
 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

Marching Ridges

Jacob D. Furst
DePaul University

jfurst@cti.depaul.edu

Stephen M. Pizer
University of North Carolina

pizer@cs.unc.edu

Abstract

Marching Ridges is an algorithm for finding ridges of
measurement functions defined for images, in which the
ridges are defined as level sets of first derivatives of the
measurement functions. Marching Ridges is both specific
in its application to 2D and 3D medical images for the
purpose of finding cores, and general in its theoretical
application to finding ridges of intensity, boundary and
medial measurements whose domains may include up to 8
dimensions. Marching Ridges uses derivative
calculations, zero-crossing interpolations and topological
heuristics to track a linear approximation of a ridge
through a network of hypercubes.

1. Introduction

This paper presents an algorithm for identifying height

ridges called Marching Ridges derived from earlier work
on finding cores [6] and inspired by the extent to which
ridges can be used for image analysis [4]. It is designed
as a general-purpose algorithm that can solve for height
ridges of any measurement derived from an image;
examples include intensity, boundariness, and
medialness. The majority of this paper is independent of
the choice of function. However, parts of this paper are
specific to medialness functions and optimal parameter
height ridges. The Marching Ridges algorithm does not
deal with the limiting cases of 0- or -dimensional
ridges, where is the domain of the measurement. 0D
ridges are local maxima of a function and, as isolated
points, require no tracking, rendering the Marching
Ridges algorithm superfluous and inefficient. Similarly,
an D ridge of a function of variables is simply the
graph of that function and requires no special algorithm to
identify.

n
n

n n

Marching Ridges is a method of finding linear
approximations to ridges by using the lattice structure of

the domain in which the ridge is contained. It is very
similar to algorithms such as Marching Cubes[8, 11],
Tracked Partitioning[1], and Marching Lines[5, 13] but
has the added complexity of finding ridges. The marching
also occurs within the lattice structure of the domain by
identifying hypercubes adjoining the hypercube
containing the ridge from shared hyperfaces that contain a
part of the ridge. This paper is organized to first
introduce the interface for Marching Ridges and then
describe the algorithm for calculating ridges. The
algorithm is divided into ridge finding strategies, both
general (not depending on the codimension of the ridge)
and specific (depending on the codimension of the ridge),
and marching strategies, also both general (not depending
on the dimension of the ridge) and specific (depending on
the dimension of the ridge). Following this is a brief
discussion of the time and space complexity of the
Marching Ridges algorithm.

2. Grid elements

Marching Ridges is organized around a regular

partition of the -dimensional product space in which
the ridge is to be found. The subdivision of the product
space into unit -cubes produces grid elements. We use
the term grid element in preference to dimension specific
terms such as pixel and voxel for two reasons. First,
Marching Ridges has been designed for the general
purpose of finding -dimensional ridges in an n -
dimensional function domain space, and the use of grid
elements allows a dimensionally neutral discussion of the
algorithm. Second, a grid element has vertices that are
sample points of the function in its domain space rather
than the more common notion of pixels and voxels, in
which the pixel or voxel is centered at a sample point of
the function. Thus, the grid element of a 2D space would
contain four sample points, one at each vertex of a square
and the grid element would reference four function values
rather than the single value associated with a pixel. We

n

n

d

mailto:jfurst@cti.depaul.edu

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

will also refer to subelements: lower-dimensional
components of grid elements. For example, grid elements
of a 3D space are cubes, while the various subelements
are faces (containing four sample points), edges
(containing two sample points) and points (containing a
single sample point). We will further use the term border
element to distinguish the largest subelement that two
grid elements share. This will be the subelement of
dimension one less than the grid element; for example,
the border element for a cubic grid element is a square
element.

3. Interface

The interface to the Marching Ridges algorithm is a

window containing a central image canvas 512 pixels
square surrounded by sliders and buttons to provide
parameters and instructions to the algorithm. The controls
of the interface set and maintain five important quantities:

• the dimension of the original image n
• the number of optimal parameters , s
• the dimension of the grid elements sng −= ,
• the dimension of the ridge d , and
• the codimension of the ridge with respect to the

dimension of the grid elements . dgc −=
Each of these quantities is initially 0 but will change as

the user sets the parameters of the ridge-finding task by
selecting certain buttons. As we describe each set of
buttons below, we will indicate how particular choices
affect the values of , ,n s g , and c . d

3.1. Control buttons

The quit button allows the user to exit the program

after completing any ridge. The load button allows the
user to work with a new image. When the image is
selected and loaded, the value of n is set to the
dimensionality of the image. The draw button allows the
user to redraw the image without any ridge points on it, or
to redraw the image with the current ridge superimposed.
When loading a 3D image, Marching Ridges determines
how many slices of the image can be displayed on the
image canvas. Marching Ridges then breaks the original
image into metaslices, each containing the number of
slices than can be simultaneously displayed in the
interface. The up and down buttons are used to view
different metaslices of the images. The track button
initiates ridge finding based on a user supplied grid
element (Section 5.1). The trace button provides a
diagnostic tool for examining function values at a single

spatial position parameterized by scale or scale and
orientation. The single button allows the user to calculate
ridges for a single grid element of the function domain
space. It provides action identical to the track button but
will not extend the ridge if the single element contains a
ridge nor search for initial ridge points if the element does
not.

3.2. Image measurements

Marching Ridges allows the user to choose from three

functions on which to find ridges. The first choice is an
intensity function, similar to [7], in which Marching
Ridges measures the intensity of the image using a zero-
mean Gaussian weighting function of a specified standard
deviation (Section 3.5). The second choice is a
boundariness function, based on [2], in which Marching
Ridges measures boundariness using either gradient
magnitude or oriented first derivatives using a zero-mean
Gaussian first derivative weighting function of a specified
standard deviation and orientation (in the case of oriented
first derivatives). The third choice is a medialness
function [10], in which Marching Ridges measures
medialness using either an isotropic Laplacian, an
oriented Laplacian or an oriented Morse/Fritsch
medialness weighting function; the Morse function is
used to find 2D cores of 3D images while the Fritsch
medialness is used to find 1D cores of 3D images. The
algorithm uses medialness weighting of a specified
standard deviation and orientation for the oriented
weighting functions. The choice of measurement may
also affect the dimension of the grid elements. Oriented
boundariness adds 1−n to g , isotropic Laplacian
medialness adds 1, and any of the oriented medialness
measurements add . n

3.3. Ridge dimension

Marching Ridges currently allows the user to find 1D

or 2D ridges. In the case of 2D images, only the 1D
ridges are appropriate, while both may be sought in the
case of 3D images. This choice also sets the ridge
dimension and codimension . d dgc −=

3.4. Parameters

The radius parameter affects the size of the weighting

function used to measure the image. In the case of
intensity and boundariness measures, the radius is the
standard deviation of the Gaussian weighting function. In
the case of medialness measures, the radius is a constant

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

mulitple of the standard deviation of the Gaussian
weighting function. The theta orientation parameter is
used only for oriented weighting functions: directional
derivatives (boundariness) and oriented medialness.
Similarly, the phi orientation parameter is used only for
weighting functions oriented in 3D. All three parameters,
radius, theta and phi, are set by the user to determine an
initial value for optimization when finding optimal
parameter ridges or to determine the initial grid element
for the Marching Ridges algorithm when finding other
ridges. The extent parameter determines the support of
the weighting function. In most cases, the support of the
weighting function is the product of radius and extent. In
the case of Fritsch and Morse medialness, the size of the
support is)1(σξ+r , where r is the radius and ξ is
the extent. The rho parameter is additionally used as the
ratio between radius and aperture for Morse and Fritsch
medialness weighting functions. Finally, the Z parameter
is the ratio of the interslice distance to the intraslice
distance for 3D images.

3.5. Optimizations

The three optimization buttons provide the user the

choice of no optimization, scale optimization only, or a
combination of scale and orientation optimizations and
correspond to choosing certain parameters as transverse
directions. These optimizations are used to calculate
optimal parameter ridges. The Marching Ridges
algorithm was designed around the decision to make all
auxiliary parameters optimal or to make none of them
optimal. Thus, for example, it is not possible to find
optimal scale ridges of an oriented medialness function.
The choice of optimizations may also affect and (and
thus

s
g). Scale optimization increases by 1 and

decreases
s

g . A scale and orientation optimization
increases by and decreases s n g by . n

3.6. Object/background polarity

Marching Ridges is able to find intensity and

medialness ridges of white objects on black backgrounds
or black objects on white backgrounds. The decision is
not material in the case of ridges of boundariness;
gradient magnitude is unaffected by polarity and
directional first derivatives merely indicate opposite
normals, depending on polarity, which does not affect the
location of the ridge.

3.7. Mouse

Marching Ridges supports a three-button mouse. The
left button sets a spatial position in the image for the
track, trace, and single buttons. The middle mouse button
reports the image value and coordinates of the location at
which the button is pressed. It does not set an initial
location. The right mouse button allows the user to enter
an initial spatial position and auxiliary parameter values
through the keyboard, rather than the mouse and sliders.
These values are then used in a trace.

3.8. General ridge-finding strategies

Most of the ridge-finding strategies of Marching

Ridges are dependent on the codimension c of the ridge,
as that determines what particular subelement identifies
ridge elements. However, there are two actions that are
essentially independent of c : actions at points and
averaging transverse directions.

3.9. Actions at points

Points are the lowest dimensional subelement for any

product space. There are three actions that occur at every
point, and form the basis for any ridge calculation:

• the calculation of derivatives in coordinate
directions,

• the determination of transverse directions, and
• the alignment of transverse directions and the

calculation of derivatives in transverse directions.

3.9.1. Calculation of derivatives. The first action at
points is the calculation of derivatives. In the case of
optimal parameter height ridges, the calculation of
derivatives is preceded by a local maximization of the
original function f over the optimal parameters. The point
then calculates derivatives of the original function using
the coordinates of the point and any optimized parameter
values. This is done using symbolic manipulation of the
original weighting function to produce derivative
weighting functions that are then applied to the image.
Each point will apply a large number of derivative
weighting functions to the image. In the case of optimal
parameter ridges [9], the derivatives of the optimal
parameter function are then calculated from the
derivatives of . The result is a set of first and second
derivatives at each point.

f̂
f

3.9.2. Determination of transverse directions. The
determination of transverse directions may follow two
different paths, depending on whether ridges are optimal
orientation or not. In the case of optimal orientation

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

ridges, the transverse directions are determined from the
optimal orientation: transverse directions are
perpendicular to the optimal orientation. If the ridge
finding requires more than one transverse direction
(notably 1D ridges from 3D images), they are chosen
from the space perpendicular to the optimal orientation
using an a priori choice that prevents a degenerate set of
transverse directions. Given that the weighting function
is isotropic in the plane spanned by the two transverse
directions, the only critical need is to identify two
orthogonal directions. In all other cases, the transverse
directions are chosen from an eigen-analysis of the
Hessian matrix of second derivatives.

3.9.3. Alignment of transverse directions. Because the
Marching Ridges algorithm relies on zero-crossings of
directional first derivatives, it is important to insure that
the directions all share the same sense or sign. Marching
Ridges accomplishes this by computing an average set of
transverse directions, and then comparing each point's
transverse directions with the average. If the dot product
of a transverse direction and its average is negative, then
the transverse direction is multiplied by -1. This action
does depend on the codimension c of the ridge since a
point has c transverse directions that it must align. Once
each transverse direction has been aligned, the point
calculates derivatives in the transverse direction(s) ivr

fvfD ivi
∇•=

r

3.10. Average transverse directions

Stetten [12] has a method of performing an eigen-

analysis on unit vectors in order to capture an “average”
orientation of the vectors without regard to the sense of
the vector. This is the method that Marching Ridges uses
to create a set of average transverse directions for points.

Given vectors h ivr , each representing a

transverse direction, construct a matrix such that

hi ≤≤1
C

∑
=

=
h

i
i

t
i vv

h
C

1

1 rr
 (Equation 1)

and perform an eigen-analysis of C . The “average”
transverse direction vr is the eigen-vector of
corresponding to the greatest eigen-value. If there is
more than one transverse direction, perform this analysis
separately for each.

C

4. Specific ridge-finding strategies

The strategy of Marching Ridges is to use the
codimension of the ridge to push ridge finding to the
lowest subelement possible. This will always result in
finding ridge points contained in the subelements of a
given grid element. If necessary, these points can be
“sewn” together to form higher dimensional
representations of a ridge (e.g., splines and patches). The
particular subelement identifying a ridge point is the one
having dimension equal to c . This is merely a
restatement of the fact that two manifolds will generically
intersect at points when the sum of their codimensions
equals the dimension of the space in which they lie. For
example, when finding 1D ridges in a 3D grid element
(ridges of codimension two), the actual identification of
ridge points is done at the faces (subelements of
dimension two) of the cubic grid elements. If necessary,
the ridge points on the faces of the cubic grid element can
be stitched together to form a curve in the grid element.
Marching Ridges currently supports ridges of
codimension one and two, so the following sections
concentrate on the actions of edges and faces that produce
ridge points.

c

4.1. Ridge-finding edges

Ridges of codimension one () share the property

of only requiring a single transverse direction. As
explained above, the subelement on which to search when

1=c

1=c will be the edge. Examples in which 1=c
include boundaries of objects and generic skeletons of
objects. The edge performs three actions in the
calculation of ridge points:

• the determination of average transverse
directions,

• the calculation of zero-crossings, and
• a check on second derivatives.

4.1.1. Determination of average directions (Figure 1).
As mentioned, points attempt to align their transverse
directions with an average set of transverse directions.
Since in this case, edges are identifying ridge points, the
edge is responsible for averaging the transverse directions
of its endpoints and reporting this information to those
points. The edge queries its endpoints and uses Stetten's
algorithm (Equation 1,) to identify an average
transverse direction. Each of its endpoints then aligns its
own transverse direction with the average.

2=h

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

Figure1. Average transverse direction on an edge

4.1.2. Calculation of zero-crossings (Figure 2). Once
the endpoints of the edge have aligned their transverse
direction to the average, the edge looks for zero crossings
of the first directional derivative of the ridge function in
the transverse direction. Assuming that the first
directional derivative is a continuous function, the
intermediate value theorem ensures that, given first
directional derivatives of opposite sign at each endpoint,
there will exist at least one point on the edge for which
the first directional derivative is zero. Assuming that the
first directional derivative is linear, the edge interpolates a
location for a single zero crossing. This is a potential
location for a ridge point, having satisfied the first
condition of being a ridge: a vanishing first derivative in
the transverse direction.

Figure 2. Interpolated zero crossing of the first
directional derivative

4.1.3. Second derivative check (Figure 3). Having found
a zero crossing of the first directional derivative, the edge
must check the second condition for being a ridge: a
negative second directional derivative. The interpolated
zero crossing performs all the actions that a grid point
does in calculating derivatives, finding transverse
directions, aligning the transverse direction to the edge
average, and recalculating the second derivative in the
transverse direction

t
iivv vfHvfD

ii

rr)(=
This derivative is tested against zero, with a true result

marking the point as a ridge point. The point is then
drawn to the image window and added to a list of ridge
points.

Figure 3. Positive identification of ridge point based
on second directional derivative

Note: the first derivative is not recalculated at the

potential ridge point. The linear interpolation is assumed
to have provided a close estimate of the zero crossing of
the first derivative, so no further check is actually made.

4.2. Ridges-finding faces

Ridges of codimension two () share the

property of requiring two transverse directions. As
explained above, the subelement on which to search when

2=c

2=c will be the face. An example in which 2=c is
the skeleton of a tubular object. The face performs four
actions in the calculation of ridge points:

• the determination of average transverse
directions,

• the calculation of zero-crossings of first
directional derivatives in the first transverse direction,

• the calculation of zero-crossings of first
directional derivatives in the second transverse direction,
and

• a check on second derivatives.

4.2.1. Determination of average directions (Figure 4).
As with the edge, a face identifying ridge points must
determine a pair of average transverse directions formed
from the transverse directions calculated at each of its
vertices. Each transverse direction is averaged
independently (Equation 1, h) and the results
reported to the vertices of the face.

4=

Figure 4. Average transverse directions on a face

4.2.2. Calculation of zero-crossings in first transverse
direction (Figure 5). Once the vertices of the face have
aligned their transverse directions to the average, the face
looks for zero crossings of the first directional derivative
of the ridge function in the first transverse direction on
each of its four edges. At this stage, the face is
identifying a codimension one ridge as determined by the
first transverse direction. As before, the assumptions of
continuity and linearity provide a single location for a
zero crossing on any edge containing endpoints with
derivatives of opposite sign.

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

Figure 5. Interpolated zero crossings in first
transverse direction

4.2.3. Calculation of zero-crossings in second
transverse direction (Figure 6). If less than two edges
identify zero-crossings, then there is no ridge in the face.
If more than two edges identify ridge points, the face
chooses the two most convex. (See Section 5.5.2.) These
two points then perform the standard actions of points,
resulting in first directional derivatives in the second
transverse direction. These derivatives are checked for
sign, and if they are opposite, a zero-crossing is
interpolated along the segment connecting the two. This
zero-crossing is a potential ridge point in the face, having
satisfied the condition that the first derivatives vanish in
each transverse direction.

Figure 6. Interpolated zero crossing in second
transverse direction

4.2.4. Second derivative check (Figure 7). Having found
a zero crossing of the first directional derivative in the
second transverse direction, the face must check the
second condition for being a ridge: negative second

directional derivatives. The interpolated zero crossing
performs all the actions that a grid point does in
calculating derivatives, finding transverse directions,
aligning the transverse directions to the face average, and
calculating the second derivatives in the transverse
directions. These derivatives are tested against zero, and
if both are negative, then the point is marked as a ridge
point. The point is then drawn to the image window and
added to a list of ridge points.

Figure 7. Positive identification of ridge point based
on second directional derivatives

5. General marching strategies

Most marching strategies are a function of ridge

dimension . However, three actions are not: d
• specifying the initial grid element,
• searching for the initial ridge points, and
• creating new grid elements.

5.1. Initial grid element

Marching Ridges is a semi-automatic algorithm: it

requires the intervention of a user to identify a starting
point. The user supplies an initial grid element in which
to search for a ridge using two mechanisms, the mouse
and the parameter sliders. As mentioned above, the
parameter sliders are used to specify the radius and
orientation of the initial grid element, while the mouse is
used to indicate the spatial position of the initial grid
element. (For large 3D images, the up and down buttons
may be necessary to locate the correct metaslice before
identifying the spatial position with the mouse.) The
position so identified is called the anchor vertex of the
grid element. The rest of the vertices of the grid element

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

are calculated as a unit cube whose smallest coordinate is
the anchor vertex (Figure 8). From this initial grid
element, Marching Ridges will search for the closest
ridge point and then extend the ridge from this identified
point.

Figure 8. Initial grid element

5.2. Expanding the search

If the user-specified grid element contains a ridge, then

the initial search has succeeded and extending begins. If
not, then Marching Ridges begins a breadth first search of
the grid elements neighboring the initial grid element
until it either finds a ridge point or searches all the grid
elements of the search space. If a ridge point is found,
Marching Ridges immediately begins extending it. In this
way, Marching Ridges finds the ridge point closest to the
user specified grid element.

5.3. Creation of new grid elements

When a new grid element is required, either in the

initial search for a ridge or in the extension of an existing
ridge, Marching Ridges creates one. It then identifies the
subelements of the new grid element that have already
been created and assigns them to the new element. Any
subelements that have not been created are then created,
with points performing their three actions, and any
subelements responsible for identifying ridge points
(depending on) performing their necessary actions. In
this way, the creation of a new grid element automatically
initiates ridge-finding procedures.

c

5.4. Specific marching strategies

Extending a ridge is similar to the initial search for a

ridge point, except that instead of exploring all
neighboring grid elements, Marching Ridges only

searches grid elements into which the ridge extends and
thus depends on . d

Once ridge points have been found in a particular grid
element, Marching Ridges determines the existence of a
ridge in each of the border elements of the grid element.
Since border elements are shared by two grid elements,
each border element that contains the ridge identifies a
neighboring grid element into which the ridge extends.
The anchor vertex of each of these grid elements is added
to a queue of vertices in which Marching Ridges will
search for ridge points.

5.5. Curve ridges

All 1D ridges are curves, and share the same

topological problems, the same heuristics, and the same
manner of identifying, continuing, and ending the ridge.

5.5.1. Topological problems. Damon [3] has shown that
the maximum convexity height ridge does not generically
branch while Miller [9] has shown the same for optimal
scale ridges. Marching Ridges uses this assumption even
in the case of more general optimal parameter height
ridges, for which comparable results are not fully known.
To implement this topological constraint, Marching
Ridges assumes that any grid element containing a piece
of a 1D ridge will only contain two ridge points among its
border elements.

5.5.2. Heuristic solutions. The solution to a grid element
that identifies too many ridge points is to choose the two
ridge points that are most convex, where convexity is
defined as the magnitude of the product of second
derivatives in each of the transverse directions.

C

|)(|
1

t
i

dg

i
i vfHvC rr∏

−

=

=

This heuristic is the maximum convexity heuristic and
assumes that the most convex ridge points are the ridge
points of greatest interest to the user.

5.5.3. Finding an initial ridge segment. During the
initial search for a ridge, a grid element will only identify
a ridge if at least two of its border elements identify ridge
points. Having identified at least two ridge points, it will
then choose the two most convex ridge points from
among all those found and report success for the search.

5.5.4. Continuing the ridge. Having identified the first
grid element containing a ridge, each border element of
the grid element containing a ridge point identifies a
neighboring grid element in which to extend the ridge

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

(Figure 9). The anchor of each of these grid elements is
entered into a list of grid elements in which Marching
Ridges will search for ridge points. Each such grid
element is then required to identify one other ridge point
(the exit point) to continue the ridge. If it identifies more
than one ridge point among its border elements, it
chooses the most convex as the extension of the ridge.
This border element in turn identifies a grid element
whose anchor is entered into the list. This continues until
the ridge ends.

Figure 9. A curve ridge continuing into an adjacent
cube

5.5.5. Ending the ridge. The ridge can end in three ways.
It may exit the image when a border element containing a
ridge point is unable to identify a neighboring grid
element contained in the image. It may close on itself,
when a grid element is created with two ridge points
already identified among its border elements. Finally, the
ridge may end when a grid element with one ridge point
(the entry point) fails to identify another ridge point (the
exit point).

5.6. Surface ridges

All 2D ridges are surfaces and share the same

topological problems, the same heuristics, and the same
manner of identifying, continuing, and ending the ridge.

5.6.1. Topological problems. The main topological
problem with finding a piece of a surface ridge in a grid
element is that each border element finds ridge segments
independently of the other border elements. Ideally, the
ridge segments in each border element of a particular grid
element would connect to form a closed loop: the border
of the ridge contained in that grid element. However,
with each border element finding ridges independently,
there is no guarantee that the ridge segments will connect.
Further, there is the same problem of topological
ambiguity that appears in the marching cubes algorithm
where there are multiple possible connections among
ridge segments.

5.6.2. Finding an initial ridge patch. The basic step in
identifying an initial ridge patch in a grid element is
having the border elements identify ridge curves. This is
done exactly as indicated in Section 5.5, with the
exception that border elements are finding ridges
segments, not the original grid element. If any border
element of the grid element finds a ridge segment, the
grid element contains a ridge patch, and the search has
succeeded. The ridge is then continued.

5.6.3. Continuing the ridge. As with 1D ridges, having
identified the first grid element containing a ridge, each
border element of the grid element containing a ridge
identifies a neighboring grid element in which to extend
the ridge (Figure 10). The anchor of each of these grid
elements is entered into a list of grid elements in which
Marching Ridges will search for ridge points. Each such
grid element is then required to identify at least one other
boundary element containing a ridge (an exit curve) to
continue the ridge. If it identifies more than one ridge
curve among its border elements, the ridge continues into
all such adjacent grid elements. This continues until the
ridge ends.

Figure 10. A surface ridge continuing into adjacent
cubes

5.6.4. Ending the ridge. A 2D ridge does not “end” in
the intuitive way that a 1D ridge does. Rather, the 2D
ridge encounters its boundaries. This may happen in two
ways. The ridge may exit the image when a border
element containing a ridge is unable to identify a
neighboring grid element contained in the image. Or the
ridge may end when a grid element fails to identify any
border elements containing the ridge except for the border

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

elements that contain the incoming ridge. This is the
same result that occurs when a 2D ridge closes.

6. Complexity of marching ridges

6.1. Time complexity

Marching Ridges runs two major loops. The first

searches for a ridge and the second extends an identified
ridge. Given a good approximation by the user for an
initial ridge point, the search loop will end quickly, so we
will concentrate on the extension loop. This loop will
iterate once for each grid element that contains a ridge.
Let p be the number of ridge points. Each grid element
will be processed in the same fashion, in which the bulk
of the work is in the optimization of optimal parameters
and the calculation of derivatives of medialness. Each
grid element after the first will have no more that half of
its vertices performing these calculations. If g is the

dimension of the search space, then 2 is the
maximum number of new vertices at each step of
extension. Additionally, the identification of ridge points
requires the same computations as at vertices of a grid
element. Each new grid element identifies no more than

 potential ridge points, where is the codimension
of the ridge. Thus, there are no more than
optimization and derivative calculations. The number of
optimizations depends on the nearness of the initial
values to a local maximum, the complexity of the image
and the complexity of the medialness weighting function.
Experience has shown the optimizer to converge at about
100 iterations; it is coded to stop optimizing after 200
iterations. The number of derivatives calculated depends
on the dimension of the search space and the kind of

optimization. It will not exceed

1

2

−g

c+g2 c
12 −+cg

2
)1+(nn where is

the number of arguments of the weighting function. This
limits the number of weighting function applications to

n

122
2

)1(−++ cgnn200 +
. The final consideration is the

support of the weighting function.

6.1.1. Isotropic Laplacian and oriented Laplacian
medialness. The isotropic Laplacian and the oriented
Laplacian weighting functions are both used for 1D from
3D cores and 2D from 3D cores. They have identically
sized supports. If r is the radius of the weighting
function and ξ is the extent, then the support of

weighting function is 33

3
4 rπξ . This limits the number

of voxel operations in the calculation of a ridge to
33122

2
)1(200

3
4 rnn cg ξπ −+++

6.1.2. Oriented Fritsch medialness. The oriented Fritsch
weighting function is used in the calculation of 1D from
3D cores because it is easier to symbolically differentiate.
If r is the radius of the weighting function, ξ is the
extent, and ρ is the ratio of the radius to the weighting
function aperture, then the support of the weighting
function is , limiting the number of
voxel operations to

23)1(ξρξρ +r2π

3212)1(2
2

)1(2002 rnn cg ξρξρπ +
++ −+

The ratio of this to the oriented Laplacian weighting

functions is 2

2

2
)1(3

ξ
ξρρ +

, and given typical values of

25.0=ρ and 4=ξ , the oriented Fritsch weighting
function is about 10 times as fast to apply.

6.1.3. Oriented Morse medialness. The oriented Morse
weighting function is used in the calculation of 2D from
3D cores because of its very small support. If r is the
radius of the weighting function, ξ is the extent, and ρ
is the ratio of the radius to the weighting function
aperture, then the support of the weighting function is

333

3
8 rρπξ , limiting the number of voxel operations to

333122
2

)1(200
3
8 rnn cg ρξπ −+++

The ratio of this to the oriented Laplacian weighting
functions is , and given a typical value of 32ρ

25.0=ρ , the oriented Morse weighting function is
about 32 times as fast to apply.

6.2. Space complexity

Marching Ridges use 3 data structures in the

calculation of ridges. The first is the list of grid elements
waiting to be searched. The second is the list of ridge
points found. The sum of their lengths will not exceed

g+

p , the number of ridge points in the final ridge. The

 2001 IASTED International Conference
 on Signal and Image Processing, 22 - 26

other data structures are hash tables that contain all
the grid elements and their subelements calculated in the
course of finding a ridge. This limits the number of
elements to a linear function of

1+g

p dependent on the grid
dimension g .

All of the data structures have linear access time and
do not affect the time complexity of the algorithm.

7. Summary

This paper described a general algorithm for

identifying optimal parameter and maximum convexity
height ridges. It describes the algorithm in a
dimensionally neutral way, showing that ridge finding
strategies are generally dimensionally based while
marching strategies are generally codimensionally based.
This provides a basis for arbitrary extensions to the
algorithm.

8. Acknowledgements

The authors would like to David Eberly and Daniel
Fritsch for their helpful discussions on ridge marching.
We would also like to thank the entire MIDAG for being
willing to listen to explanations of the numerous
iterations of this algorithm. The work in this paper was
partially supported by NIH grant PO1 CA47982.

9. References

[1] J. Bloomenthal, “Polygonization of Implicit
Surfaces”, Computer Aided Geometric Design, 1988, pp.
341-355.
[2] J. Canny, “A Computational Approach to Edge
Detection”, IEEE Transactions on Pattern Analysis and
Machine Intelligenc, 1986, pp. 679-698.
[3] D. Eberly and R. Gardner and B. Morse and S. Pizer
and C. Scharlach, "Ridges for Image Analysis", Journal
of Mathematical Imaging and Vision, v. 4, 1994, pp. 351-
371
[4] J. Damon, “Properties of Ridges and Cores for Two
Dimensional Images”, Journal of Mathematical Imaging
and Vision, 1999, pp. 163-174.
[5] M. Fidrich, “Following Feature Lines Across Scale”,
Proceedings of the First International Conference on
Scale Space, 1997, pp. 140-151.
[6] J. Furst, S. Pizer, and D. Eberly, “Marching Cores: a
Method for Extracting Cores from 3D Medical Images”,
Proceedings of the Workshop on Mathematical Methods
in Biomedical Image Analysis, 1996, pp. 124-130.

[7] R.M. Haralick, “Ridges and Valleys on Digital
Images”, Computer Vision, Graphics and Image
Processing, 1983, pp. 28-38.
[8] W. E. Lorenson and H.E. Cline, “Marching Cubes: a
High Resolution 3D Surface Construction Algorithm”,
Computer Graphics, July 1987, pp. 163-169.
[9] J. Miller and J. Furst, “The Maximal Scale Ridge”,
Proceedings of the Second International Conference of
Scale Space, 1999, pp. 83-104.
[10] S. M. Pizer and D. Eberly and B. S. Morse and D. S.
Fritsch, "Zoom-Invariant Vision of Figural Shape: The
Mathematics of Cores", Computer Vision and Image
Understanding, v. 69, 1998, pp. 55-71
[11] X. Qu and X. Li, “A 3D Surface Tracking
Algorithm”, Computer Vision and Understanding, 1996,
pp. 147-156.
[12] G. Stetten and S. M. Pizer, “Medial Node Models to
Identify and Measure Objects in Real-Time 3D
Echocardiography”, IEEE Transactions on Medical
Imaging, 1999, pp. 1025-1034.
[13] J. Thirion and A. Gourdon, “The 3D Marching Lines
Algorithm”, Graphical Models and Image Processing,
1996, pp. 503-509.

	Marching Ridges
	Abstract

