by genericity,
we mean that given a compact subset C' of M., there is an open dense sense
of smooth functions on M, for which the relative critical sets exhibit the generic
properties on C. Genericity holds even for skeletal structures (M, U) satisfying the
radial curvature, edge and compatibility conditions, as will follow from Theorem
6.4. The ridge curve will be a ridge of thickness; the valley curve will be a valley
of thinness. Along the r—connector curve, the gradient points in the direction of
“greatest increase”; and along the v—connector curve, the gradient points in the
direction of “greatest decrease”. Without the compatibility condition on all of M
ther is no real condition on U;. This is remedied in the Blum case.

Relative Part of the Geometric Medial Map on the Blum Medial Azis. We now
consider a Blum medial axis M and radial vector field (M, U) for a region §2 with
smooth boundary B. M will still in general be a stratified set instead of a smooth
surface. The compatibility condition places restrictions on r so it is not an arbitrary
function even on M,.,. We need to deal with both of these questions as well as
using the compatibility condition to give more explicit criteria for belonging to the
various parts of the relative critical set.

First by the compatibility condition, Vr = —Uj ¢4n, the tangential component
of U;. Thus, the Hessian operator for r takes the form H,.(v) = —V,Uj ¢qn. Thus,
Vr = —Ui ¢an being orthogonal to an eigenvalue e; is equivalent to Uj ¢4y, being an
eigenvector (a multiple of e;), with eigenvalue A(= A;) for H,. Hence we have the
following description of the relative critical set of » on M., using only Ui ¢4n-

Proposition 6.2. Suppose (M,U) is a Blum medial axis and radial vector field for
a region with smooth boundary B. The relative critical set of r on My, consists of
those xo € M,y such that

(6.1) —VUiionUitan) = A-Ulitan

If u is the other eigenvalue of H.(v) = —V Uy tan, then the different types of points
are characterized as follows:

(1) for ridge points p < 0 and p < A;

(2) for valley points p >0 and p > A;

(3) for r—connector points p >0 and p < A; and
(4) for v—connector points p < 0 and p > A

To state what genericity means in this case, we consider Blum medial axes and
radial vector fields (M, U) with M fixed.

Definition 6.3. By a multivalued vector field U (and r) being allowable for M we
mean that (M,U) is a Blum medial axis of a region with smooth boundary.

Then, by genericity of a property for Blum medial azes, we mean that for a fixed
M, given a compact subset C' of M4, there is an open dense subset of allowable
U such that (M, U) exhibits the property on C

We then can state the genericity of properties of the relative critical set of r for
Blum medial axes.
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Theorem 6.4. For Blum medial axes, the relative critical set of a generic r pos-
sesses the same generic properties (on a compact subset C of Myey) as functions
on R,

Remark . Since for genericity we may choose as large a compact subset of M, .4
as we desire, the conditions will hold off as small a neighborhood of M;,, as we
wish. The argument we give will also apply to a skeletal set (possibly satisfying
the three conditions). With a more careful analysis it should be possible to state a
form of genericity which holds on all of M.

Proof. Given the compact subset C' C M, .4, we may choose an open neighborhood
W of C in M,.,. Then, given U, and hence r, we can vary r to r' within a C?
neighborhood of r on C' and unchanged outside a compact subset of W containing C.
Then, as (M, U) is a Blum medial axis, the original r satisfies the radial curvature
conditions on W. Given the perturbed ', an associated radial vector field U’ is
determined by Uj,,,, = —Vr' and ||U7|| = 1 with U’ pointing on each side of W.
First, as v’ = r off a compact subset of W, all conditions are satisfied off this
compact subset. On W, by construction U’ satisfies the compatibility condition.
Also, for r' sufficient close to r in the C? sense, then U’ will satisfy the (open)
radial curvature condition on W. Thus, all conditions for smoothness of the bound-
ary are satisfied and because the original boundary was smooth, the new boundary
will be smooth in a neighborhood of the image of M,;g, as it remains unchanged.
Finally, for 7' sufficiently close to r, the radial map remains one—one. Thus, the
perturbation ' corresponds to a Blum medial axis (M, U’) of a region with smooth
boundary. Then, as we vary r within the C? neighborhood, we obtain a relative
critical set with generic properties on C for an open dense subset of this C? neigh-
borhood. This establishes the genericity. O

7. RADIAL VERSUS DIFFERENTIAL GEOMETRY OF THE MEDIAL AXIS

We contrast the results on the geometry of the boundary we have obtained in
earlier sections using the radial shape operator with the possible alternate approach
using the differential geometry of the medial axis. As already mentioned the re-
sults previously obtained actually apply to the geometry of parallel surfaces of the
boundary. One way to actually obtain results about the boundary itself would be to
give a relation between the radial shape operator S,,q with the differential geomet-
ric shape operator S,.q for the medial axis (at smooth points). As the derivatives
of r must enter into any such relation, it is not surprising that the radial Hessian
operator is involved. There is yet one other operator which must be included in the
relation. We let U; = pn + Uy 44, denote the decomposition of U; into normal and
tangential components. Then, we define

—1 6U1
(7.1) 20) = 0,
Z does not have an obvious geometric meaning. Also, in contrast to Sy,.q and
H,., Z need not be self-adjoint. However, Z as well as H, enter into the relation
between the radial and the differential geometric shape operators for the medial
axis (see [D2, Proposition 4.1]).
Proposition 7.1. Let (M,U) be a the Blum medial azxis and radial vector field for
a region with smooth boundary in R*1. Then,

(7.2) Srad = P Smea+Hr+ Z.

: n)Ul tan
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If we combine this proposition with Theorem 3.1, we can express the differential
geometric shape operator of the boundary in terms of S,,eq by substituting the
expression for Sy.qq from (7.2) into (3.1). While the resulting expression will involve
H, as is expected, it will also involve Z. Thus, barring some remarkable unexpected
identities, the representation in this form will be considerably more complicated
than that in terms of S,44.

8. EFFECTS OF DIFFEOMORPHISMS OF A SKELETAL STRUCTURES ON THE
SMOOTHNESS AND GEOMETRY OF ASSOCIATED BOUNDARY

One of the goals proposed by Stephen Pizer is to be able to perform operations
on the medial axis and determine the effect on the resulting associated boundary.
The approach we have developed only requires that the the effect be determined on
the radial and edge shape operators and the compatibility 1-form. We demonstrate
how such effects can be computed in the case a Blum medial axis is distorted or
deformed by applying a diffeomorphism to it.

Let (M,U) be the Blum medial axis and radial vector field associated to a region
Q with smooth boundary B. We let W denote some arbitrarily small neighborhood
of M, and let ¢ : W — R**! denote a diffeomorphism onto an open subset of R*t1.
We then obtain M' = (M) and V = dp(U). In general, (M',V) is not the Blum
medial axis of a region. In fact, the associated boundary B’ need not be smooth,
nor even if it is, must M’ be the Blum medial axis of the region it bounds. It is
also not clear what new geometric properties B’ will possess.

W—*\ =
7

FIGURE 13. Example of a Diffeomorphism of a Skeletal Structure

However, by the results we have described in earlier sections, we can give an
answer to the preceding questions provided we can determine the radial and edge
shape operators and the compatibility 1-form of (M', V). We explain how to do this
in terms of the medial data of (M,U) together with certain “distortion operators”.
In this the differentiable structure of the medial axis does not change, but it should
be possible to eventually include the generic changes in the medial axis using [BG]
and [Bg].

Effects of Diffeomorphisms on Compatibility Conditions. We first describe the ef-
fects of ¢ on compatibility conditions. In general there are not simple sufficient
conditions to ensure that (M', V) satisfy the compatibility conditions without a
restriction on . We write V = 1V} where V; is the unit radial vector field. Also,
we write V3 = odp(U;). We refer to o as the radial scaling factor. We say that ¢ is
radially rigid on M if dp(Uy) - dp(v) = Uy - v for all points in M and all v € R**1.
It then follows that ||dp(U:)|| = ||Ui|| so ¢ =1 (and do = 0).

For example, if U is a normal vector field on an open subset of a smooth sheet
of M, then the compatibility condition implies that r is constant on that subset so
that portion of the boundary is a parallel surface (or curve in the 1D case). Under
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a radially rigid diffeomorphism, V" will also be a constant length normal vector field
on the image of that region, and the new associated boundary will also be a parallel
surface (curve). However, otherwise we are free to deform the shape of M (provided
the new boundary remains smooth).

The general relation is given by the following Lemma (see [D2, Lemma 4.3]).

Lemma 8.1. If v is radially rigid then, o*(nv) = nu (or alternately p.(nu) = nv ).
Hence, if (M,U) satisfies the compatibility condition, then so does (M',V).

Thus, radial rigidity is a first condition needed to ensure that (M', V) satisfies
the compatibility condition needed for being a Blum medial axis. However, just to
ensure that B’ is smooth, it is only necessary to have the compatibility condition
hold on M}, which will follow from radial rigidity on My;,, (again see the more

sing

detailed [D2, Lemma 4.3]).

Radial and Edge Distortion Operators. To determine the effects of ¢ on the radial
and edge shape operators, we introduce corresponding distortion operators. These
involve the second derivative of .

Radial Distortion Operator: For a nonedge point xo, we define the radial distortion
operator @, for v € T, M by

(8.1) Qu(v) = —dp™" (projy (d®ws, (v,U1)))

We give a matrix representation of this operator in the 1D and 2D cases.
Example 8.2 (Radial Distortion Operators for 1D and 2D Medial Axes). For a
1D medial axis M, let y(s) denote a parametrization of a smooth component of M
with say zo = v(0). Then, y1 = ¢ o+ is a parametrization of M’ near z(, = (o).
We write

(8.2) 95, (' (0),U1) = a1-Vi—q-7(0)

Then, @, is multiplication by q.
For a 2D medial axis M, let X (u;,u2) denote a parametrization of a smooth
component of M with say o = X(0,0). Then, X;(u1,u2) = ¢ o X(u1,us2) is a

parametrization of M’ near z{, = ¢(x). Asin Example 2.2, we let v; = 6—,1’ =1,2
U

denote a basis for T,, M at each point x in the parametrized region. We write
(83) dz(pmo(’l}z’,Ul) = a,--Vl — q1i "l)i _qu"Ué 1= 1,2

0X
where v} = dp(v;) = 3 L Then, @y, the matrix representation of @, with

Uj
respect to the basis v = {vy,v2} is given by
g1 q12

8.4 v =
(8.4) Q@ <Q21 Q22)

Edge Distortion Operators:

Next, we consider the effect of ¢ on edge shape operators. We really only need
consider the 2D case, for in the 1D case the radius of curvature in the Blum case will
be —7,1—1. Let z¢ be an edge point (or we consider a local edge manifold component
for an edge closure point). We define the edge distortion operator Qg,, by

(8.5) Qeo(w) = —dp " (projy (d*¢s,(v,U1)))

We give a matrix representation of this operator in the 2D case.
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Example 8.3 (Edge Distortion Operators for 2D Medial Axes). We let v; be a
smooth vector field tangent to M, and let vo = Uy tapn- We again let v} = do(v;).
Then, we write

(8.6) Pore (i, Ur) = ap-Vi—ci-n—g-vy i=1,2
Then, the matrix representation Qg v of @, is given by

_ (@ @
(8.7) QEpv = (Cl 02>

In addition we must also take into account the failure of dy to send n to n’ at
edge points of M. We write
(8.8) dozo(n) = an-Vi+cn-n' +by-v]
Then, we define
_ cnlbn Cn2bn
(8.9) va - (cnl(cn _ 1) CHQ(Cn _ 1))

where ¢n; are defined in (2.5). We observe that if dp(n) = n’, then ¢, = 1 and
bn =0s0 E,y =0.

Radial and Edge Shape Operators for the Image. Although (M', V) need not be a
medial axis, the radial and edge shape operators are still defined. We can compute
them using the original operators for (M, U) and the distortion operators (see [D2,
Theorem 4.5]).

Theorem 8.4. Suppose (M',V) is the image of a 1D or 2D medial axis (M,U)
under the local diffeomorphism ¢. Then, with the preceding notation

(1) For a non-edge point xo € M, the radial shape operator Sy at xy = ¢(zo)
(for the basis v' from the parametrization X1 = p o X ) is given by
(8.10) Sy = 0(Sv+Qpv)

(2) For a 2D medial axis and a point xo € OM , we may compute the edge shape
operator S at xy = p(xo) by

(8.11) SE v = U(SEV-FQE%V-FE(‘,V)

We give a corollary ensuring that the image (M', V') satisfies the radial curvature
and edge conditions. First, if M is 1-dimensional then Q,+ = (¢), and by Example

oV
2.3 the edge condition reduces to —81 -n' # 0. If M is 2-dimensional, we let
bi,i = 1,2 denote the eigenvalues of Sv + @+ and d the generalized eigenvalue of
((SEv+QEov+ Epv), [1,1). As in Example 2.4 we compute
d= (Cl + cnlcn)_l det(SEv + QE(p,v + Etp,v)

Then, we have as a corollary

Corollary 8.5. Consider the situation of Theorem 8.4. If M is a 1D medial axis,
then (M', V') satisfies the Radial Curvature Condition iff at all non-edge points of
M

(8.12) r<

if k» +q > 0 and no condition otherwise
kr +q
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If M is 2—dimensional, then (M',V') satisfies the Radial Curvature Condition iff
at all non-edge points of M

(8.13) r< min{%} for all positive eigenvalues b; of Sv + Quv
Also, (M',V) satisfies the Edge Condition iff at all points of OM,
(8.14) r< é if d > 0 and no condition otherwise

where d is the generalized eigenvalue of (Sev + QE~v + Epv),I1,1).

Then, provided the image (M', V) satisfies the local initial conditions of [D1,
Definition 1.7], then (M’',V) is a skeletal structure. We can first apply Corollary
8.5 and radial rigidity at the singular points to be able to apply Theorem 2.5 to
conclude that the boundary B’ is smooth. If moreover ¢ is radially rigid on M,
then B’ is (partially) Blum so we can apply Theorem 8.4 together with Theorems
3.1, 3.4, and 4.2 to determine the geometry of B'.

9. Summary

To use the Blum medial axis as a tool for analyzing the shapes and properties
of objects, it is desirable to be able to perform operations on medial axes and
deduce properties of the resulting associated boundaries. In this paper we have
introduced medial structures, namely the radial and edge shape operators and the
compatibility 1-form, which allow us to determine that the associated boundary is
smooth and then deduce its geometric properties. These operators provide formulas
for the geometry of the boundary without explicitly using the differential geometry
of the medial axis. Several advantages of this approach are:

(1) The methods are dimension independent.

(2) The expressions for the differential geometric invariants are directly defined
on the medial axis.

(3) The expressions we obtain are simpler then those obtained from other ap-
proaches, and we specifically justify this claim.

(4) Both intrinsic and relative geometric invariants can be determined.

We further demonstrate the advantage of this approach by constructing on the
medial axis a geometric medial map using only the unit radial vector field. This
map has an intrinsic component which directly identifies the intrinsic geometry
of the boundary and a relative part which identifies the relative geometry of the
boundary. We illustrate the usefulness of the methods by computing how the medial
data changes when the medial axis is deformed by a diffeomorphism. We identify
distortion operators which determine how much the shape operators are changed
under the diffeomorphism.
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