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Endoscopography: Deriving a 3D Textured Surface
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Abstract—Endoscopy [1] enables high-resolution visualization
of tissue texture and is a critical step in many clinical workflows,
including diagnosis and treatment planning for cancers in the
nasopharynx. However, an endoscopic video does not provide
its information in 3D space, making it difficult to use in tumor
localization, and it is inefficient to review. We present a new
imaging approach that we call endoscopography. Endoscopogra-
phy reconstructs a full 3D textured surface, which we call an
endoscopogram, from an endoscopic video. This endoscopogram
opens the door for novel 3D visualizations of patient anatomy
derived solely from endoscopic data. It also allows information
contained in the tissue texture in the endoscopogram to be
transferred to 3D image such as CT through a surface-to-surface
registration. In particular, through an interactive tool, the physi-
cian can draw directly on the endoscopogram surface to specify a
tumor, which then can be automatically transferred to CT slices
to aid tumor localization. We describe the sequence of methods
we have designed to achieve this goal. Through evaluations on
synthethic, phantom, and patient data, we demonstrate that our
surface reconstruction method can obtain accurate results within
millimeters of ground-truth, and our registration approach can
handle tissue deformations and reconstruction inconsistencies
across endoscopic video frames.

Index Terms—Endoscopography, Endoscopogram, 3D Recon-
struction, Endoscopy, Registration, nasopharynx.

I. INTRODUCTION

There exists a variety of endoscopic examinations, and for
each of these a reconstruction from the video into a 3D
textured surface can be useful. The particular application that
we are working on are nasopharyngoscopy and colonoscopy.
In this paper we explain our methods with respects to na-
sopharyngoscopy applications.

Nasopharyngoscopy is a commonly used technique for na-
sopharyngeal cancer diagnosis and treatment planning. For ra-
diotherapy, the planning requires tumor localization. Although
nasopharyngoscopy can provide a direct, high-contrast, high-
resolution visualization of a patient’s interior tissue surface,
it has a weakness for tumor localization in that it does not
provide precise 3D spatial information. On the other hand,
CT provides many critical sources of information needed
in planning radiotherapy, with low distortion. However, it
provides relatively low contrast and low resolution images for
localization of the tumor, especially for tumors predominantly
on the tissue surface, as is common in throat cancer.

Therefore, if we can leverage the advantage of tissue infor-
mation in nasopharyngoscopy together with the 3D geometry
information in CT scan, the accuracy of tumor localization
will be increased. Our challenge is to develop technologies
enabling physicians to efficiently review nasopharyngoscopies
and to visualize endoscopic data directly in the CT space.

To achieve these objectives, the 2D endoscopic video must
be converted into a format that 1) summarizes the overall
anatomy as a single object that is easy to manipulate and 2)
contains the shape information necessary for registration to the
3D patient space.

Fig. 1. Deriving endoscopogram through frame-by-frame 3D reconstruction
and group-wise deformable registration.

Given an input endoscopic video sequence, our method
reconstructs the throat surface as a textured 3D mesh (see
Fig. 1). We term this new image type an endoscopogram.

The endoscopogram is generated by first reconstructing a
textured 3D partial surface for each frame. Then these multi-
ple partial surfaces are fused into an endoscopogram using
a groupwise surface registration algorithm and a seamless
texture fusion from the partial surfaces. Finally, the endosco-
pogram geometry is registered with the surface extracted from
CT which enables the desired tumor transfer process.

This paper focuses on the technical details of the frame-
by-frame depth reconstruction of individual endoscopic video
frames, the groupwise geometry fusion of multiple partial
reconstructions, their seamless texture fusion, and the reg-
istration between the endoscopogram and CT. The paper is
organized as follows: Section II gives an overview of the
problem and challenges for the proposed methodology. Section
III presents related work and provides background on the
tools we use in our methods. Section IV describes the details
of our approach. Section V provides experimental validation
and error analysis, and it presents qualitative analysis of
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application to patients. Section VI discusses the method and
addresses avenues of future work.

II. OVERVIEW

A. Challenges

Reconstructing 3D surface geometry from 2D endoscopic
video and registration with the surface extracted from CT
is very challenging. For example in the nasopharyngoscopy,
the environment for 3D reconstruction is unknown because
throat texture and shape can vary greatly from patient to
patient, especially when tumors are present. Besides, due to
the presence of the endoscope the throat constantly has sudden
large deformations caused by the gag reflex and swallowing
[2], [3]. Moreover, the specularities of the saliva-coated throat
tissue and the self-occlusions of different inner structures make
the reconstruction even harder.

Registration of an endoscopogram with a surface extracted
from CT must deal with 1) the partial volume effect of
CT, which leads to topology differences between CT and
endoscopogram; 2) some anatomy not appearing in the camera
view, which leads to missing data in the endoscopogram;
3) the different patient postures during CT and endoscopy
procedure, which causes large deformation between the CT
and endoscopogram.

Considering all these factors, a successful technique for
endoscopogram construction must operate over short sub-
sequences of the input endoscopic video without any a priori
assumptions of the underlying shape, and the registration
between the CT and endoscopogram must handle large de-
formation, missing patches and topology differences.

B. System overview

Fig. 2. System overview.

Figure 2 shows an overview of our overall system. We firstly
perform a series of automatic video frames preprocessing,
which includes deep learning based automatic informative
frame selection and specularity removal, and a key-frame
selection.

Then we perform a 3D reconstruction using the prepro-
cessed images. Our 3D reconstruction utilizes sparse, multi-
view data obtained via Structure-from-Motion (SfM) to guide
Shape-from-Shading (SfS) reconstruction of the throat sur-
face in individual frames. Novel improvements to the feature
extraction and correspondence detection in SfM, and the

formulation of SFS together with a new reflectance model are
also introduced.

Then we apply a novel groupwise surface registration al-
gorithm based on N-body interaction and physics-motivated
modeling. This algorithm, based on a surface-to-surface reg-
istration method called Thin Shell Demons (TSD), has been
described in detail in [4]. This method is improved by the
estimation of nonuniform and anisotropic elasticity parameters
using orthotropic physical modeling [5].

The registration between the endoscopogram and CT must
handle a large deformation and the fact that both the endo-
scopogram and the surface extracted from CT have missing
patches and topology differences. For this purpose, we use
a novel method that combines TSD and estimation of the
missing patches.

III. RELATED WORK

Our work is mostly related to the problems of 3D recon-
struction and non-rigid registration in the literature.

A. 3D Reconstruction

To date, most work on combining motion-based reconstruc-
tion with shading information has utilized shading to augment
an existing shape template or model priors [6]. Wu et al.
[7] proposed to first build coarse-scale dynamic models from
multi-view video and then leverage shading appearance to
estimate fine-scale, temporally varying geometry. Fine-scale
shading correction has also been used to refine dense surfaces
obtained via depth sensor [8], [9]. In endoscopic applications,
a related method by Tokgozoglu et al. [10] used multi-view
stereo to derive a low-frequency model of the upper airway,
then applied Lambertian SFS on albedo-normalized images to
endow the existing surface with higher-resolution shape. For
monocular reconstruction of deforming environments, several
efforts have been made to extend the Shape-from-Template
problem [11] to utilize shading information. In [12], [13],
[14], Malti, Bartoli, and Collins proposed a two-stage approach
for surgery of the uterus: Pre-surgery, an initial 3D template
is recovered under rigid scene assumptions, and reflectance
parameters are estimated for the surface. In surgery, the
deforming surface is recovered via conformal deformations
of the template surface, and subsequent shading refinement is
performed using the estimated reflectance model. We address
the problem of dense reconstruction in conditions where
dense shape templates are unavailable or difficult to derive.
Laryngoscopy is a good example of this (Figure 7) because the
anatomic shapes in this region are highly patient-specific, and
surfaces extracted from, for example, CT scans are typically
low-resolution and have a notably different shape compared to
endoscopy. Multi-view stereo also tends to fail in this scenario,
as the combination of strong illumination changes and limited
non-deforming image sequences is prohibitive. Motivated by
our observation that SfM works over short temporal sequences
for these data, we develop a method for dense single-view
surface estimation that leverages sparse 3D geometry obtained
from SfM.
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B. Non-rigid surface Registration

Non-rigid 3D registration has been a common topic in
medical image analysis. In particular, we are mostly interested
in non-rigid surface registration methods.

Surface embedding is one class of surface registration
methods. [15], [16] proposed a multidimensional scaling em-
bedding method that can place the two surface vertices in a
low-dimensional Euclidean space, where the nearest-neighbor
matching method can be performed to yield the correspon-
dences. Gu et al. [17] proposed to use conformal mapping
with angle-preserving constraint to embed the surfaces into
a common disc or sphere domain. However, such methods
requires the surfaces to have the same intrinsic geometry that
it cannot handle surface topology change or missing patches.

Matching-based methods [18], [19], [20] use hand-crafted
feature descriptors to perform feature matching, which pro-
duce a set of corresponding points. However, without any
regularization the outliers produced in the feature matching
will lead to non-smooth or even incorrect deformations. Zeng
et al. [21] proposed to use MRF to regularize the deformation
field. LDDMM [22] have provided an elegant mathematical
framework that produces diffeomorphic deformations between
surfaces by comparing their normal fields.

Thirion et al. [23] proposed a Demons algorithm which
optimize a per pixel wise displacement field. The forces that
apply on each pixel were inspired from the optical flow
equations. The idea of the Demons algorithm is appealing
because it has no assumptions about the surface properties.

IV. METHODS

A. Video frame preprocessing

The 3D reconstruction algorithm requires consecutive and
clear views of the target surface. We propose an automatic
video frame preprocessing pipeline that contains three steps
1) informative frame selection; 2) specularity removal; 3) key-
frame selection. These are crucial steps to make our overall
pipeline fully automatic and efficient.

1) Informative frame selection: Endoscopic video contains
a large fraction of non-informative frames. Non-informative
frames includes tissue surface being obscured by fecal matter,
motion blur, the camera being too close to the tissue surface,
water flushing (in colonoscopic video), etc. Explicitly extract-
ing features and training classifiers to identify these various
kinds of non-informative frames is very difficult. A deep
learning method, on the other hand, can directly learn from raw
images to distinguish informative frames from non-informative
frames without the need of manually crafted features; thus it
is very suitable for this task.

Distinguishing informative frames from non-informative
frames is a binary classification problem. We have adopted the
VGG16 [24] network architecture; other network architectures
such as googlenet or resnet can certainly be used as well. The
input to the network is a single RGB frame and the output is
its probability of being an informative-frame.

Figure 3 shows an example of informative and non-
informative frames in a colonoscopic video. We manually
divided 50000 images from five patients into two classes as

Fig. 3. Example of informative and non-informative frames in colonoscopic
video

our training data. We tested the performance of the trained
model on two other patients and it achieves 98.6 % accuracy.

2) Specularity removal: Specular points are very common
in endoscopic videos because the light source is very close
to tissue surface. Moreover, because the surface is moist,
the specularities are quite intense. Specularity causes a lot
of problems in 3D reconstruction including wrong feature
detection and matching, and saturated shading information. We
proposed a deep learning-based specularity removal method
that can remove specular points in real time.

Fig. 4. DispNet architecture for our specularity removal task.

We use the DispNet [25] architecture for our specularity
removal network. The DispNet has an encoder-decoder archi-
tecture as shown in Figure 4. The input and output of our
network has the same size and number of channels.

The training data is generated using a software named Meitu
XiuXiu such that by using some of its functions the specular
points in endoscopic images can be manually removed. We
manually generated 256 frames as training data. Figure 5
shows an example of our specularity removal results.

3) Key-frame selection: A critical step in our 3D recon-
struction algorithm is SfM, which provides an estimation of
the 3D point positions and the camera locations. However,
performing SfM on the whole video is very time-consuming
because of the large number of frames. Chronologically close
frames contain almost the same contents, which would result
in ambiguity in the step of triangulation in SfM. Moreover in
some stable time domains, having many redundant frames can
hide the most informative moving scenes from being recon-
structed. Therefore, a key-frame selection technique is needed
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Fig. 5. Example of specularity removal results.

to exclude the redundant frames and keep the informative
moving frames.

Our key-frame selection method consists of three major
components:

1) Sort the frames according to their sharpness: the integral
of the square of the magnitude of the color gradients.

2) Define a motion score between two images using optical
flow and the normalized correlation coefficient (NCC).
In detail, an optical flow vector field is calculated by
Flownet2.0 [26], and one of the two images is warped
to the other one. Then calculate the NCC between the
warped image and the target image (only taking into
account the pixels that have correspondence).

3) Inspect each frame from low sharpness to high sharpness.
If the motion score between its remaining chronological
neighbors is less than a threshold, the frame is considered
as unnecessary to build up connection and will be deleted
from the time sequence. Otherwise it will be taken as a
keyframe.

Fig. 6. Key-frames in 5 cases.

Figure 6 shows the number and percentage of key-frames
selected in five cases.

B. Temporally local 3D reconstruction

In this stage, our 3D reconstruction method recovers depth
information separately for the selected images in the input
video sequence. Our approach is a combination of SfM and

Fig. 7. Example results of SfMS on live endoscopy from two different
patients. Left: Original image. Right: Surface estimated from the image using
our algorithm.

SfS, therefore we name it Structure-from-Motion-and-Shading
(SfMS). Figure 7 shows example results of our SfMS method.

Our approach achieves this using a new Shape-from-
Shading formulation that utilizes the sparse, but accurate, 3D
point data obtained via Structure-from-Motion. In this section,
we detail the main contributions of the current work that
enable this enhanced depth estimation: First, we introduce
a regularized formulation of SFS that allows for a trade-off
between predicted image intensity and similarity to an
existing estimated surface. We also suggest a way to account
for errors along occlusion boundaries in the image using
intensity-weighted finite differences. Second, we propose
a general reflectance model for use in our SFS framework
that can more accurately capture real-world illumination
conditions. Finally, we develop an iterative update scheme
that (1) warps an estimated surface to the SfM point cloud,
(2) estimates a reflectance model using this warped surface
and the given image, and (3) produces a new estimated
surface using the regularized SFS method.

SfM and SFS. Our novel SfMS method is based on two
classical methods: Structure-from-Motion (SfM) and Shape-
from-Shading (SfS). We first sketch these two methods, as
well as the reflectance model used in SfMS.

SfM [27], [14], [13] is the simultaneous estimation of
camera motion and 3D scene structure from multiple images
taken at different viewpoints. Typical SfM methods produce a
sparse scene representation by first detecting and matching
local features in a series of input images, which are the
individual frames of the endoscope video in our application.
Then, starting from an initial two view reconstruction, these
methods incrementally estimate both camera poses (rotation
and position for each image) and scene structure. The scene
structure is parameterized by a set of 3D points projecting to
corresponding 2D image features.

Our motivation for using SfM is that it provides a prior
on depth, albeit at sparse locations, that provides constraints
for surface geometry and reflectance model estimation. Figure
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Fig. 8. Structure-from-Motion results for endoscopic video. Individual 3D
surface points (colored dots) and camera poses (blue) are jointly recovered.

8 shows an example SfM reconstruction of endoscopic data
using several segments from the overall video. One limitation
to the generality of our method is that sparse non-rigid
reconstruction in medical settings is an unsolved problem [3].
However, the approach we propose can handle any sparse data
as input, so the method could easily be integrated with non-
rigid SfM in future work.

SFS, first introduced in the 1970 thesis of Horn [28],
is a monocular method of depth estimation that, given a
single image viewing a scene, recreates the three-dimensional
shape of the scene under given assumptions about the lighting
conditions and surface reflectance properties [29], [30], [31]. A
number of different formulations have been proposed to solve
the SfS problem, including energy minimization, recovery of
depth from estimated gradient, local shape estimation, and
modeling as a partial differential equation (PDE) [29], [31].
Over the last decade, the PDE formulation of SFS has received
the most attention, starting with Prados and Faugeras [32], who
introduced a novel, provably convergent approach for solving
the problem as a PDE.

Our primary motivation for using SFS is that many of
its simplifying assumptions are well adjusted to general
endoscopic devices. In particular, use of an endoscope allows
us to assume a co-located camera and light source, which
greatly simplifies the modeling of surface reflectance in the
scene. We next describe what this simplification entails,
which sets the stage for introducing our proposed reflectance
model.

Reflectance Models. The amount of light reflecting from a
surface can be modeled by a wavelength-dependent Bidirec-
tional Reflectance Distribution Function (BRDF) that describes
the ratio of the radiance of light reaching the observer Iλr
to the irradiance of the light hitting the surface Eλr [33].
Generally, a BRDF is given as a function of four variables: the
angles (θi, φi) between the incident light beam and the normal,
and the reflected light angles (θr, φr) with the normal; that is,

BRDFλ(θi, φi, θr, φr) =
Iλr
Eλi

, (1)

where λ represents light wavelength. In the following, we
implicitly assume the wavelength dependence of the BRDF.

The irradiance for an incoming beam of light is itself a
function of θi and the distance r to the light source:

Ei = Ii
A

r2
cos θi, (2)

where Ii is the light source intensity and A relates to the
projected area of the light source.

We make two simplifying assumptions about the BRDF that
help the overall modeling of the problem. First, we assume
surface isotropy of the BRDF, which constrains it to only
depend on the relative azimuth, ∆φ = |φi − φr|, rather than
the angles themselves [34]. Second, we assume that the light
source is approximately located at the camera center relative
to the scene, which is a reasonable model for many endoscopic
devices. In this case, the incident and reflected light angles are
the same, i.e., (θi, φi) = (θr, φr). Under these assumptions,
the observed radiance simplifies to

Ir(r, θi) = Ii
A

r2
cos(θi)BRDF(θi). (3)

The reflectance model we propose is based on the set
of BRDF basis functions introduced by Koenderink et al.
[34]. These functions form a complete, orthonormal basis
on the half-sphere derived via a mapping from the Zernike
polynomials, which are defined on the unit disk.

We adapt the BRDF basis of Koenderink et al. to produce
a multi-lobe reflectance model for camera-centric SFS. First,
taking the light source to be at the camera center, we have
θi = θr and ∆φir = 0; this gives

BRDF(θi) =

K−1∑
k=0

(
αk + βk sin

(
θi
2

))
cosk θi, (4)

where αk and βk are coefficients that specify the BRDF.

Surface Model. Let (x, y) ∈ Ω represent image coordi-
nates after normalization by the intrinsic camera parameters
(centering around the principal point and dividing by the
focal length). For a given camera pose, the surface function
f : Ω→ R3 maps points in the image plane to 3D locations on
a surface viewed by the camera. Under perspective projection,

f(x, y) = z(x, y)

 x
y
1

 , (5)

where z(x, y) > 0 is a mapping from the image plane to
depth along the camera’s viewing axis. The distance r from
the surface to the camera center is

r(x, y) = ‖f(x, y)‖ = z(x, y)
√
x2 + y2 + 1, (6)

and the normal to the surface is defined by the cross product
between the x and y derivatives of f :

n(x, y) = fx × fy = z

 −zx
−zy

xzx + yzy + z

 . (7)
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Given a co-located light source, the light direction vec-
tor for a point in the image is the unit vector l̂(x, y) =

1√
x2+y2+1

(x, y, 1). The cosine of the angle between the

normal and light direction vectors is then equal to their dot
product:

cos θi = n̂ · l̂

=
z√

(x2 + y2 + 1)
(
z2
x + z2

y + (xzx + yzy + z)2
) , (8)

where (“carat”) represents normalization to unit length.
Prados and Faugeras [32] note that Eq. (8) can be simplified

using the change of variables v(x, y) = ln z(x, y):

n̂ · l̂ =
1√

(x2 + y2 + 1)
(
v2
x + v2

y + (xvx + yvy + 1)2
) . (9)

This transformation allows us to separate terms involving v
from those involving its derivatives in our shading model,
which is important for our subsequent formulation.

1) Adapted PDE framework: In the following, we modify
the traditional SFS PDE to include regularization against
a pre-existing estimated surface. Then, we address an
implementation for solving this regularized SFS equation.
Finally, we propose the use of weighted finite differences
to mitigate the effect of smoothness assumptions in the
implementation that cause inaccurate depth measurements
along surface occlusion boundaries.

Original PDE. Eq. (3) models observed intensity for a generic,
isotropic BRDF with the assumption that the light source is
co-located with the camera. Joining this with Eqs. (6) and (9)
and multiplying by r2, we have

(x2 + y2 + 1)Ire
2v − IiA cos(θi)BRDF(θi) = 0 (10)

(note e2v = z2). This is a static Hamilton-Jacobi equation of
the form {

Le2v −H(vx, vy) = 0, (x, y) ∈ Ω

v(x, y) = ψ(x, y), (x, y) ∈ ∂Ω,
(11)

where the dependence of H and L on x and y is implied.
ψ(x, y) defines boundary conditions for the PDE.

Regularized Equation. The PDE introduced above is de-
pendent on the accuracy of the BRDF modeling the scene.
To prevent surface mis-estimations arising from an inaccurate
BRDF, we use the 3D points obtained from SfM as an
additional set of constraints for our estimated log-depths, v.

We add a simple regularization to the SFS PDE (Eq. (11))
that constrains the solution to be similar to a warped surface
generated from the 3D SfM points. Instead of a proper PDE,
we consider the following energy function:

E(v) =
1

2

(
e2v − 1

L
H (vx, vy)

)2

+
λ

2

(
e2v − z2

warp

)2
, (12)

where zwarp(x, y) is the depth of the warped surface at a given
image coordinate, and the parameter λ(x, y) ≥ 0 controls the
influence of the right term, which regularizes on depths. We

define λ when we introduce our iterative algorithm, below.
Minimizing E(v) w.r.t v, we obtain

∂E

∂v
=

[
e2v − 1

1 + λ

(
1

L
H(vx, vy) + λz2

est

)]
2e2v = 0.

(13)
Incorporating boundary conditions, we have the following
optimization problem:{

e2v − 1
1+λ

(
1
LH(vx, vy) + λz2

est

)
= 0 (x, y) ∈ Ω

v(x, y) = ψ(x, y). (x, y) ∈ ∂Ω.
(14)

Solving the Regularized SFS Equation. We employ the fast-
sweeping method proposed for SFS by Ahmed and Farag
[35], itself based on a method by Kao et al. [36], to solve
our regularized SFS equation. This approach uses the Lax-
Friedrichs (LF) Hamiltonian, which provides an artificial
viscosity approximation for solving static Hamiltonian-Jacobi
equations. At a high level, the algorithm presented in [35]
initializes the log-depth values v(x, y) to a large positive
constant and proceeds to iteratively update these values to
progressively closer depths. We refer the reader to [35] for
the full algorithm of the fast-sweeping scheme, as the order
of sweeping directions, treatment of boundary conditions, and
convergence criterion presented in [35] are the same as for our
method.

2) Iterative Update Scheme: We now describe our iterative
updating scheme. Our method has an EM flavor in the sense
that it iterates a step optimizing a set of parameters (the
reflectance model) based on the existing surface followed by
a step computing expected depths using these parameters.

Algorithm 1 Shape-from-Motion-and-Shading
Input: An endoscopic image Fi and the associated 3D SfM
points Ci
1. Warping Snwarp(x, y) = ρ(x, y)Snwarp(x, y)
2. Reflectance model estimation E(Θ) =∑

Ω (Ir(x, y)− Iest(x, y; Θ))
2

3. Solve the SfS PDE using the estimated reflectance model
parameters Θ and the warped surface Snwarp to generate a
newly estimated surface fn+1

4. Re-warp fn+1 and repeat step 1-3

The proposed algorithm takes as input an observed image
and the 3D SfM points associated with that image. It outputs
a dense surface using depth-correcting warpings, the proposed
reflectance model, and the proposed PDE framework.

Warping. We denote the warped surface at iteration n of our
scheme as Snwarp. For initialization, we define an estimated
surface S0

warp having r(x, y) = 1, where r is defined in Eq.
(6). First, we perform an image-space warp of Snwarp using
the 3D SfM points with known distance r̂i(xi, yi) as control
points. For each SfM point, we estimate the ratio ρi = r̂i/ri,
where ri is the point’s (bilinearly interpolated) distance on
Sn. To minimize the effect of outlier points from SfM, we
adopt a nearest-neighbor approach to define our warping
function: For each pixel (x, y) in the image, we compute the
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Fig. 9. Visual comparison of surfaces generated by our approach for an image from our ground truth dataset. Top/bottom rows: Visualization of the surface
without/with texture from the original image. Columns from left to right: (1) using a Lambertian BRDF, (2) using our proposed BRDF (K = 2) without
image-weighted derivatives, (3) using our proposed BRDF (K = 2) with image-weighted derivatives, and (4) the ground-truth surface. Note the oversmoothing
along occlusion boundaries in column (2) versus column (3).

N closest SfM points in the image plane. In our experiments,
we use N = 10. Then, we define the warp function at that
pixel as ρ(x, y) =

∑
wiρi/

∑
wi, where the sums are over

the neighboring SfM points. We set wi = exp(−di), where
di is the distance in the image plane between (x, y) and
the SfM point (xi, yi). The new surface is calculated as
Snwarp(x, y) = ρ(x, y)Snwarp(x, y).

Reflectance Model Estimation. From this warped surface,
we optimize reflectance model parameters Θ for the specified
BRDF (where the parameters depend on what BRDF we
choose). This optimization is done by minimizing the least-
squares error

E(Θ) =
∑
Ω

(Ir(x, y)− Iest(x, y; Θ))
2
, (15)

where Iest(x, y; Θ) is the estimated image intensity (see Eq.
(3)) as determined by Snwarp and the estimated BRDF.

SfS. Following reflectance model estimation, we apply the
PDE framework introduced above (Eq. (14)) using the warped
surface Snwarp for values of zest and using the current estimated
reflectance model.

Concerning values of λ(x, y) in our PDE, λ > 1 will give
greater weight to Snwarp, while λ < 1 will favor a purely
SFS solution. We decide the weighting based on agreement
between the SfM points and Snwarp. Let ∆ri be the distance
between a 3D SfM point with distance r̂i and its corresponding
point on Snwarp. We define the agreement between the warped
surface and the SfM point as λi = log10 r̂i/2∆ri. This
equally weights SfM and SFS (i.e., λi = 1) when ∆ri is
5% of r̂i. The log term serves to increase λi by 1 for every
order-of-magnitude decrease in ∆ri/r̂i. Just as for ρ(x, y)
above, we use the same nearest-neighbor weighting scheme to
define λ(x, y) based on the λi values at the SfM control points.

Iteration. Once SFS has been performed, we have a newly
estimated surface Sn+1

est . Then, we simply re-warp the surface,
re-estimate the reflectance model, and re-run regularized SFS.
This iterative process is repeated for a maximum number of
iterations or until convergence.

3) KLT and Optical Flow-based Correspondence Detection
and Tracking: We introduced our SfMS 3D reconstruction
algorithm in the previous subsection. As we mentioned, SfM
is used to provide prior knowledge on depth that constrains
surface geometry and reflectance model estimation. Therefore,
a better SfM result can lead to more accurate dense surface
reconstruction.

General purpose SfM methods are designed for 3D recon-
struction of unordered images. Thus, feature-based (SIFT or
ORB features) localization methods are usually used. How-
ever, these methods are difficult to generalize to endoscopic
videos because endoscopic images are extremely low-textured.
Therefore, in order to produce more robust correspondence
matching results, we leverage the temporal coherent con-
straints by using a KLT tracker. However, there are still cases
that a simple KLT tracker cannot handle: temporal gaps.
The aforementioned non-informative frame removal step in
video preprocessing will sometimes result in temporal gaps.
This can be understood as a short-term loop closure problem.
This section presents a method that solves this problem and
augments the tracking-based correspondence matching.

A common tracking algorithm is shown in Algorithm 2.
The track function is a KLT tracker. Each keypoint is

tracked from Fi to Fi+1 using Lucas-Kanade optical flow. The
resulting position is then tracked back from Fi+1 to Fi. If the
point comes back to the original position in Fi, the tracking
will be considered successful and the position in Fi+1 will be
added into P trackedi+1 .

In order to solve short-term loop closure problem, we im-
proved upon Algorithm 2 by using a frame-skipping strategy.
The algorithm detail is shown in Algorithm 3. The main idea



8

Algorithm 2 strictly sequential tracking
i = 1
while i 6 NF do

if N tracked
i < NP then

detect NP −N tracked
i keypoints outside the neigh-

borhoods of P trackedi .
add Pnewi to Pi.

end if
track(Fi, Fi+1, Pi)→ P trackedi+1

i = i+ 1
end while

is to track not only the immediate next frame but also track the
frames after it. Each frame maintains a set of unique keys that
appears in the frame. In the meanwhile, a global hash table is
also maintained to record for each unique point the frames it
has appeared in. The purpose of using unique keys is to save
the computation if a keypoint’s successor is already tracked
from a even earlier frame. Therefore, for a unique point uk of
associated with mk keypoints, only mk − 1 trackings will be
performed.

Algorithm 3 frame-skipping tracking
i = 1, n = (default)10, BackTrack = (default)False
for i = 1 to NF do

for j = i+ 1 to min(i+ n,NF ) do
if BackTrack and P trackedj is not ∅ then

find all points in P trackedj whose unique keys are
not in P trackedi → P cj

track(Fj , Fi, P
c
j ) → add to P trackedi . Tracked

keypoints inherent the unique keys of their origins.
end if

end for
if N tracked

i < NP then
detect NP −N tracked

i keypoints outside the neigh-
borhoods of P trackedi → Pnewi .

add Pnewi to Pi.
create a unique key for each keypoint in Pnewi .

end if
for j = i+ 1 to min(i+ n,NF ) do

find all points in Pi whose unique key is not in
P trackedj → P ci

track(Fi, Fj , P
c
i ) → P trackedj . Tracked keypoints

inherent the unique keys of their origins.
end for

end for

C. Recurrent Neural Network (RNN)-based 3D reconstruction

We introduced a temporally local frame-by-frame 3D re-
construction method named SfMS in previous section that
can estimate camera poses and dense depth maps for all key-
frames. SfMS involves solving a large non-linear optimization
and complex partial differential equations, so it can only be
performed in an offline manner. However, in some applica-
tions, such as colonoscopy, a real-time 3D reconstruction is

required because all the analysis need to be done during the
procedure. In addition, human tissue has rich texture and
complex reflectance properties, which cannot be adequately
modeled using the BRDF introduced in SfMS. Therefore,
we developed an RNN-based depth estimation method named
DenseSLAMNet [Rui ECCV submission] that implicitly mod-
els the complex tissue reflectance property and performs depth
estimation in real-time.

Fig. 10. (Best viewed in color) Our network architecture at a single time step.
We use the DispNet architecture. The width and height of each rectangular
block indicates the size and the number of the feature map at that layer.
Each increase and decrease of size represents a change factor of 2. The first
convolutional layer has 32 feature maps. The kernel size for all convolution
layers is 3, except for the first two convolution layers, which are 7 and 5,
respectively.

Figure 10 shows the network architecture of DenseSLAM-
Net. In our DenseSLAMNet, multiple views are incorporated
into the single frame depth estimation through RNN. We use
a temporal window of size t = 10 during training: every ten
consecutive frames are grouped into one training sample and
fed to the DenseSLAMNet sequentially.

Once the network is trained, video frames can be fed to
it sequentially and the DenseSLAMNet will output the dense
depth map and relative camera pose for each input frame.

Fig. 11. Example of estimated dense depth maps of nasopharynoscopic
images using the DenseSLAMNet

Figure 11 shows an example of estimated dense depth maps
of nasopharynoscopic images using the DenseSLAMNet.

D. Deformable Surface registration

To fuse multiple frame-by-frame 3D reconstructions from
SfMS into an endoscopogram, we use a novel groupwise
surface registration algorithm involving N-body interaction.
This algorithm is described in [4] and is based on Zhao et
al. [37]’s pairwise surface registration algorithm, Thin Shell
Demons. Here we only give an overview.

1) Thin Shell Demons: Thin Shell Demons is a physics-
motivated method that uses geometric virtual forces and a
thin shell model to estimate surface deformation. The geo-
metric virtual forces {f} are defined as vectors connecting
vertex pairs {uk, vk} between two surfaces {S1, S2} (we use
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k here to index correspondences). The correspondences are
automatically computed using geometric and texture features.
The thin shell model is a physical model which regularizes
the non-parametric deformation vector field φ : S1 → S2.
Combining these two, the algorithm is defined as an iterative
energy minimization function

E(φ) =

M∑
k=1

c(vk)(φ(vk)− f(vk))2 + Eshell(φ), (16)

where c(vk) is the confidence score based on the feature
distance and Eshell is the thin shell deformation energy.

2) N-body Surface Registration: The endoscopogram re-
quires registration of multiple partial surfaces. As an extension
to the pairwise Thin Shell Demons, Zhao et al. [4] proposed
a groupwise deformation scenario in which: N surfaces are
deformed under the influence of their mutual forces. Mutual
forces are defined as virtual forces that attract one surface
by all the other surfaces. In other words, the deformation of
a single surface is determined by the overall forces exerted
on it. Such groupwise attractions bypass the need of a target
mean.

3) Orthotropic Thin Shell Elasticity Estimation: The thin
shell model that originally introduced by Zhao et al. assumes
uniform isotropic elasticity, which contradicts human tissue
elasticity being not only inhomogeneous but also anisotropic.
Therefore, in order to better simulate the tissue deformation
and produce more accurate registration results, Zhao recently
[5] presented a statistical method that jointly estimates both
the non-uniform anisotropic elasticity parameters and the
material deformations from (within endoscopy deformations).
As shown in figure 12, at each vertex on the surface model
a canonical orthotropic model is formed by estimating the
direction of its natural axes and the elasticity parameters along
each axis. The estimated inhomogeneous and anisotropic elas-
ticity parameters is shown to improve the surface registration
accuracy and can help in studying within-patient deformations.

Fig. 12. Example of orthotropic elasticity estimation at each vertex on surface

E. Fusion-Guided SfMS

In the SfMS reconstruction method introduced in section
IV-A there are no temporal constraints between successive
frame-by-frame reconstructions. This fact and the method’s
reliance on reflectance model initialization lead to inconsistent
reconstructions and even failure to reconstruct some frames, as

shown in figure(example). As a result, manual intervention is
needed for selecting partial surface reconstructions for fusion.

Wang et al. [38] introduced a method named fusion-guided
SfMS that solves the inconsistency problem in the SfMS
method so that longer sequences can be fused together without
any manual intervention. The main idea of the method is to
produce a single ”reference model” which can be consistently
used as a guidance across all frame-by-frame reconstructions
so that temporal constraints are imposed among them. Such a
reference model, Sfused, is used in Fusion-guided SfMS.

The multiple frame-based surfaces warped to fit the SfM
points, {Si,jwarp|j = 1, ..., n} (see section IV-D), are fused to
form Sfused. This is done using groupwise TSD. Then for each
frame, a depth map that corresponds to its camera position
is extracted from Sfused for reflectance model estimation. In
such a way, all the single frame reconstructions are using a
same reference surface as their a prior for reflectance model
estimation so more coherent results are generated. Figure 13
shows an example of the inconsistency problem being solved
by the fusion-guided SfMS method.

Fig. 13. Example of fusion-guided SfMS

This fits naturally to the iterative process of SfMS algorithm
that descried in 1. At each iteration i a new fused reference
surface Sifused is generated by fusing {Si,jwarp|j = 1, ..., n}
together.

F. Seamless Texture Fusion

The endoscopogram is generated by fusing both the ge-
ometry and texture from the multiple partial reconstructions.
Here we present the method for fusion of the texture maps
acquired from different views. Dramatically changing illu-
mination (light binding with camera), reflection and surface
deformation in endoscopic video make this problem non-
trivial. The illumination changes in endoscopic images are
huge even for subtle camera motions.

Therefore, we need to derive a texture map from the various
frames but avoid the dramatic color differences caused by the
challenges we just mentioned.

Our approach has two stages. In the first stage an initial
texture is created: for each voxel on the endoscopogram
surface we select the image whose reconstruction has the
closest distance to that voxel to color it. A Markov Random
Field (MRF) based regularization is used to make the pixel
selection more spatially consistent, resulting in a texture map
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Fig. 14. Example of our seamless texture fusion. Left: Initial pixel selection
result. Right: Seamless texture fusion result.

that has multiple patches with clear seams, as shown in Figure
14.

Then in the second stage, to generate a seamless texture,
we minimize within-patch intensity gradient magnitude differ-
ences and inter-patch-boundary color differences.

1) Initial pixel selection and seam placement: In the fusion
process used to form the endoscopogram each frame has been
registered onto it. At each endoscopogram vertex S(i) one of
these registered frame-based surfaces S

′

k is closest. To begin
the initialization, the color from this frame is transferred to
form the initial texture map for the endoscopogram. However,
the irregularity of such selection results in extreme patchiness.
Thus, we add a regularity energy term that depends on the
labels in the local neighborhood. Then for each pixel on
the endoscopogram the scheme selects the frame index k
providing the color as follows:

Dk(i) = min
j∈S′

k

d(S(i), S
′

k(j))

M(k) = arg min
k∈L

∑
i∈S

(Dk(i) + λNk,i)

where Dk(i) is the minimum distance from the surface S
′

k to
the ith point on the surface S, where Nk,i is the number of
voxels in the neighboring voxel S(i) that have different labels
from the label k, where k ∈ 1...N indicates the frame indices,
and where M is the initial fused texture map. Such a setup is
often called a Markov Random Field.

2) Texture fusion by minimizing within-patch and inter-
patch differences: In this subsection we explain how the
texture map M resulting from step 1 is modified through an
iterative optimization to produce a seamless texture.

Let F be the set of images used to create the fused texture
map. Let Ik be a single image in F . Let ωk be all the pixels in
image k that are selected to color M . We create a list φ that is
composed of pairs of adjacent pixels in M that come from a
different lighting condition, i.e., are members of different sets
ωk.

The fused texture should have low within-patch intensity
gradient magnitude difference. The intuition is that the fused
image should have the same details as the original images.
The fused texture should also have low inter-patch-boundary
color differences. Thus we wish to minimize

LA = f + λg + µ||g||2 (17)

where f sums the within-ωk intensity gradient magnitudes
squared and g sums the color difference magnitudes squared
of pixel pairs in φ. That is,

f =
∑
k∈F

∑
i∈ωk

|| 5M(C(Ik(i)))−5Ik(i)||22 (18)

where Ik(i) is the ith pixel in frame k that used to form texture
map M . C(Ik(i)) is the coordinate in M corresponding to
pixel Ik(i); and

g =
∑

(i,j)∈φ

||M(i)−M(j)||22 (19)

We use an augmented Lagrangian method to solve the
optimization problem in equation 17 iteratively.

G. The Endoscopogram-to-CT Registration

After a complete endoscopogram is generated using our
3D reconstruction and groupwise geometry fusion algorithms,
we can now register it to CT to achieve the fusion between
endoscopic video and CT. To allow a good initialization of
the registration, we first extract the tissue-gas surface from
the CT and then do a surface-to-surface registration between
the endoscopogram and the surface derived from the CT.

As discussed in section II, the registration between the en-
doscopogram and the CT extracted surface have the following
challenges (1) the surface extracted from endoscopy suffers
from serious missing patches due to some anatomy being not
able to show up in the camera view; (2) the partial volume
effect in CT leads to large topology differences between CT
and endoscopogram; (3) a large anatomic deformation between
CT and endoscopy results from patient posture differences and
the introduction of the endoscope.

Our solutions to the above challenges is (1) using the
thin shell demons registration algorithm, which is presented
in detail in section IV-B, that is robust to missing surface
and large topology changes; (2) applying the anisotropic
elasticity parameters estimated in the groupwise registration
to the endoscopogram to CT registration, which is presented
in section IV-C; (3) using an expectation-maximization algo-
rithm to estimate incompatible regions. Here we explain the
incompatible regions estimation.

Because there are missing patches and topology differences
between CT and endoscopogram surfaces that cause some
points on either surfaces not to correspond to any point on the
other surface, we must explicitly determine these patches, lest
they be wrongly matched to the regions with highest matching
scores. Such wrong matching will cause wrong attraction
forces being generated during the registration.
Disparity Estimation. In order to solve this problem, we use
a binary indicator function that indicates whether a point has
a corresponding point or not. We jointly estimate the indicator
function and the deformation variable iteratively using an
EM algorithm. Let Ξ1 and ı2 be the indicator functions for
surfaces S1 and S2 respectively. The function value (0 or
1) indicates whether a vertex has a correspondence in the
other surface; that is, Ξ1(x) = 0 means S1(x) does not have
a correspondence in S2. The E-step in disparity estimation
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computes the conditional distribution on Ξ1,Ξ2 given the
current estimate of the deformations φ1, φ2:

p(Ξi|Si, φji ) = p(Si|φji ,Ξi)p(Ξi) (20)

The likelihood term p(Si|φji ,Ξi) models how good the defor-
mations align the compatible regions between the two surfaces.
Mathematically, given the two deformed surfaces S

′

1 = S1◦φ1,
S

′

2 = S2 ◦ φ2 and their closest points on the other surfaces
C1(x), C2(x),

p(Si|φji ,Ξi) =
1

Z0
exp(−γL(Si, φi,Ξi)) (21)

L(Si, φi,Ξi)) =
∑
x∈S1

(Ξ1(x) · ||S
′

1(x)− C1(x)||2)

= +
∑
x∈S2

(Ξ2(x) · ||S
′

2(x)− C2(x)||2)
(22)

where the squared distance ||S′

1(x)−C1(x)||2 measures how
well the alignment is. The M-step in this indicator function
and deformation variable estimation algorithm is simply a
TSD registration with attraction forces applied on compatible
regions specified by the indicator functions. The algorithm
initializes the two indicator functions with all ones and then
iterates between the M-step and E-step until convergence.
Tumor Transfer.

Fig. 15. Example of an ROI being drawn on the endoscopogram surface
and transferred to CT image. The user drawn ROI is shown as a red region
surrounded by a white contour in the lower right window.

Having the endoscopogram surface being registered to the
CT extracted surface, we have created a tool for the physi-
cians to directly draw on the endoscopogram surface. The
highlighted region can then be displayed on the CT image as
well as each individual endoscopic frames. Figure 15 shows
an example of an ROI being drawn on the endoscopogram
surface and transferred to CT image.
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