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Introduction An essential step in radiation
therapy is accurate three-dimensional segmenta-
tion of the target and organs at risk. Tradition-
ally, this has been done by manual contouring on a
slice-by-slice basis, but modern adaptive radiation
therapy (ART) protocols can require segmentation
of multiple daily images for each patient [1], in-
creasing the pressure to develop automated meth-
ods for segmentation. Image guided radiation ther-
apy (IGRT) also implies periodic 3D images taken
at treatment time. Image registration may be used
to align the target with its location in the planning
image, and deformable registration can be used to
place dose distributions from different days in a
common “tissue-based” frame of reference so that
the cumulative delivered dose can be assessed [2, 3].
Furthermore, deformable registration offers a po-
tential solution to the problem of repeated daily
segmentations, as image deformations can be ap-
plied to segmentations of the planning image to
generate segmentations of the treatment image [4].

We have developed a new software tool for im-
age analysis in radiation therapy bringing together
research software for automatic and manual seg-
mentation, and deformable and rigid registration,
into a single usable package. The tool is designed
with adaptive radiation therapy in mind. For man-
ual segmentation, it extends functionality found
in in the treatment planning system PlanUNC [5].
In turn, the segmentation component of PlanUNC
was a development of two earlier tools, IMEX [6]
and MASK [7]. For automatic segmentation, the
new tool permits two approaches. One approach
relies on fitting a model called an m-rep to an im-
age [8], and the other relies on deformable image
registration [9]. A view of the main window is
shown in Figure 1.

Manual segmentation. For manual segmenta-
tion, the tool contains a full suite of contour edit-
ing features. For instance, the user can draw con-
tours, edit them by moving or cutting out points,
copy and move them, and delete them. In addition,
whole models can be duplicated and combined with
other models by setwise operations such as union,
intersection, and subtraction. Finally, models can

Figure 1: The primary display window.

be expanded and contracted, either in 3D or 2D
(that is, slice by slice).

Models can also be generated by adjusting inten-
sity thresholds, selecting a connected component to
be flood-filled in a scale-sensitive manner, and then
automatically contouring the filled regions.

The segmentation window is also used to com-
pare multiple registered images, along with corre-
sponding contours. This is important if consistency
is desired between segmentations on different days.
Two images can be viewed simultaneously via a
blend slider, and a series of images can be shown
in the form of a cine loop, along with the corre-
sponding segmentations.

M-rep segmentation. M-rep segmentation [8]
is a Bayesian approach in which a particular kind
of generic 3D model of an organ is fit to an image
using an optimization process. The optimization
takes into account the plausibility of the shape the
model is being asked to attain, and the degree to
which the image intensities in the region around
the model match those that would be expected near
corresponding parts of the given organ.

The particular type of 3D model used is a medial
representation, or m-rep. Discrete samples along a
surface through the middle of the object are spec-
ified, and “spokes” point symmetrically outward
from each sample point, the endpoints of the spokes
marking the boundary (see Figure 2). The medial
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Figure 2: A medial representation of a kidney (two
views).

representations provide an explicit connection be-
tween opposite sides of the model, making it easier
to represent meaningful long-distance correlations
than would a simple surface model. The model
determines a coordinate system over interior and
neighboring exterior points, and this coordinate
system deforms along with the model, making it
possible to analyze the statistical properties of im-
age intensities relative to the model.

Deformable registration. The deformable reg-
istration algorithm [2, 9] deforms the image so as
to minimize the mean squared intensity difference
between corresponding voxels, subject to a penalty
for the degree to which the deformation differs from
the identity. To allow large deformations, a time
parameter is included, and the deformation penalty
is based on the velocity of change, rather than the
absolute magnitude. The algorithm progresses by
calculating image forces based on the gradient of
the moving image and on the intensity differences,
and simulates the flow of a highly viscous compress-
ible fluid, carrying the image into better alignment.
The resulting deformations can be used to deform
segmentations generated on one image to another,
and they can also be applied to dose distributions
calculated using other tools.

Conclusion. The segmentation and registration
tool provides a consistent user interface to apply
and compare multiple segmentation methods to a
single image, and across multiple images. It is
being provided to the research community free of

charge.
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