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Introduction

We consider a compact n+ 1-dimensional region Ω ⊂ Rn+1 with smooth bound-
ary B. In the earlier papers [D1], [D2], and [D3], we considered the problem of
how we may deduce both local and relative geometric properties of the boundary
B from medial data defined on the Blum medial axis M of Ω (M is the locus of
centers of spheres in Ω tangent to B at two or more points allowing single degener-
ate tangencies). In this paper we determine how we may compute global geometric
invariants of Ω and B in terms of M .

cavity
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Ω

Figure 1. Blum Medial Axis M as a Skeletal Structure of an
object/region Ω with smooth boundary B

As an example, we recall that if M is a closed smooth n–dimensional submanifold
(without boundary) of Rn+1, then the tube Tr aboutM of radius r consists of points
{x+ tn(x) ∈ R

n+1 : x ∈ M, and − r ≤ t ≤ r}, where n(x) is a unit normal vector
to M at x. For r sufficiently small Tr is a manifold with boundary, and M is the
Blum medial axis of Tr. The classical volume of tubes formula of Hermann Weyl
[W] expresses the volume of a tube Tr as a polynomial in r whose coefficients are
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global curvature invariants. In the special case of the tube on the n–dimensional
submanifold M in Rn+1, the formula has the form (see [Gr])

Volume of Tr = (2r) ·

[n/2]
∑

j=0

k2j(M) · r2j

1 · 3 · 5 · · · (2j + 1)

where the terms k2j(M) are integrals overM of specific expressions in the curvature
of M .

In this paper we will generalize this result for general regions Ω with generic
smooth boundaries B. Moreover, rather than just computing the volume of Ω, we
will quite generally compute global geometric invariants of both Ω and B in terms
of integrals over the Blum medial axis M . This will include the n–dimensional
volume of B, the n+ 1–dimensional volume of Ω, the total curvature of B, etc. We
do this by deriving formulas for integrals of functions over Ω and B in terms of
“skeletal integrals ”over M (where we relax several of the Blum conditions), and
more specifically “medial integrals ”when M is a Blum medial axis.

In fact, we will express integrals over regions in Ω and B with piecewise smooth
boundaries as integrals over corresponding regions in M . This leads to generaliza-
tions of Weyl’s volume of tube formula to “generalized tubes”where r is allowed to
vary. These generalizations include: “generalized partial/half-tubes”defined using
regions on M , versions of Steiner’s formula for generalized offset regions, tubes al-
lowing a singular boundary. As a second application of such formulas, we obtain a
medial version of the Gauss-Bonnet Theorem for B which is valid for all dimensions
(including the case when the dimension of B is odd). Third, we derive a version
of Gauss’s Theorem for flux integrals over regions of Ω where the vector field has
discontinuities across M .

There are several surprising aspects of the formulas we obtain. The first is that
unlike Weyl’s formula, we do not directly involve the differential geometry of M .
Instead we use expressions involving the “radial curvature”of the multivalued radial
vector field U on M . The second is that rather than involving integrals over M ,
the formulas involve integrals over M̃ , the “double”of M , which is equivalent to
integrating over “both sides of M”. A third is that there is a natural “medial
measure”on M̃ , which takes into account the failure of U to be normal to M and
replaces the usual Riemannian volume of M . This mathematical measure provides
a heuristic measure of significance for various parts of the Blum medial axis, based
on their contributions to the global geometric invariants of B and Ω.

The basis for this approach is the introduction of a more general notion of a
“skeletal structure”(M,U) as a generalization of the Blum medial axis M . It has
an associated boundary B which need not be smooth (conditions for the smoothness
of B are derived in [D1]). In the Blum case, it consists of the Blum medial axis
M (which is a Whitney stratified set) together with the multivalued radial vector
field U from points of M to the corresponding points of tangency of the maximal
spheres with the boundary, e.g. Fig. 1.

In [D1], we introduced for the skeletal structure (M,U), a radial shape operator
Srad (along with an edge shape operator SE which will not be used in the inte-
gral formulas), and a compatibility 1–form ηU . We may write U = r · U1 for a
unit vector field U1 and radius function r. Then, the radial shape operator Srad
measures how U1 varies on M . In [D2], and [D3] we used these shape operators
to compute the local differential geometric properties of the associated boundary
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B in the partial Blum case (this only requires one of the conditions which M must
satisfy to be a Blum medial axis; namely, that the radial vector is orthogonal to
the boundary, which is guaranteed by a “compatibility condition”involving ηU ). To
relate geometrical information on the boundary with medial data, we introduced
the “radial flow”from the skeletal set M to the associated boundary B, which is a
backwards version of the “grassfire flow”. Its associated time one map is the radial
map ψ1.

This same data will be used to express global geometric properties of the re-
gion and the boundary via “medial integrals”on the medial axis (or more generally
“skeletal integrals”in the non–Blum case). First, in the partial Blum case, we gen-
erally express an integral of a function g on the boundary as a medial integral of
the associated multivalued function g̃ on the medial axis obtained by composing g
with the radial map ψ1 (Theorem 1).

∫

B

g dV =

∫

M̃

g̃ · det(I − rSrad) dM

where the RHS is an integral over M̃ , the “double”ofM , which as already mentioned
is equivalent to integrating over both sides of M . Also, the measure dM is obtained
by multiplying the volume form dV on M by a factor ρ measuring the nonnormality
of U .

Second, applying the formula to the constant function 1 on B yields a medial
integral formula for the n-dimensional volume of B.

n-dimensional volume of B =

∫

M̃

det(I − rSrad) dM

Third, we apply this medial integral formula to the medial integral of the radial
curvature on the medial axis to obtain a Medial version of the generalized Gauss-
Bonnet formula valid for B of all dimensions. This formula computes the classical
Gauss-Bonnet integral of the Lipschitz-Killing curvature K on B by a medial inte-
gral of the Radial Curvature Krad on the Blum medial axis M (Theorem 5).

1

sn
·

∫

B

K dV =
1

sn
·

∫

M̃

Krad dM = χ(Ω) = χ(M)

and if n is even

=
1

2
χ(B)

where sn = vol(Sn) and χ(X) denotes the Euler characteristic of X .
Next, we can likewise compute integrals of functions g over the entire region Ω

in terms of “skeletal integrals”, which are integrals over the skeletal set M where
we do not even require a partial Blum condition. If ψ̃ denotes the radial flow from
M̃ , we let g1(x, t) = g ◦ ψ̃(x, t) (see §1 or [D1, §4]). We let

g̃ =

∫ 1

0

g1 · det(I − trSrad) dt

Then, g̃ is a multivalued function on M . Hence, the integral of the product g̃ · r is
defined on M . We compute the integral of g over Ω by the following integral over
M̃ (Theorem 3).

∫

Ω

g dV =

∫

M̃

g̃ · r dM
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In the special case that g ≡ 1, we let δ =
∫ 1

0 det(I − trSrad) dt. Then, we may
compute the volume of Ω as a skeletal integral

(n+ 1) − dimensional volume of Ω =

∫

M̃

δ · r dM

We furthermore derive versions of all of these formulas for integrals over regions
of B (Corollary 2) or Ω (yielding a Crofton–type formula, Corollary 7). These
versions allow us to obtain as corollaries formulas for integrals over and volumes
of generalized, partial, or singular tubes, including half tubes and generalized offset
regions. We determine the forms of Weyl-type expansions of these integrals in
terms of moment integrals along radial lines and “weighted medial and skeletal
integrals”involving powers of r.

One consequence for computer imaging is that for 2–dimensional objects in R2 or
3–dimensional objects in R3 with generic boundaries, global quantities computed
as either integrals over the whole region or on the boundary of the object can
alternately be expressed as appropriate medial integrals on the Blum medial axis.

Finally, we derive a modified form of the divergence theorem for regions Γ of
Ω when vector fields exhibit discontinuities across the skeletal set (or medial axis)
M (Theorem 9). This modification requires a correction term involving medial or
skeletal integrals. We apply this version to the vector field generating the grassfire
flow (Theorem 10) to give in §8 a rigorous computation of the average outward flux
for the grassfire flow, which justifies the algorithm given in [BSTZ] for numerically
computing the Blum medial axis.

The author would like to especially thank both Mike Kerchove and Stephen
Pizer for their valuable comments regarding this work, and to Kaleem Siddiqi for
discussions concerning the role of flux integrals for the grassfire flow in [SBTZ] and
[BSTZ].
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1. Skeletal Structures, Shape Operators, and Radial Flow

Skeletal Structures. We begin by recalling the definition of a skeletal structure
(M,U) in Rn+1,. Here M is a skeletal set which is a special type of Whitney
stratified set. Hence, it which may be represented as a union of disjoint smooth
strata Mα satisying the axiom of the frontier: if Mβ∩M̄α 6= ∅, then Mβ ⊂ M̄α; and
Whitney’s conditions a) and b) (which involve limiting properties of tangent planes
and secant lines). For example, for generic boundaries,the Blum medial axis is a
Whitney stratified set (by results of Mather [M2] on the distance to the boundary
function together with basic properties of Whitney stratified sets, see e. g. [M1]
or[Gi]). Additionally M may be locally decomposed into a union of n–dimensional
manifolds Mj with boundaries and corners which only intersect on boundary faces.

We letMreg denote the points in the top dimensional strata (this is the dimension
n of M and these points are the “smooth points”of M). Also, we let Msing denote
the union of the remaining strata. On M is defined a multivalued vector field U ,
which is called the radial vector field. For a regular point x ∈ M , there are two
values of U . For each value of U at x, there are choices of values at neighboring
points which form a smooth vector field on a neighborhood of x. Moreover, U
satisfies additional conditions at edge points of M and singular points of M , see
[D1, §1] for more details.

Ω

M

B

Figure 2. A Skeletal Structure (M,U) defining a region Ω with
smooth boundary B

For a radial vector field U , we may represent U = r·U1, for a positive multivalued
function r, and a multivalued unit vector field U1 on M . These satisfy analogous
properties to U .

Radial Shape Operator. For the full understanding of the geometry of the
boundary, two shape operators are needed, the radial and edge shape operators.
However, because edge shape operators are only needed on a set of measure zero,
we will be able to ignore them when considering integrals. For a regular point x0

of M and each smooth value of U defined in a neighborhood of x0, with associated
unit vector field U1, the radial shape operator

Srad(v) = −projU (
∂U1

∂v
)

for v ∈ Tx0
M . Here projU denotes projection onto Tx0

M along U (which in general
is not orthogonal to Tx0

M). Because U1 is not necessarily normal and the projection
is not orthogonal, it does not follow that Srad is self–adjoint as is the case for the
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usual differential geometric shape operator. We let Krad = det(Srad) and refer to
it as the radial curvature.

For a point x0 and a given smooth value of U , we call the eigenvalues of the
associated operator Srad the principal radial curvatures at x0, and denote them by
κr i. As U is multivalued, so are Srad and κr i.

Compatibility 1-forms. To identify the partial Blum condition for the boundary we
use the compatibility 1-form. Given a smooth value for U , (possibly at a point of
Msing), with U = r ·U1 for a unit vector field U1, we define the compatibility 1-form

ηU (v)
def
= v · U1 + dr(v). This is a multivalued 1– form. The vanishing of ηU at x0

implies that U(x0) is orthogonal to the tangent space of the associated boundary
B at the corresponding point (see [D1, Lemma 6.1]).

In [D1, Theorem 1] we give three conditions: radial curvature condition, edge
condition, and compatibility condition, which together ensure that the associated
boundary of the skeletal structure is smooth. These conditions are satisfied by the
Blum medial axis in the generic case. We assume throughout the rest of this paper
that these conditions are satisfied. Then, integrals are defined on B. we will relate
them to integrals on the Skeletal set M .

Radial Flow and Tubular Neighborhood for a Skeletal Structure. We
stated in the introduction that in the partial Blum case we relate the geometry
of boundary to the radial geometry of the skeletal set via the radial flow. One
way to view the formation of the medial axis is as the shock set resulting from the
Grassfire/level-set flow from the boundary (see e.g. b) of Fig. 3 Kimia et al [KTZ],
(and also Siddiqi et al [SBTZ] and [P3] for further discussion). This flow is from
points on the boundary along the normals until shocks are encountered.

Figure 3. a) Radial Flow and b) Grassfire Flow

We would like to define the radial flow we will consider as essentially a “backward
flow”along U to relate the skeletal set M with the boundary B. Locally if we choose
a smooth value of U defined on a neighborhood W of x0 ∈M , we can define a local
radial flow ψ(x, t) = x + t · U(x) on W × I . We cannot use such local radial flows
to define a global one on M because the radial vector field U is multivalued on M .
We overcome this problem by introducing “double”M̃ of M on which is defined a
“normal bundle”N for (M,U).

The Double and the Normal Bundle of M and the Global Radial Flow. Points of
M̃ consist of pairs (x, U ′) with x ∈ M and v a value of U at x. It is possible to

put the structure of a stratified set on M̃ so the natural projection p : M̃ → M
sending (x, U ′) 7→ x is continuous and smooth on strata. Moreover, on M̃ we have
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a canonical line bundle N which at a point (x0, U0) is spanned by U0. Also, given
an ε > 0 we have the positive ε neighborhood of the zero section Nε = {(x0, tU0) ∈
N : 0 ≤ t ≤ ε}.

Now, for (M,U), with normal line bundle N , we can define the global radial flow

as a map ψ̃ : N → Rn+1 by (x0, tU0) 7→ x0 + tU0. We proved in [D1] that there is

a sufficiently small ε > 0 so that ψ̃|Nε\M̃ is a homeomorphism, smooth on regular

points, and M together with ψ̃(Nε\M̃) forms a “tubular neighborhood”of M [D1,
Theorem 5.1].

We computed in [D1] the derivatives of the radial flow ψ̃ and the radial map ψ1.

If v = {v1, . . . , vn} is a basis for Tx0
M , we use bases {

∂

∂t
, v1, . . . , vn} in the source

for Tx0
M × R at (x0, t) and {U1, v1, . . . , vn} for Rn+1 at ψ(x0, t) by translation

along U . Then the transpose of the Jacobian matrix of the radial flow with respect
to these basesis given by (see [D1, Lemma ]

(1.1)

(

r 0
t(dr(v) + rAv) (I − tr · Sv)T

)

where Sv denotes a matrix representation of Srad with respect to the basis v.
Likewise, the matrix representation of the Jacobian of ψ1 using the basis v

for Tx0
M and the same basis for {U1, v1, . . . , vn} for Rn+1 has tranpose given by

deleting the first row of (1.1) to yield

(1.2)
(

(dr(v) + rAv) (I − r · Sv)T
)

The conditions that these maps are nonsingular follow from the Radial Curvature
Condition:

(1.3) r < min{
1

κr i
} for all positive principal radial curvatures κr i.

where κr i, the “principal radial curvatures” are the eigenvalues of Srad (there is
an analogous Edge Condition on the “principal edge curvatures” κE i, which are
generalized eigenvalues of SE .

The Radial and Edge Conditions together ensure that the radial flow remains
nonsingular from smooth points, and does not develop new singularities from sin-
gular points of M . These conditions: together with a Compatibility Condition
involving the vanishing of the compatibility 1–form ηU on Msing are (necessary
and) sufficient to ensure that the “associated boundary”B is smooth ( in the sense
of [D1, Theorem 2.5 ]) provided the radial map has no nonlocal self–intersections.

Definition 1.1. Suppose (M,U) is a skeletal structure which satisfies: the Ra-
dial Curvature, Edge Conditions, and Compatibility Conditions, and for which the
radial flow does not have any nonlocal intersections. Then, we say that (M,U)
defines a region with smooth boundary.

If in addition, U is everywhere orthogonal to the associated boundary B, which
is equivalent to the vanishing of the compatibility 1-form ηU on all of M , we say
that (M,U) satisfies the partial Blum condition.

If we relax the radial curvature and edge conditions by replacing the inequalities
“<”by “≤”, but suppose that the radial flow is still one–one for 0 < t < 1, then we
say that (M,U) defines a region with (possibly) singular boundary B.
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For a Blum medial axis M of a region Ω with generic smooth boundary B with
its associated multivalued vector field U , (M,U) is an example of a skeletal struc-
ture which satisfies the partial Blum condition and defines a region with smooth
boundary.

Remark 1.2. In the case when (M,U) “defines a region with smooth boundary”,
we only know that B is smooth off the image ψ(Msing) of the singular set of M ,
where we only know B is weakly C1. The images of the strata of Msing are still
smooth submanifolds in B. Then, B is piecewise smooth and so has a Riemannian
volume form, denoted by dV , for each compact piecewise smooth region. Hence,
integrals of continuous functions are defined on B.

We next turn to the definition of integrals on M and relating them to integrals
on B and Ω.

2. Skeletal and Medial Integrals

Given a skeletal structure (M,U) which defines a region with smooth boundary,
and a multivalued function h on M , we will introduce the skeletal integral of h
over M . By a multivalued function h on M , we mean a function which lifts to a
well-defined function h′ on M̃ . Alternately, it means that for each value of U at
a point x ∈ M , there is a corresponding value of h at x and conversely. We say
h is a continuous multivalued function if h′ is continuous on M̃ . For example, if
g : B → R is a continuous function on B, then the composition g ◦ ψ1 defines an
continuous function on M̃ which pushes down to a continuous multivalued function
g̃ on M .

Our strategy will be to first define a skeletal integral for continuous multivalued
continuous functions on M . This will be equivalent to defining the integral of
a continuous function on M̃ . This integral will satisfy the usual linearity and
positivity properties. Then, as M̃ is a locally compact Hausdorff space, we shall
use the Riesz Representation Theorem to extend the definition to general integrable
functions over measurable regions of M̃ . These will include, for example, piecewise
continuous functions over regions of M̃ with piecewise differentiable boundaries.

By the compactness of M and the properties of skeletal structures, we may find
a finite covering of M by open sets {Wi} which satisfy the following properties: i)
for each Wi, and each stratum Mα for which Wi α = Wi ∩Mα 6= ∅, each value of
U defined at a point of Wi α extends smoothly to values of U on all of Wi α; ii)
the closure of each Wi may be decomposed into a finite number of manifolds with
boundaries and corners which only meet along boundary facets. We refer to such
a Wi as a paved neighborhood (see figure 4). If π : M̃ → M denotes the natural

projection, and π−1(Wi) = ∪Wij is a disjoint union of neighborhoods in M̃ , then

we also refer to each Wij as a paved neighborhood of M̃ . Each Wij is a union of
manifolds with boundaries and corners on which values of U can be chosen to form
a continuous vector field.

Then, we may construct a smooth partition of unity {χi} subordinate to {Wi}.
By smooth we mean that each χi is smooth on each stratum (we can in fact ex-
tend {Wi} to an open covering {W ′

i} of M in Rn+1 and restrict the corresponding
partition of unity to M). Then, using {χi} we define

(2.1)

∫

M̃

h dM =
∑

i

∫

M̃

χi · h dM.



GLOBAL GEOMETRY VIA SKELETAL INTEGRALS 9

a) b) c)

Figure 4. a) Paved neighborhood of a point in M and corre-

sponding paved neighborhoods b) and c) in M̃

By a standard argument, (2.1) is independent of the covering and partition of unity.
Thus, by (2.1), it will be sufficient to define the integral for h with support in a finite
union of compact manifolds with boundaries and corners {Mj}sj=1 which only meet
along boundary facets as in figure 4. In turn for such an h with supp (h) ⊂ ∪sj=1Mj ,
we may write

(2.2)

∫

M̃

h dM =
∑

i

∫

M̃i

h dM.

Here M̃i is the union in M̃ of the two copies of Mi corresponding to the two choices
of smooth values of U on Mi, which, in turn, correspond to the two sides of M at
Mi.

Remark 2.1. When we decompose neighborhoods into manifolds with boundaries
and corners, at edge points we must use “edge coordinates”. Under these the
parametrization of a neighborhood of an edge is one–one differentiable and a local
diffeomorphism off the edge. This does not cause any problem with integration.

To finally define each integral on the RHS of (2.2) we let j = 1, 2 correspond to
a value of U on each side of Mi. We also let hj be the value of h corresponding to
that side, and let ρj = U1 j ·nj where U1 j is a value of the unit vector field for each
of the smooth values of U and nj is the normal unit vector pointing on the same
side as U1 j . Lastly we let dVj denote the volume form for the Riemannian metric
with Mi oriented by nj . Hence, we may finally write

(2.3)

∫

M̃i

h dM =

2
∑

j=1

∫

Mi

hjρj dVj

Then, the integral has the usual properties that it is linear; and if h ≥ 0, then
∫

h dM ≥ 0.
Next, we conclude that there is a unique regular Borel measure on M such that

the integral we just defined is given by integration with respect to this measure.

Proposition 2.2. There is a unique regular positive Borel measure dM on M̃ such
that for any continuous multivalued function h on M with h̃ = h ◦ π, the integral
of h on M̃ is given by

∫

M̃

h̃ dM

the integral of h̃ with respect to the measure dM .
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Proof. As stated earlier, we use the Riesz Representation Theorem to prove the
existence and uniquence of dM . For this we have already noted that we can view
the integral as being defined for continuous functions h̃ on M̃ . Then, we can
extend this integral to (compactly supported) complex-valued continuous functions

f = g + ih on M̃ by
∫

M̃

f dM =

∫

M̃

g dM + i ·

∫

M̃

h dM.

This defines a linear transformation

(2.4)

∫

M̃

f dM : Cc(M̃) −→ C

for Cc(M̃) the space of (compactly supported) continuous complex–valued functions

on M̃ . This integral satisfies the positivity condition: f ≥ 0 implies
∫

M̃
f dM ≥ 0.

Then, M ⊂ Rn+1 is closed (as it is compact) and hence locally compact as Rn+1

is. We easily see that M̃ is also locally compact and Hausdorff (as well as compact).
Thus, we may apply the Riesz Representation Theorem [Ru, Thm. 2.14]. There is a

unique positive Borel measure dM on M̃ (which is regular as M̃ is compact) defined

on a σ–algebra of subsets of M̃ which contains the Borel sets such that
∫

M̃
h dM is

given by integration with respect to the measure dM for any continuous h on M̃ .
This is the asserted measure. �

Medial Measure and Blum Medial Axis M as a Measure Space
We refer to the measure dM = ρ dV on M̃ as the medial measure. It corrects

for the failure of U to be orthogonal to M . In the case of the Blum medial axis,
dM is actually defined on M .

This changes our perspective on the Blum medial axis from just being a stratified
set to being as well a measure space, where the significance of parts of the space
are determined by their medial measure. For example it is well known that the
introduction of a small bump on the boundary B leads to the creation of another
sheet of M . However, the bump only introduces a small change in the volume. We
shall see from the volume formulas in §5, that the additional integral on the added
sheet represents this small change. We understand this because the smallness of
the bump forces U to be close to being tangent to M on the additional sheet. This
implies that the medial measure is small on the added sheet. Thus, although set
theoretically the added sheet is a significant alteration of the medial axis, from the
point of view of measure theory the added sheet is very small.

Skeletal and Medial Integrals
By a multivalued measurable, resp. integrable, functon f on M we mean that

f ◦ π is a measurable, resp. integrable, function on M̃ , where π : M̃ → M is the
natural projection. Likewise, we say that R ⊂ M̃ is measurable if it is measurable
with respect to dM . If R ⊂ M̃ is measurable, and f is defined on R, then provided
χR · f is mesurable for the characteristic function χR of R, we define as usual
∫

R
f dM =

∫

M̃
χR · f dM .

We refer to the integral
∫

M̃
h dM as a skeletal integral. In the special case that

(M,U) satisfies the partial Blum condition, we will refer to it instead as a medial
integral.

Measurable sets include regions with piecewise smooth boundary on M̃
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Definition 2.3. A closed subset R ∈ M̃ is a region with piecewise smooth boundary
if we can decomposeR = ∪`i=1Ri where : i) the Ri only intersect at boundary points;

ii) each Ri ⊂ Wij where Wij is a paved neighborhood in M̃ ; iii) we may represent
Wij as a finite union of manifolds with boundaries and corners Mα in M so that
π(Ri) ∩Mα is a region with piecewise smooth boundary

Heuristically we view a region of M̃ as associating a region of a smooth stratum of
M to each side of M . For example, consider in Fig. 5 the region of M̃ consisting of
points where at the corresponding points on B, the Gaussian curvature is positive.
It consists of the bottom side of M and part of the top side as indicated in Fig. 5.

- +

Figure 5. Region in M where B has positive Gauss curvature

Also, integrable functions include for example piecewise continuous functions

Definition 2.4. Let g be a multivalued function on M . We say that g is piecewise
continuous if for g′ = g ◦ π, supp (g′) = ∪Sj , where: the Si only intersect at
boundary points; each Sj is a region with piecewise smooth boundary; and g̃|int(Sj)
has a continuous extension to Sj .

If g : B → R is a piecewise continuous function on B, then the composition
g ◦ ψ1 need not define a piecewise continuous function on M̃ , but it does define a
measurable one.

3. Boundary Integrals as Medial Integrals

We now suppose that (M,U) is a skeletal structure which defines a region with
smooth boundary and satisfies: the partial Blum condition. We know that B is
smooth off the image ψ1(Msing) of the singular set of M , where we only know it is
weakly C1. The images of the strata of Msing are still smooth submanifolds of cB,
and using the radial map we see that points in ψ1(Msing) have paved neighborhoods.
Then, B is piecewise smooth and so has a Riemannian volume form, denoted by
dV , hence , the same argument used for M allows us to define the integral

∫

B g dV
for a continuous function g. Then, even if B is not smooth we can still use the
Riesz Representation Theorem to extend the integral for measurable functions and
measurable regions on B with respect to the Riemannian volume measure.

Theorem 1. Suppose (M,U) is a skeletal structure defining a region with smooth
boundary B and satisfying the partial Blum condition. Let g : B → R be integrable
with respect to the Riemannian volume measure. Then,

(3.1)

∫

B

g dV =

∫

M̃

g̃ · det(I − rSrad) dM

where g̃ = g ◦ ψ1.
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Before beginning the proof we deduce several consequences.
First we have a version for a region of B

Corollary 2. Suppose (M,U) is a skeletal structure defining a region with smooth
boundary B and satisfying the partial Blum condition. Let R denote a measurable
subset of B and g : R → R an integrable function with respect to the Riemannian
volume measure. If R̃ = ψ−1

1 (R), then,

(3.2)

∫

R

g dV =

∫

R̃

g̃ · det(I − rSrad) dM

where g̃ = g ◦ ψ1.

Proof of Corollary 2. If χR denote the characteristic function of R. Then, χR · g is
an integrable function on B. Thus, we may apply Theorem 1 to conclude

(3.3)

∫

B

χR · g dV =

∫

M̃

(χR · g) ◦ ψ1 · det(I − rSrad) dM

The LHS of equation (3.3) is
∫

R g dV . Also, (χR · g) ◦ ψ1 = χR̃ · g̃. Thus, the RHS
of equation (3.3) is the RHS of equation (3.2) as asserted. �

As a first application, we compute the n-dimensional volume of B as a medial
integral.

Theorem 3 (Medial Integral Formula for Boundary Volume). Suppose Ω ⊂ Rn+1

is a region with compact closure and smooth generic boundary B and Blum medial
axis M . Then,

(3.4) n-dimensional volume of B =

∫

M̃

det(I − rSrad) dM

Remark 3.1. The preceding formula remains true if (M,U) is only a skeletal
structure in R

n+1 defining a region with smooth boundary B and satisfying the
partial Blum condition. Also, it remains valid if we replace B by a measurable
region R and M̃ by R̃.

Proof. We apply Theorem 1 for the constant function 1 on B. Even if B is only
piecewise smooth, the integral of 1 over B still yields the n–dimensional volume of
B. On the other hand, by Theorem 1, the integral equals the RHS of (3.4). �

Expansion of the Boundary Volume in terms of the Radial Function r.
We expand the integrand in the RHS of (3.1). Let σr j denote the j–th elementary
symmetric function in the principal radial curvatures κri (with σ0 ≡ 1). Then, we
may expand

(3.5) det(I − rSrad) =

n
∑

i=0

(−1)iσr ir
i

Then, we can expand (3.1) using `–th weighted integrals of the multivalued function
g defined by

I`(g) =

∫

M̃

g · r` dM.

Then we may expand the RHS of (3.1)

(3.6)

∫

B

g dV =

n
∑

i=0

(−1)iIi(g · σr i).
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In the case that g ≡ 1, we obtain an expansion for the volume of B.

(3.7) n-dimensional volume of B =

n
∑

i=0

(−1)iIi(σr i)

In general r is not constant and cannot be taken outside the integral. If r is constant,
then the partial Blum condition implies that U is normal at all points. Then, M
must be a closed submanifold without boundary. Thus, this is the case of a tube.
As M is smooth with U normal, we have two consequences. First, the radial shape
operator is the differential geometric shape operator. However, there is one for each
side of M at a point x0, and the U1 on one side is the negative of that on the other.
Hence, the principal curvatures computed for each side differ by signs. Thus, the
σr i for each side differ by (−1)i. Thus the integrals of these on each side will cancel
in the case i is odd. Thus, we obtain a polynomial representation.

Corollary 3.2. The n–dimensional volume of the boundary B of the tube on M of
radius r is given by

(3.8) n–dimensional volume of B =

[n
2 ]

∑

i=0

(

∫

M̃

σr 2i dM) · r2i

where now σr 2i is the 2i–th elementary symmetric function in the principal curva-
tures of M , and

(3.9) Kj = (

∫

M̃

σr j dM)

is a global curvature invariant

(3.8) gives a formula for the n–dimensional volume of B, which is a union of two
parallel manifolds. Without requiring the partial Blum condition, we have much
greater flexibility in allowing a variety of generalizations of tubes. We will obtain
generalizations of Weyl’s formula for the volumes of such generalized tubes in §6.

Example 3.3. We consider the special cases of Ω ⊂ R2 or R3. In the first case,
Theorem 3 via (3.8) gives a formula for the length of the boundary curve B. There
is a single radial curvature κr. Then,

length(B) =

∫

M̃

1 − rκr dM

=

∫

M̃

dM −

∫

M̃

rκr dM(3.10)

The first integral on the RHS of (3.10) is 2˜̀(M), where ˜̀(M) is the length of M ,
but with respect to the “Medial Riemannian length”dM = ds̃ = ρ · ds.

For the second case of Ω ⊂ R
3, we have

det(I − rSrad) = 1 − r · trace(Srad) + r2 det(Srad).

Hence, for the surface B, letting Hrad = 1
2 trace(Srad) and Krad = det(Srad), we

obtain

(3.11) area(B) =

∫

M̃

dM − 2

∫

M̃

rHrad dM +

∫

M̃

r2Krad dM

Again the first integral on the RHS represents twice the area of M but measured
using the “Medial Riemannian Area form” d̃A = ρ · dA.



14 JAMES DAMON

Lastly, we turn to the proof of Theorem 1.

Proof. By the proof of Theorem 5.1 of [D1] ψ1 : M̃ → B is a homeomorphism.

Hence, we have the pull-back ψ∗
1(dV ) defined on M̃ . Also, by general properties,

for a measurable function g on B,

(3.12)

∫

M̃

ψ∗
1g ψ

∗
1dV =

∫

B

g dV

Hence, Theorem 1 will follow provided we can show ψ∗
1dV = dM . Again, by the

uniqueness of the measure in the Riesz Representation theorem, this will follow if

(3.13)

∫

M̃

hψ∗
1dV =

∫

M̃

h dM

for continuous functions h on M̃ .
As any h = ψ∗

1g for g = ψ−1 ∗
1 h, it is enough to establish the Theorem for

continuous g. Using a partition of unity argument as in the definition of skeletal
integrals in §2, we may assume ψ∗

1g has support in a single compact manifold with
boundaries and corners Mi whose interior consists of regular points of M , and for
a single smooth value of U defined on Mi. For then, by the form of the integrals
given in §2, we can sum both sides over such integrals to obtain equality for all of
M .

Let Bi = ψ1(Mi). As ψ1 : Mi → Bi is the restiction of a diffeomorphism, we can
use the change of variables formula. On Bi,

dV (w1, . . . , wn) = det(n′, w1, . . . , wn)

where n′ denotes the outward pointing unit normal vector. By the (partial) Blum
condition, n′

ψ1(x)
= U1(x), the unit vector in the direction of U .

Next, by earlier calculations in (1.2) (or see [D1, §2]), if {v1, . . . , vn} denotes a
basis for TxMi, then

(3.14)
∂ψ1

∂vi
= bi · U1 −

n
∑

j=1

cjivj

where the matrix C = (cij) = (I − r · Sv)T , and Sv is the matrix representation of

Srad. We let C̃ denote the linear transformation sending vi 7→
∑n
j=1 cjivj . Then,

letting v denote the column vector with i–th entry vi,

ψ∗
1(dV )(v1, . . . , vn) = det(U1, dψ1(v1), . . . , dψ1(vn))

= det(U1, C̃(v1), . . . , C̃(vn))

= det(C) det(U1, v1, . . . , vn)

= ρ det(C) det(n, v1, . . . , vn)

= det(I − r · Srad)dM(v1, . . . , vn)(3.15)

where n is the unit normal vector on Mi in the same direction as U , and ρ =
< U1,n >. Hence, by (3.15) and the change of variables formula,

∫

Bi

g dV =

∫

Mi

g ◦ ψ1 · det(I − rSrad) dM

This completes the proof. �
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4. Medial Version of the Generalized Gauss–Bonnet Theorem

As a second consequence of Theorem 1, we deduce a form of the generalized
Gauss-Bonnet Theorem for the smooth boundary B of a generic region Ω ⊂ Rn+1 in
terms of medial integrals. The standard generalized Gauss-Bonnet formula applies
in the case n is even to give a formula for the Euler characteristic χ(B) in terms
of an integral of the Gauss-Bonnet form over B. In the case n is odd χ(B) = 0,
and there is no standard Gauss-Bonnet formula. There is Chern’s version of the
Gauss-Bonnet formula valid for an even dimensional Riemannian manifold with
boundary in terms of integrals on the manifold, which requires a form expressed in
terms of a sum of characteristic forms (see [Sp, Vol V]). We first give a single form
of generalized Gauss-Bonnet which is valid for a region Ω ⊂ Rn+1 with compact
closure and smooth boundary B independent of the dimension of B.

Theorem 4 (Generalized Gauss-Bonnet Theorem). Suppose Ω ⊂ Rn+1 is a region
with compact closure and smooth boundary B. Then,

1

sn
·

∫

B

Kn dV = χ(Ω)

and if n is even

=
1

2
χ(B)(4.1)

Here Kn is the Lipschitz–Killing curvature (which is the determinant of the
differential geometric shape operator of B) and Kn dV is the Gauss–Bonnet form.
Also, sn = vol(Sn) and χ(X) denotes the Euler characteristic of X .

Remark . In this version of Gauss-Bonnet, there is no restriction on how many
connected components either B or Ω has. The outward pointing normal naturally
provides a consistent orientation for each component.

This version of Gauss-Bonnet has the following medial version valid for all di-
mensions.

Theorem 5 (Medial Version of Generalized Gauss-Bonnet Theorem). Suppose
Ω ⊂ Rn+1 is a region with compact closure and smooth generic boundary B. Let M
be the Blum medial axis. Then,

1

sn
·

∫

M̃

Krad dM = χ(Ω) = χ(M)

and if n is even

=
1

2
χ(B)(4.2)

with sn = vol(Sn) and χ(X) as above.

Remark 4.1. Suppose instead that (M,U) is a skeletal structure defining a region
with smooth boundary B which satisfies the partial Blum condition. Then, the
conclusion of Theorem 5 still applies.

Proof of Theorem 5. We first deduce Theorem 5 from Theorem 4. In the Gauss–
Bonnet form Kn dV , Kn = det(SB) denotes the determinant of the differential
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geometric shape operator for B using the outward pointing unit normal vector
field. Then, we apply the formula for SB given by Theorem 1 of [D2].

SB = Sv(I − rSv)−1

where Sv denotes the matrix representation of Srad with respect to a basis v for
TxM , as does SB for a corresponding basis of Tx′B with v = ψ1(x). Thus,

(4.3) Kn = det(SB) = Krad/ det(I − rSv)

Using (3.1) to evaluate the integral in (4.1), and substituting in (4.3) yields the
result for χ(Ω). Then, the reverse of the radial flow provides a deformation retract
of Ω onto M . Thus, χ(Ω) = χ(M), completing the proof. �

Proof of the Gauss-Bonnet Theorem. We also provide the proof of the form of the
Gauss-Bonnet Theorem given here. First, as Ω is a smooth manifold with boundary
B we may apply a standard formula from topology (see e.g. [Gbg, §28])

(4.4) χ(2Ω) = 2 · χ(Ω) − χ(B)

where 2Ω denotes the double of Ω obtained by attaching two copies of Ω along B.
If n is odd χ(B) = 0; however, if n is even, 2Ω is odd dimensional and without
boundary so χ(2Ω) = 0, and by (4.4), χ(B) = 2 · χ(Ω). This yields the second part
of Theorem 4 from the first part. Thus, we need to show

χ(Ω) = deg( Gauss Map of B)

For the first part, we follow the standard argument with one change. The degree
of the Gauss map on B using the outward pointing normal is computed by 1

sn
·
∫

B
Kn.

We compute this a second way using Morse theory on Ω.
We may flow in along the inward pointing unit normal vector field on B to define

a collar neighborhood of B in Ω. If t denotes the distance along the flow lines, then t
is a smooth function on the collar neighborhood which is 0 on B and has no critical
points. We may extend t to a smooth function on Ω. We may perturb this function
to a Morse function f on Ω which agrees with t near B and has f−1(0) = B. Let
{x1, . . . , xk} denote the critical points of f with λi the Morse index of xi. Then,
by Morse theory

(4.5) χ(Ω) = χ(B) +

k
∑

i=1

(−1)λi

Second, indxi
(−∇f), the index of the negative gradient vector field −∇f at xi is

given by

indxi
(−∇f) = (−1)n+1 · indxi

(∇f) = (−1)n+1 · (−1)λi

Also, choose around each xi small disjoint open balls Bi which also are disjoint

from B. We let Si denote the boundary sphere of Bi. Then, G(x) = − ∇f(x)
‖∇f(x)‖ is a

smooth map on Ω\ ∪ki=1 Bi → Sn which agrees with the Gauss map on B. Hence,

(4.6) deg(G|B) =

k
∑

i=1

deg(G|Si)

However,

(4.7) deg(G|Si) = indxi
(−∇f) = (−1)n+1 · (−1)λi
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Hence, using (4.6) and (4.7), (4.5) becomes

(4.8) χ(Ω) = χ(B) + (−1)n+1 · deg(G|B)

Finally, if n is odd, χ(B) = 0 so (4.8) gives the result; while if n is even, χ(B) =
2 · χ(Ω), and again (4.8) gives the result. �

5. Integrals over Regions as Skeletal Integrals

Throughout this section we consider a skeletal structure (M,U) which defines a
region Ω with possibly singular boundary except that we do not assume the partial
Blum condition is satisfied. This is the “non-Blum case”, but we still show that we
still can represent integrals over a region Ω as skeletal integrals. Of course the result
is still valid in the partial Blum case. We suppose that g : Ω → R is an integrable
function (with respect to Lebesgue measure). We let ψ̃ denote the radial flow from

M̃ , and let g1 = g ◦ ψ̃ denote the function on the “positive normal bundle”on M̃ ,
see §1 and [D1, §4]. Then, g1(x, t) = g(x+ tU(x)). Provided the integral is defined,
we let

(5.1) g̃(x) =

∫ 1

0

g1(x, t) · det(I − trSrad) dt

Theorem 6. Suppose (M,U) is a skeletal structure which defines a region Ω with
possibly singular boundary B (without being partially Blum). Let g : Ω → R be

integrable (for Lebesgue measure). Then, g̃ is defined for almost all x ∈ M̃ , it is

integrable on M̃ , and

(5.2)

∫

Ω

g dV =

∫

M̃

g̃ · r dM

Before proving this theorem, we deduce several immediate consequences. First
we deduce a “Crofton-type formula”for integrals over regions Γ ⊂ Ω. Such a formula
computes integrals over the regions by first integrating over the intersection of the
region with radial lines (see Fig. 6), and then integrating the resulting function
over the skeletal set M which parametrizes such lines.

Γ

Ω

Figure 6. Integration over Regions Γ ⊂ Ω as Skeletal Integrals



18 JAMES DAMON

We let

(5.3) g̃Γ(x) =

∫ 1

0

χΓ · g1(x, t) · det(I − trSrad) dt

where χΓ is the characteristic function of Γ.

Corollary 7 (Medial Crofton-Type Formula). Suppose (M,U) is a skeletal struc-
ture which defines a region Ω with possibly singular boundary B (without being
partially Blum). Let Γ ⊂ Ω be Lebesgue measurable and let g : Γ → R be integrable

for Lebesgue measure. Then, g̃ is defined for almost all x ∈ M̃ ; it is integrable on
M̃ ; and

(5.4)

∫

Γ

g dV =

∫

M̃

g̃Γ · r dM.

Note that g̃Γ will vanish for all (x, U(x)) for which the radial line {x + tU(x) :
0 ≤ t ≤ 1} only intersects Γ in a set of measure 0.

Proof of Corollary 7. We apply Theorem 6 to the function χΓ ·g just as in the proof
of Corollary 2, we applied Theorem 1 to χR · g. �

Second, we use Theorem 6 for computing the volume of Ω. Let

(5.5) δ(x) =

∫ 1

0

det(I − trSrad) dt.

Then, we can compute the volume of Ω in terms of an integral of δ over M̃ .

Theorem 8. Suppose (M,U) is a skeletal structure which defines a region Ω with
possibly singular boundary B (without being partially Blum). Then

(5.6) Volume of Ω =

∫

M̃

δ · r dM.

Proof of Theorem 8. We just apply Theorem 6 in the case g ≡ 1. �

Weyl expansion of integrals for general regions
We expand the integrand in the RHS of (5.2) to understand its relation with

Weyl’s formula. First, we use (3.5) to expand (5.1).

(5.7) δ(x) =
n

∑

i=0

(−1)imi(g)σr i · r
i

where

mi(g)(x) =

∫ 1

0

g(x+ tU(x)) · ti dt

is an i–th radial moment of g along the radial line {x+ tU(x) : 0 ≤ t ≤ 1}. Then,
we can expand (5.2) as a sum of weighted integrals of radial moments;

(5.8)

∫

Ω

g dV =

n
∑

i=0

(−1)iIi+1(mi(g) · σr i)

In the special case when g ≡ 1, we obtain an expansion of the formula for the
volume of Ω.

(5.9) Volume of Ω =
n

∑

i=0

(−1)i

i+ 1
Ii+1(σr i).
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Example 5.1. Suppose Ω ⊂ R2 or R3 has compact closure with smooth generic
boundary so the Blum medial axis M together with the radial vector field U defines
a skeletal structure (M,U).

In the first case,

δ(x) =

∫ 1

0

1 − trκr dt = 1 −
1

2
rκr .

Hence, we may compute the area of a 2-dimensional region Ω

(5.10) area (Ω) =

∫

M̃

r dM −
1

2

∫

M̃

r2κr dM.

For a 3–dimensional region Ω,

δ(x) = 1 −
1

2
rHrad +

1

3
r2Krad.

Thus,

(5.11) volume (Ω) =

∫

M̃

r dM −
1

2

∫

M̃

r2Hrad dM +
1

3

∫

M̃

r3Krad dM.

Remark . In §6 we obtain analogues of (5.8) and (5.9) where we replace Ω by

a region Γ which is a union of radial lines over a region R̃ in M̃ . This includes
the case when M is a compact smooth manifold without boundary, so we obtain
integral formulas for volumes of various generalized and partial tubes and offset
regions.

Proof of Theorem 6. First, we consider the definition of g̃(x) by the integral in
equation (5.1). It is enough to consider a neighborhood W of a point x0 and show

that g̃(x) is defined for almost all x ∈ W and integrable on W . For then as M̃

is compact, we can cover M̃ by a finite number of such neighborhoods so g̃(x) is

defined a.e. and integrable onM̃ . Now any point has a paved neighborhood which
is a finite union of compact manifolds with boundaries and corners. Thus, it is
sufficient to establish a formula for the restriction to a single compact manifold Mi

with boundaries and corners whose interior consists of regular points of M (with
a single smooth value of U defined on Mi), the positive normal bundle has the

form Mi × [0,∞), and ψ̃ is given by ψ̃(x, t) = x + tU(x). The differentiable map

ψ̃ : Mi × [0, 1] → Rn+1 is a diffeomorphism for 0 < t < 1 and hence is one-one
except on the boundary. Its image is compact and hence a Borel set, on which g is
integrable. Thus, g1 is integrable so we may apply Fubini’s Theorem to conclude
that for almost all x ∈Mi, the integral in (5.1) is defined and the resulting function

defined a. e. on Mi is integrable. Hence, g̃(x) is defined a.e. and integrable on M̃ .
Now, we proceed with a derivation of the formula. The proof will be similar to

that for Theorem 1.
By a partition of unity argument using paved neighborhoods, we may reduce

to establishing the formula again for the case of a single compact manifold Mi

with boundaries and corners whose interior consists of regular points of M (with
a single smooth value of U defined on Mi). Then, ψ : Mi × [0, 1] → Rn+1, is a
diffeomorphism on the interior. Hence, if Ωi = ψ(Mi × [0, 1]), then it is sufficient
to show

(5.12)

∫

Ωi

g dV =

∫

M̃i

g̃ · r dM
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For this we again use the change of variables formula for ψ. We let {v1, . . . , vn} be

a basis of TxMi. Since
∂ψ

∂t
= U , we compute

ψ∗dV (
∂

∂t
, v1, . . . , vn) = det(U, dψ(v1), . . . , dψ(vn))

Using (3.1) and we obtain

ψ∗dV (
∂

∂t
, v1, . . . , vn) = det(U, dψ(v1), . . . , dψ(vn))

using (1.2) we obtain

= det(U, C̃(v1), . . . , C̃(vn))

= r · ρ det(C) det(n, v1, . . . , vn)

= r · det(I − trSrad)dM(5.13)

Hence, by the change of variables formula and Fubini’s Theorem,
∫

Ωi

g dV =

∫

Mi

∫

[0,1]

g ◦ ψ · r · det(I − trSrad) dM ;

and carrying out the innermost integral,

=

∫

Mi

g̃ · r dM(5.14)

where

g̃ =

∫

[0,1]

g ◦ ψ · det(I − trSrad) dt.

Hence
∫

Ωi

g dV =

∫

Mi

g̃ · r dM

as claimed. �

6. Volumes of Generalized Tubes

In [Gr], Gray gives an encyclopedic treatment of volumes of tubes on manifolds in
numerous settings. We consider here the generalizations of tubes by allowing skele-
tal structures, or considering tubes on smooth manifolds without requiring normal
directions nor constant radii values, and allowing partial tubes over subregions. We
generally refer to such tubes as generalized or partial tubes. To determine formulas
for the volumes of such tubes we return to consequences of Theorem 8 and Corollary
7 using the expansion (5.9).

We consider a skeletal structure (M,U) defining a region with either a smooth or
possibly singular boundary B. As already mentioned the general results we obtain
already suggest that a region Ω with smooth generic boundary B and Blum medial
axis M is a “generalized tube on M”. As we specialize the conditions on both M
and U , the regions begin to resemble our usual notions of tubes.

Types of Generalized or Partial Tubes
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a) b)

M
M

Figure 7. Generalized and Partial Tubes on a Skeletal Set M

(1) Generalized or Partial Tubes on a Skeletal Set M : For a skeletal structure
(M,U) (defining a region with smooth or possibly singular boundary B),
we may suppose r is constant (but U need not be normal, nor need M be
a smooth manifold without boundary) and obtain a generalized tube on M

(Fig. 7 a)); or we may restrict the tube to a region in M̃ (Fig. 7 b)).
(2) Generalized or Partial or Half Tube on a Smooth Manifold: Alternately,

we may suppose M is a compact smooth n–dimensional submanifold with-
out boundary of Rn+1, with a smooth multivalued vector field U so that
(M,U) is a skeletal structure (defining a region with smooth or possibly
singular boundary B). First, we consider the generalized tube where r is not
constant nor need U be normal to M . We then further specialize to cases
where either U is normal, or r is constant (with the same value for both
sides of M), and finally to where both hold and we return to a traditional
tube (as in Weyl’s formula).

We examine the form that volume formulas take for these cases, including the
special forms for the formulas as a result of special conditions. These integrals will
involve global invariants

(6.1) Kr i =

∫

M̃

σr i dM.

where as earlier σr i denotes the i–th elementary symmetric function in the principal
radial curvatures (some of which may be complex in the non–Blum case, although

σr i will be real valued). As well, we consider for a measurable region R̃ in M̃ and

the partial tubes on R̃. In this case we shall consider instead the global invariants
on R̃ defined by integrals

(6.2) Kr i(R̃) =

∫

R̃

σr i dM.

Generalized or Partial Tube on a Skeletal Set. In the first case for a skeletal
set M , with r constant but U nonnormal, we can directly apply (5.9) to obtain a
Weyl–type expansion for volume which is a polynomial in r.

Corollary 6.1. For a generalized constant radius tube Ω on a skeletal set M ,

(6.3) Volume of Ω =
n

∑

i=0

(−1)i

i+ 1
Kr i · r

i+1

Partial Tube on a Skeletal Set
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Second, we may consider a constant radius tube on only part of M as in Fig.
7 b). Let R̃ denote a measurable region in M̃ . We let Γ denote the union of the

radial lines from points of R̃. Equivalently, Γ = ψ(N1|R̃) where N1 denotes the
subset of the positive normal bundle of vectors of length ≤ 1. We can decompose
R̃ into a finite union of measurable sets Ri contained in compact manifolds with
boundaries and corners M̃i, which only intersect in sets of measure 0, and on which
the values of U define a smooth vector field. Then, Γ is a union of the measurable
sets Γi = ψ(Ri × [0, 1]) which only intersect on sets of measure 0. Thus, Γ is a
measurable region (whose volume is the sum of the volumes of the Γi). In turn, we
may apply Corollary 7 with g ≡ 1 to each Γi and sum over i to obtain

Corollary 6.2. For a constant radius partial tube Γ on a region R̃,

(6.4) Volume of Γ =

n
∑

i=0

(−1)i

i+ 1
Kr i(R̃) · ri+1

Generalized and Partial Tubes on Smooth Manifolds. Next, we we turn to
the second class of generalized tubes where M is a compact smooth n–dimensional
submanifold of Rn+1 (without boundary). Then, for a skeletal structure (M,U),
U is defined by a pair of smooth nonvanishing vector fields which at each point
x ∈ M , point to opposite sides of M . Also, M̃ consists of two copies of M , one
corresponding to each side of M .

If we place no restriction on r or U , then we still obtain the same formulas (5.9)
and the analogue for regions using the expansion for (5.4). When we further restrict
r or U we do obtain more specialized forms which yield analogues of Weyl’s formula
and other classical formulas.

Constant Radius Generalized Tube on a Smooth Manifold

In the case that r is constant without U necessarily being normal on M , we
obtain a polynomial expansion for the volume given by (6.3).

Varying Radius Tube on a Smooth Manifold

Next, we consider instead the case where U is normal to M , but r varies (except
that all of its values at a point agree).

Corollary 6.3 (Generalized Weyl’s Formula for a varying radius tube). For a tube
Ω defined on a smooth manifold M , but with varying radius r,

(6.5) Volume of varying radius tube Ω = 2 ·

[n
2 ]

∑

i=0

∫

M

σ2i · r
2i+1 dV

Here σ2i denotes the 2i–th elementary symmetric function in the principal curva-
tures of M (which is independent of the orientation).

In the special case of a true tube, with r constant and U normal, we may take
out r from the integrals and obtain Weyl’s tube formula for this case.

Proof. As U is normal to M , Srad is the usual differential geometric shape operator
for each side of M , using the normal vector field pointing in that direction. If we

denote these by S
(i)
rad, i = 1, 2, then the principal curvatures on each side differ

by a sign, so as in the proof of Corollary 3.2, σ
(1)
r i = (−1)iσ

(2)
r i . Thus, in (5.9),
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the integrals on each side of M will cancel for i odd, and will be equal for i even,
yielding the desired formula. �

Partial and Half tubes on a Smooth Manifold

A partial tube Γ on a smooth manifold is defined by two measurable regions
Ri, i = 1, 2 on M , each one associated to a side of M . Then, Γ is the union of
the radial lines from these points on each side, all of length r. The volume of this
partial tube is the sum of the volumes of the partial tubes on each side. Hence, it
is emough to compute the volume of a partial tube for a one–sided region R. We
let U denote the smooth vector field on the side corresponding to R. Then, we may
naturally identify R with the copy of R in M̃ corresponging to the side associated
to U . We can apply the earlier formulas obtained for a general skeletal set but
now with R̃ = R. In the case when neither r is constant nor U is normal, then we
only obtain the general formula (5.9). If the radius r is constant, without U being

normal, then, we obtain the volume of constant radius partial tube for R̃ = R given
by (6.4). In the case that R = M is a one-sided region we obtain a “half tube”.
Then, (5.9) takes the following simplified form.

Corollary 6.4. The volume of a varying radius half tube Γ is given by

(6.6) Volume of Γ =
n

∑

i=0

(−1)i

i+ 1

∫

M

σr i · r
i+1 dV

Remark 6.5. We make two remarks regarding volumes of half tubes. The first
is that if we are only given one vector field U (1) pointing toward one side of M ,
for which the radial flow satisfies the conditions for a region with possibly singular
boundary, then we may choose a normal vector field U (2) of sufficiently small con-
stant length and pointing to the opposite side from U (1). Together the U (i) define
a multivalued vector field U on M , so that (M,U) is a skeletal structure which
defines a region with possibly singular boundary. Then the preceding formula (6.6)
applies to the half tube determined by U (1).

Second, (6.6) remains valid even in the case that the boundary of the region
defined by (M,U) is singular in the sense of Definition 1.1.

Generalized Offset Regions and a “Mining Rights Formula”. We con-
sider three consequences of the preceding remarks for generalized offset regions,
for “signed offset regions”, and a “mining rights formula”proposed by Stetten [St]
which gives an alternate way to compute the volume of a region.

Volumes of Offset Regions and Steiner’s Formula

Suppose that Ω is a compact region in Rn+1 with a smooth boundary B. Let U
be a smooth nonvanishing outward pointing vector field. We construct a generalized
offset region. Suppose (B, U) satisfies the conditions for defining a region Ω′ with
possibly singular boundary. We refer to Ω′ as a generalized offset region (with
possibly singular boundary).

In the standard case of an offset region using a normal vector field of constant
length, there is a generalization of the classical Steiner’s formula for regions with
smooth boundary (see Gray [Gr, Chap. 10]). In fact, the offset region is a half
tube. The generalized offset region is a generalized half-tube; hence by remark 6.5
and (6.6), we obtain the following formula.
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Corollary 6.6. The volume of the generalized offset region Ω′ is given by

(6.7) Volume of generalized offset region =

n
∑

i=0

(−1)i

i+ 1

∫

M

σr i · r
i+1 dM

Remark . We emphasize that dM denotes the medial measure (even though it is
being used on M) and it automatically takes into account the failure of the vector
field U to be non-normal.

In the special case that the offset region has constant radius, we may remove r
from the integrals in (6.7) and obtain a polynomial expanson in r. If the offset region
is defined using a normal vector field, then σr i is the i–th elementary symmetric
function in the principal curvatures of M .

Integrals and Volumes for “Signed Offset Regions”

Suppose U1 is a smooth unit vector field on M , nowhere tangent to M . We
let r be a smooth function on M which may be positive and negative. We let
U = r · U1. If we try to define a generalized offset region using U , then we have
a basic problem: depending on the sign of r, U points to different sides of M .
Nonetheless, we suppose for simplicity that r−1(0) is a piecewise smooth n − 1
submanifold separating the regions R+ and R− where r is positive and negative.
Suppose r also satisfies

(6.8) min
1

|κr j |
< |r| < min

1

κr i
for all κr i > 0 and all κr j < 0.

Then the radial flow does not develop singularities from R+ nor from R−. We
suppose that the flow remains globally one-one on each of these regions. We denote
the image of the radial flow at time one by B and the region between M and B by
Ω. We refer to this region as a signed offset region see Fig. 8.

M

B

Figure 8. Signed Offset Region Ω on M

Then, Ω is made up of partial tubes Ω+ and Ω− on the regions R+ and R−

on each side of M (actually B and M intersect on the boundaries however, the
arguments we have given will still apply). We suppose we are given a nonnegative
function g on Ω, and we want to integrate g on Ω, except we want to treat the
values of g over Ω− as being negative. This is represented by the following signed
offset integral

∫

Ω

sgn(r) · g dV.
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We apply the preceding results regarding partial tubes (except to integrals rather
than just volumes) to Ω+ and Ω− separately. We define for ε = ±1

δε(x) =

∫ 1

0

g(x+ tεU(x)) · det(I − trSrad) dt.

Corollary 6.7. For the signed offset region Ω, and non-negative integrable function
g,

(6.9)

∫

Ω

sgn(r) · g dV =

∫

R+

r · δ+ dM −

∫

R−

r · δ− dM

In the case that g ≡ 1, we obtain from (6.9) the signed volume of Ω, which
measures the difference in volume between the region enclosed by B, and that
enclosed by M . This is a difference of volumes of partial tubes, and is given by the
preceding formulas as a difference of integrals.

“Mining Rights Formula”for Volume of a Region

If Ω is a compact region with generic smooth boundary B in Rn+1, then an
alternate approach to finding the volume of Ω is to express it as an integral over B.
Define the function δ′ by the expression

δ′ =

∫ r

0

∏

(1 − tκi)dt,

where the κi are the principal curvatures of M (with respect to the inward pointing
normal). Then, the following formula (6.10) was proposed by George Stetten [St]
who called it the “mining rights formula”.

Theorem 6.8. If Ω is a region in Rn+1 with generic smooth boundary B, then the
volume of Ω is given by the following formula

(6.10) Volume of Ω =

∫

B

δ′ dV

We derive this formula as a consequence of the formula obtained earlier for the
volume of a half–tube allowing a singular boundary.

Proof. We define on B the vector field U which at a point x is from x to the image
in the Blum medial axis under the grassfire flow. In the generic case this is a
continuous piecewise smooth vector field (it is the negative of the translate of the
radial vector field from the medial axis M to B. Then, we invert our view of Ω as
being built from the medial axis M by the radial flow. Instead it is the half tube
on B defined by this vector field. Thus, we flow inward from B by the grassfire flow
to obtain the half–tube Ω with “singular boundary”M as in Fig. 9.

In order to apply half tube formula in this case, we have to break up M into
regions on which U is smooth and use the formula for partial tubes on the regions.
Then adding up these formulas, we still obtain the formula (6.6) for the volume of
Ω. We first rewrite this as an integral from Theorem 8.

(6.11) Volume of Ω =

∫

B

r · δ(x) dV
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M

B

Figure 9. Region Ω as a Half Tube on B with Singular Boundary M

where

r · δ(x) =

∫ 1

0

det(I − t · r · SB) · r · dt

=

∫ 1

0

∏

(I − t · r · κi) · r · dt.

Here the κi are the principal curvatures of B but for the inward pointing normal.
Then, after performing a change of coordinates s = r · t, we see that r · δ = δ′;
hence, (6.11) yields the formula. �

7. Divergence Theorem for Fluxes with Discontinuities across the

Medial Axis

Let (M,U) be a skeletal structure which defines Ω as a region with smooth
boundary B in Rn+1. For example, M could be the Blum medial axis M of Ω in
the case of a smooth generic boundary B. We will derive a version of the divergence
theorem for a region Γ ⊂ Ω for a vector field F which may have discontinuities across
M . Before we begin defining exactly what we will mean, we first introduce a piece
of terminology. will continually make use of the radial flow. Let Mα denote either a
component of a stratum of M or a manifold with boundary or corners appearing in
a paved neighborhood in M . We let M̃α denote the submanifold in M̃ given by M̃α

together with a choice of smooth value of U on Mα. Then, for the radial flow ψ we
will refer to the image ψ(M̃α× [0, 1]) as the radial trace of M̃α. By our assumptions
on (M,U) (see §1 and [D1]), it will still be a smooth manifold if Mα is a stratum,
or a manifold with boundary and corners if Mα is one. We denote the radial trace
more simply as M̃αψ. In Fig. 10, we see the radial traces of the singular stratum
denoted by heavier lines, with the darker region denoting the radial traces of the
submanifolds M̃ij .

Definition 7.1. A vector field F will be a smooth vector field on Ω with (possible)
discontinuities across M , if F is a smooth vector field on Ω\M which in addition
has the following property at any point x0 ∈M . There is a neighborhood V of x0 in
Rn+1 and a paved neighborhood W ⊂ V of x0 with W = ∪Mi a decomposition into
manifolds with boundaries and corners so that: if M̃i denotes Mi with a chosen
smooth value of U , and M̃i belongs to the abstract neighborhood of C, a local
complementary component of M at x0 in V , then F extends smoothly to the radial
trace M̃i ψ.
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Example 7.2. We may translate U along each radial line to obtain a vector field
(again denoted by U) on Ω, which is multivalued on M but smooth on Ω\M . Thus,
this U is smooth with discontinuities across M . Likewise the corresponding unit
vector field U1 analogously obtained by translation is also smooth with disconti-
nuities across M . In the Blum case, −U1 is the vector field corresponding to the
“grassfire flow”(i.e. eikonal flow) considered by Siddiqi et al in [BSTZ] and [SBTZ].

As a consequence of Definition 7.1, F extends to a multivalued continuous piece-
wise smooth vector field on M . Also, divF also extends smoothly to each radial
trace M̃i ψ.

Next we specify the types of regions Γ over which we define integrals of divF ,
as well as flux integrals of F over the boundary ∂Γ, with the goal of finding the
appropriate generalization of the divergence theorem relating them.

Normally flux integrals are defined over smooth boundaries. However, as in e.g.
[LS], we can define the flux integral of a vector field over a manifold with boundaries
and corners and there is still a version of the divergence theorem [LS, Theorem 7.1]
Now we consider a region Γ ⊂ Ω which has regular piecewise smooth boundary ∂Γ.
By this we shall mean that each point x0 of ∂Γ has a paved neighborhood V in Γ.
Furthermore, we require that Γ is in radial general position, which means that M
and the radial traces of Msing decompose Γ into a union of regions with regular
piecewise smooth boundary.

For example, if Γ has a regular piecewise smooth boundary and the various
dimensional smooth pieces of ∂Γ are transverse to M and the radial traces of its
strata as in Fig. 10), then Γ is in radial general position.

Γ

Ω

Figure 10. Radial traces and a region Γ in Ω in radial general position

Since divF is bounded and smooth on Ω\M , and M is a set of measure 0 in
Ω, we may extend divF any way we wish to M to obtain a measurable function.
As Γ is a Borel set and compact, the integral

∫

Γ
divF dV is defined. Likewise, as

∂Γ can be locally paved by compact manifolds with boundaries and corners with
outward pointing normal vectors nΓ, the integral

∫

∂Γ
F · nΓ dS is defined, where

dS denotes the n-dimensional volume over the faces of ∂Γ. To give a version of
the divergence theorem, we define a multivalued function cF on M as follows. Let
projU (F ) = cF · U1, where projU denotes projection onto U along TM . As both
the extension of F to M and U are continuous and multivalued, so is cF . Then,
the modified divergence Theorem takes the following form.
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Theorem 9 (Modified Divergence Theorem). Let Ω be a region with smooth bound-
ary B defined by the skeletal structure. Also, let Γ be a region in Ω with regular
piecewise smooth boundary. Suppose F is a smooth vector field with discontinuities
across M , then

(7.1)

∫

Γ

divF dV =

∫

∂Γ

F · nΓ dS −

∫

Γ̃

cF dM

where Γ̃ = M̃ ∩ π−1(M ∩ Γ).

Remark . We note that at the edge of M , U becomes tangent, so as we approach
the edge cF becomes infinite. However, the integral is still well–defined because
locally dM = ρdS and ρ approaches 0. In fact, as seen in the proof of the theorem
the product cF · ρ represents F · n, for the unit normal vector field n on M , and
this remains bounded.

Before proving Theorem 9, we derive a consequence for the grassfire flow. We
let G denote the unit vector field which generates the grassfire flow. As observed
in Example 7.2, G is smooth with discontinuities across M . Thus we can apply
Theorem 9. In this case, projU (−U1) = −U1 so cG = −1. Thus, we obtain as a
corollary.

Theorem 10. If G denotes the unit vector field generating the grassfire flow for
the region Ω with Blum medial axis M , then for a piecewise smooth region Γ ⊂ Ω

(7.2)

∫

Γ

divGdV =

∫

∂Γ

G · nΓ dS +

∫

Γ̃

dM

Remark . Thus, the flux of the grassfire flow across ∂Γ differs from the divergence
integral of G over Γ by the “medial volume of Γ̃”.

Example 7.3. In the case of Ω in R2, M is a branched curve and Γ̃ is a union of
curve segments in M̃ which represent both sides of the curve segments in Γ ∩M .
The medial measure of Γ̃ is twice the integral of U1 · n over Γ ∩M with respect to
the usual Riemannian length.

Proof of Theorem 9. For the proof we follow the classical proof of replacing the
integrals by a sum of local integrals for which the classical divergence theorem is
valid. Summing these integrals leads to the modified form in the theorem.

By the properties of skeletal sets we may coverM by the interiors of a finite num-
ber of paved neighborhoods {Wi}. The associated abstact neighborhoods {W̃ij} are

a finite covering of M̃ . For each Wi, we let Vi denote the union of the radial traces
of the W̃ij associated to Wi. Also, the union of the radial traces of the interiors of

the W̃ij associated to Wi form the interior of Vi relative to Ω. The unions of the
interiors again cover Ω. We let {ϕi} be a partition of unity {ϕi} subordinate to
{int(Vi)}. We may compute the integral by

(7.3)

∫

Γ

divF dV =
∑

i

∫

Γi

ϕi · divF dV

where Γi = Γ ∩ Ṽi. As each Γi is a Borel set, the integrals on the RHS are well-
defined.

First, we consider the case of a single Fi = ϕ · F with support in the interior
of a single Vi. We may represent Vi as a union of radial traces Vi = ∪M̃ij ψ,
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where π−1(Wi) = ∪jM̃ij and each M̃ij is a compact manifold with boundaries and
corners with associated smooth value of U . Then, we may decompose Γi as a union
of Γij = Γi ∩Mij ψ (see Fig. 11 a)). Since Fi extends to be smooth on Γij . we may
apply the classical divergence theorem.

(7.4)

∫

Γij

divFi dV =

∫

∂Γij

Fi · nΓ dS

V
i

ij
Γ

W i

M
ij

~

Γ

a) b)

Figure 11. Decomposition of the region Γ in Vi

Second, we sum (7.4) over j. To understand the cancellation that occurs in
the sum of the RHS of(7.4), we note as in Fig. 11 b), there are four types of
n–dimensional faces of Γij :

(1) common faces of a two distinct Γij ;
(2) faces lying in a face of ∂Γ;

(3) faces lying in a M̃ij ; and

(4) faces lying in a radial trace of a boundary facet of M̃ij ; not shared with

another M̃ij′ .

For case 1) of common faces of a pair of Γij the integrals over the faces cancel. For
case 4), since the support of ϕi does not intersect a radial trace of such a single
boundary facet, the integral over that face is also 0. For case 2), the sum of integrals
over such faces equals

∫

∂Γ∩Vi
Fi · nΓdS.

Finally for a face as in case 3), we note that nΓ = −n, the unit normal vector
field to Mij pointing in the same direction as the corresponding smooth value of
U . Also, Fi · nΓ = ϕi(F · (−n)). If we write F = cFU1 +F1 with F1 tangent to M ,
then

Fi · nΓdS = ϕi · cF (U1 · (−n)) dS(7.5)

= −(ϕi · cF ) · ρdS(7.6)

where dS the denotes Riemannian volume form. Then, the sum of the integrals for
faces in case 4) equals the integral

(7.7)

∫

∂̃Γ∩W̃i

−(ϕi · cF ) · ρdS =

∫

∂̃Γ∩W̃i

−(ϕi · cF ) dM

Hence, summing (7.4) over j, we obtain

(7.8)

∫

Γi

div(ϕiF ) dV =

∫

∂Γ∩Vi

ϕi · (F · nΓ) dS −

∫

∂̃Γ∩W̃i

ϕi · cF dM
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Equivalently, as supp (ϕi) ⊂ Vi, we obtain

(7.9)

∫

Γ

div(ϕiF ) dV =

∫

∂Γ

ϕi · (F · nΓ) dS −

∫

∂̃Γ

ϕi · cF dM

Lastly, we want to sum over i. Since
∑

i ϕi ≡ 1,
∑

i∇(ϕi) ≡ 0. Then, we may
apply a standard argument as follows. Since

(7.10) div(ϕi · F ) = ∇ϕi · F + ϕidivF,

we may sum (7.10) over i, using the relations between ϕi and ∇(ϕi) just stated, to
obtain

(7.11)
∑

i

div(ϕi · F ) = divF.

Thus, summing (7.9) over i using the linearity of the integrals and both (7.10) and
(7.11), we obtain

(7.12)

∫

Γ

div · FdV =

∫

∂Γ

(F · nΓ) dS −

∫

∂̃Γ

cF dM

which is what we wished to establish. �

8. Computing the Average outward Flux for the Grassfire Flow

We explain in this section how the modified divergence theorem applies to justify
an algorithm developed by Siddiqi et al [BSTZ] and [SBTZ] to identify points of
the Blum medial axis. Let Ω be a region with smooth generic boundary B, and
Blum medial axis M . As in §7, we also let G denote the unit vector field which
generates the grassfire flow. The algorithm concerns properties of the flux of the
vector field G, which has discontinuities across M .

Suppose we are given a convex region Γ′ ⊂ Rn+1 with regular piecewise smooth
boundary, containing 0 in its interior. We can form tΓ′ = {t · x : x ∈ Γ′}. Then,
about any point x ∈ Ω\B, we can form the translate Γt(x) = x + tΓ′. For t > 0
sufficiently small Γt(x) ⊂ Ω. Thus, we may first consider the limit of the flux across
∂Γt(x) as t→ 0.

lim
t→0

∫

∂Γt(x)

G · n∂Γt(x) dS

where n∂Γt(x) denotes the outward normal to ∂Γt(x).

Lemma 8.1. Suppose Ω ⊂ R
n+1 is a compact region with smooth generic boundary

B. If x ∈ Ω\B, then

lim
t→0

∫

∂Γt(x)

G · n∂Γt(x) dS = 0

Proof. If Γt(x) ∩M = ∅, then by the usual divergence theorem,
∫

∂Γt(x)

G · n∂Γt(x) dS =

∫

Γt(x)

divGdV

By the continuity of G off M and the mean value theorem for integrals,
∫

Γt(x)

divGdV = divG(x̄) · vol(Γt(x))

for some x̄ ∈ Γt(x).
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Then, the continuity of divG implies that |divG(x̄)| is bounded on Γt0(x). If we
let t→ 0, then vol(Γt(x)) → 0; hence, the RHS → 0. Thus, so does the flux.

In fact, we claim this still remains true if x ∈M . Using the modified divergence
theorem applied to G (Theorem 10),

(8.1)

∫

∂Γt(x)

G · n∂Γt(x) dS =

∫

Γt(x)

divGdV −

∫

Γ̃t(x)

dM

We claim there is a constant C > 0 so that for t > 0 sufficiently small,

(8.2) |

∫

Γt(x)

divGdV | ≤ C · Vol(Γt(x))

If t is small enough, then there is a paved neighborhood W of x, so that Γt(x) is
contained in the radial trace of W . We may then repeat the argument in the proof
of Theorem 9, to decompose Γt(x) = ∪iΓt i, so that on each G|(Γt i\M) extends
smoothly to Γt i∩M . Thus, divG is bounded on Γt i. Thus there is a single constant
C such that

|divG| ≤ C for all x ∈ Γt(x)

This continues to hold for all 0 < t′ < t as Γt′(x) ⊂ Γt(x). Thus, by again applying
the mean value theorem for integrals to each Γt i, and then summing, we obtain
(8.2).

As t→ 0, the RHS of (8.2) → 0, so

lim
t→0

∫

Γt(x)

divGdV = 0

Second, since ρ ≤ 1,

|

∫

Γ̃t(x)

dM | ≤ length(Γ̃t(x))

As t → 0, length(Γt(x)) → 0, so also the second integral on the RHS of (8.1) → 0
as t→ 0. Thus, as t→ 0, the limit of the flux on Γt(x) → 0. �

Although the limiting value of the flux does not differ for points on the Blum
medial axis, it turns out that the limiting value of the “average flux”does detect
points on the medial axis. The algorithm developed in [BSTZ] and [SBTZ] uses
a discrete version of the average flux to determine the Blum medial axis. We
justify this algorithm using the modified divergence theorem. In what we say we
restrict attention to regions in R2 or R3, although the general form we give will
have analogues in higher dimensions.

We use a convex Γ as before, except that we further limit the allowable Γ by
requiring that the edges of the boundary (where smooth facets meet) lie in the
intersection of the boundary with a finite number of hyperplanes passing through
0. Thus, besides convex regions with smooth boundaries, this also allows, for
example, cubes.

We let voln+1(Γt(x)), resp voln(∂Γt(x)), denote the n + 1–dimensional volume
of Γt(x), resp. n–dimensional volume of ∂Γt(x), for n = 1, 2. Now we consider the
average flux across Γt(x) to be

the average flux across Γt(x) =
1

voln(∂Γt(x))
·

∫

∂Γt(x)

G · n∂Γt(x) dS
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We are interested in the limit of the average flux as t → 0. In particular, we will
see that it will again be zero off the medial axis; however, now for points on the
medial axis it will not vanish (except at edge points). The nonvanishing on the
medial axis is due to the medial integral term in the modified divergence theorem.
Thus, we will be concentrating on understanding the contribution of this term to
the limiting average flux.

Although the value of the limiting average flux can vary for points on the medial
axis, it can be bounded in terms of two invariants associated to each point x on
the Blum medial axis M . First, we recall that ρ(x) = U1 · n is a piecewise smooth
multivalued function on M which has values at x corresponding to each local com-
ponent of M of x, and to each value of U1 defined for each local component (and
the corresponding unit normal vector n to the local component at x pointing in
the same direction as U1). We let min(ρ)(x) denote the minimum nonzero value of
ρ(x) for the multiple values at x.

Second, we define for each possible generic type T for points of M a medial
density mT Γ. The generic types for the 1-dimensional medial axis are: smooth
points, branch points, and end points; for the 2-dimensional medial axis they are:
smooth points, Y- branch points, edge points, fin points (Fig. 4 a)) and 6-junction
points (where six local componets joined along 4 Y-branch curves meet). The
medial density mT Γ has the property that for any point x ∈ M of type T ,

mT Γ ≤ lim
t→0

voln(Γ̃t(x))

voln(∂Γt(x))

and this is the largest constant with this property for all generic regions. Here
voln(Γ̃t(x)) denotes the integral

∫

Γ̃t(x)
dV for the usual n–dimensional Riemannian

volume dV .

Remark . We note that this constant can differ for different Γ such as a disk versus
a cube.

We will show that this constant is strictly positive for each type except the edge
points of M . Then, we define

MΓ = min
non–edge T

{mT Γ}.

Finally, we will give a bound for the limiting flux at nonedge points of M in terms
of min(ρ) and MΓ. Since both of these constants are nonzero, we will obtain a
nonzero bound for the limiting average flux at nonedge points of M .

The main theorem we will prove is the following.

Theorem 8.2. Suppose Ω ⊂ R
n+1 for n = 1, 2 denotes a compact region with

smooth generic boundary B. If x ∈ Ω\B, then

lim
t→0

(the average flux across Γt(x))

{

= 0 x /∈ M or x ∈ ∂M
< −MΓ · min(ρ)(x) x ∈ M\∂M

where MΓ is positive and depends on Γ and min(ρ)(x) > 0.

Hence, as asserted in [SBTZ], the points on the Blum medial axis (except ∂M)
are detected by the nonvanishing of the limiting average flux as t → 0. Another
calculation of the limit of the average outward flux in the 1–dimensional case using
Γ a 2–disk allows a more precise evaluation [DDS].
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Remark 8.3. For a smooth point x of the Blum medial axis, ρ(x) is uniquely
defined, and we can give a more precise bound < −ρ(x0) · mSΓ for S denoting the
type representing smooth points.

We want to both prove this theorem and to compute these medial densities for
the case of disks and cubes. First, we determine how to compute these constants,
and do so for Γ a 2-disk or square for the 1-dimensional case, or 3-disk or cube for
the 2-dimensional case. If we choose a point x0 of one type T , then we may pave a
neighborhood W of x0 in M by manifolds with boundaries and corners Mi. In the
1-dimensional case these are smooth embedded images of closed intervals, while for
the 2-dimensional case, we may take them to be smooth embedded images of closed
rectangles.

We let W̃ denote the inverse image of W in M̃ , and we let M̃ij denote the

non–edge manifold components of W̃ so each M̃ij consists of a non–edge manifold
component Mi of W together with a smooth value of U . In practical terms for non–
edge points, only in the case of fin points do we disregard a local component (which

corresponds to the fin in that case). For each M̃ij , there is a value of ρ = U1 · n at
x0 which is strictly positive (as Mij is a non–edge component so U is not tangent

to Mi at x0). The corresponding function ρ on each M̃ij is continuous. We let

M̃ij(t) = M̃ij ∩ Γt(x0). Then,

(8.3)

∫

Γ̃t(x0)

dV =
∑

i,j

∫

M̃ij(t)

dV.

Thus, to compute

lim
t→0

voln(Γ̃t(x0))

voln(∂Γt(x0))

it is sufficient to determine for each M̃ij the limit

lim
t→0

1

voln(∂Γt(x0))
·

∫

M̃ij (t)

dV.

The Mi have well defined tangent planes at x0. Let Rij(t) denote the projection

of M̃ij(t) onto the tangent plane of M̃ij at x0. For t > 0 sufficiently small, this
projection is a diffeomorphism. Also, we let Ci denote the intersection in Tx0

Mi of
the cone spanned by the half–tangent lines at x0 to the 1–dimensional edges of Mi;
and let Ci(t) = Γt(x0) ∩ Ci.

Lemma 8.4.

lim
t→0

voln(Mij(t))

voln(∂Γt(x0))
= lim

t→0

voln(Rij(t))

voln(∂Γt(x0))
= lim

t→0

voln(Ci(t))

voln(∂Γt(x0))

Proof of Lemma 8.4. In the 1 or 2-dimensional case (using polar coordinates), a
direct calculation shows

(8.4) voln(Mij(t)), voln(Rij(t)) = voln(Ci(t)) + o(tn).

If we use the scaling property :

voln(∂Γt(x0)) = tn · voln(Γ(x0))

together with (8.4), we obtain the result. �

Remark . Almost certainly Lemma 8.4 holds as well for higher dimensions.
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Table 1. Medial Densities for the 1 and 2–dimensional cases for
Γ an n–disk or n–cube

1–dimensional case

Type 2-disk square

smooth pt. 2
π

1
2

branch pt. 3
π

3
4

end pt. 0 0

MΓ
2
π

1
2

2–dimensional case

Type 3-disk cube

smooth pt. 1
2

1
3

Y–branch pt. 3
4

1
2

fin pt. 1
2

1
3

6–junction pt. ≥ 1
2 ≥ 1

3

end pt. 0 0

MΓ
1
2

1
3

Then, applying Lemma 8.4 and (8.3) and keeping in mind that there are two
sides Mij to each Mi, we compute

(8.5) lim
t→0

voln(Γ̃t(x0))

voln(∂Γt(x0))
= lim

t→0

( 2

voln(∂Γt(x0))
·
∑

i

voln(Ci(t))
)

.

However, by scaling properties of volume for both Ci(t) and ∂Γt(x0),

(8.6) voln(∂Γt(x)) = tn · voln(∂Γ) and voln(Ci(t)) = tn · voln(Ci ∩ Γ(x0)).

Thus, we conclude from Lemma 8.4 and (8.6)

(8.7) lim
t→0

voln(Γ̃t(x0))

voln(∂Γt(x0))
=

2

voln(∂Γ(x0))
·
(

∑

i

voln(Ci ∩ Γ(x0))
)

.

Then, using (8.7) we can compute the medial density.

Proposition 8.5. The medial densities in the 1 and 2–dimensional case for disks
and cubes are given by Table 1.

Table 1 suggests that for general allowable Γ, MΓ = mS Γ, where S denotes the
type representing smooth points., i.e. the minimum of mT Γ occurs for smooth
points.

Proof of Proposition 8.5. We consider the 2–dimensional case. The 1–dimensional
case is easier. First, for smooth points and fin points ∪iCi = Tx0

M , i.e. in the
smooth case C1 = Tx0

M , while for a fin point X0 there is a unique common limiting
tangent plane at x0 for each non-edge component and ∪iCi fills out this plane. Thus,
the intersection of this plane with a cube Γ centered at x0 has area ≥ the area of

a face of the cube. Thus, by (8.7) mTΓ ≥ 2 · r2

6r2 = 1
3 and equality will occur if the

tangent plane is parallel to a face. Instead, for a sphere mTΓ = 2 · πr2

4πr2 = 1
2 .

In the case of Y -branch points, there are three Ci each of which is a half plane.
Thus, an analogous computation yields either 1

2 for a cube or 3
4 for the sphere.

The remaining case is the 6-junction. There are 6 cones Ci joined along 4 half–
lines through x0 which intersect the sphere in 4 points Pi. In the case of the
sphere or radius r centered at x0, the area of each Ci ∩ Γ(x0) is proportional to
the spherical length of the spherical segment determined by Ci. The sum of the
lengths of these 6 segments > 2πr, and as these points approach a common point,



GLOBAL GEOMETRY VIA SKELETAL INTEGRALS 35

the lengths approach 2π. Thus, mTΓ ≥ 2 · πr2

4πr2 = 1
2 . A similar argument works for

the cube giving 1
3 . �

Proof of Theorem 8.2. If x /∈ M , the proof is similar to that for Lemma 8.1. Sup-
pose |divG| ≤ C on ∂Γt(x). By the usual divergence theorem,

(8.8)

average flux across ∂Γt(x) =
1

voln(∂Γt(x))
·

∫

Γt(x)

divGdV

≤
C

voln(∂Γt(x))
· voln+1(Γt(x))

Using the volume has the scaling properties (8.6) and

voln+1(Γt(x)) = tn+1 · voln+1(Γ),

we conclude

(8.9) average flux across ∂Γt(x) ≤ tC ·
voln+1(Γ)

voln(∂Γ)

Since the RHS of (8.9) → 0 as t→ 0, we conclude that the limit of the average flux
is 0.

For the case of x ∈ M , we again use the modified divergence theorem in the
form of Theorem 10. We obtain the average flux across ∂Γt(x) by dividing (8.1) by
voln(∂Γt(x)). From (8.2) we obtain

(8.10)

1

voln(∂Γt(x))
· |

∫

Γt(x)

divGdV | ≤ C ·
voln+1(Γt(x))

voln(∂Γt(x))

≤ tC ·
voln+1(Γ)

voln(∂Γ)

Again as t→ 0, the RHS of (8.10) → 0. Thus,

(8.11) lim
t→0

(average flux across ∂Γt(x)) = − lim
t→0

( 1

voln(∂Γt(x))

∫

Γ̃t(x)

dM
)

.

It remains to show that the RHS has a nonzero negative value bounded away
from zero if x ∈M\∂M , while if x ∈ ∂M , the limit is 0.

Let x0 ∈ M\∂M . We use notation as earlier for a paved neighborhood W of

x0 with M̃ij denoting the manifold components of W̃ , except we do allow edge-

components. We again let M̃ij(t) = M̃ij ∩ Γt(x0). Then,
∫

Γ̃t(x0)

dM =
∑

ij

∫

M̃ij(t)

ρijdV.

where ρij is the value of ρ for M̃ij . It is enough to determine for each M̃ij the limit

lim
t→0

1

voln(∂Γt(x0))
·

∫

M̃ij (t)

ρijdV

Then, for t > 0 sufficiently small Mi(t) will be connected thus, we can apply the
mean value theorem for integrals to conclude

∫

M̃ij (t)

ρdV = ρij(x̄) · voln(Mi(t))
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Then,

lim
t→0

1

voln(∂Γt(x0))
·

∫

M̃ij(t)

ρijdV = lim
t→0

(

ρij(x̄) ·
voln(Mi(t))

voln(∂Γt(x0))

)

or using x̄ → x0 as t→ 0, Lemma 8.4, and the scaling properties of volume

= ρij(x0) ·
voln(Ci ∩ Γ(x0))

voln(∂Γ(x0))

≥ min(ρ)(x0) ·
voln(Ci ∩ Γ(x0))

voln(∂Γ(x0))
(8.12)

Note: if Mi is an edge component then ρij(x0) = 0 so we can drop it from the sum.
Summing (8.12) over (i, j) yields

lim
t→0

( 1

voln(∂Γt(x))

∫

Γ̃t(x)

dM
)

≥ min(ρ)(x0) ·
1

voln(∂Γ(x0))
·
∑

i

voln(Ci ∩ Γ(x0))

≥ min(ρ)(x0) · mTΓ(8.13)

by using (8.7), where x0 is of type T . By (8.11) , this is exactly what we claimed �
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