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Abstract 

 
Marching Ridges is an algorithm for finding ridges of 
measurement functions defined for images, in which the 
ridges are defined as level sets of first derivatives of the 
measurement functions.  Marching Ridges is both specific 
in its application to 2D and 3D medical images for the 
purpose of finding cores, and general in its theoretical 
application to finding ridges of intensity, boundary and 
medial measurements whose domains may include up to 8 
dimensions.  Marching Ridges uses derivative 
calculations, zero-crossing interpolations and topological 
heuristics to track a linear approximation of a ridge 
through a network of hypercubes. 
 
 
1. Introduction 

 
This paper presents an algorithm for identifying height 

ridges called Marching Ridges derived from earlier work 
on finding cores [6] and inspired by the extent to which 
ridges can be used for image analysis [4].  It is designed 
as a general-purpose algorithm that can solve for height 
ridges of any measurement derived from an image; 
examples include intensity, boundariness, and 
medialness.  The majority of this paper is independent of 
the choice of function.  However, parts of this paper are 
specific to medialness functions and optimal parameter 
height ridges.  The Marching Ridges algorithm does not 
deal with the limiting cases of 0- or -dimensional 
ridges, where  is the domain of the measurement.  0D 
ridges are local maxima of a function and, as isolated 
points, require no tracking, rendering the Marching 
Ridges algorithm superfluous and inefficient.  Similarly, 
an D ridge of a function of  variables is simply the 
graph of that function and requires no special algorithm to 
identify. 
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Marching Ridges is a method of finding linear 
approximations to ridges by using the lattice structure of 

the domain in which the ridge is contained.  It is very 
similar to algorithms such as Marching Cubes[8, 11], 
Tracked Partitioning[1], and Marching Lines[5, 13] but 
has the added complexity of finding ridges. The marching 
also occurs within the lattice structure of the domain by 
identifying hypercubes adjoining the hypercube 
containing the ridge from shared hyperfaces that contain a 
part of the ridge.  This paper is organized to first 
introduce the interface for Marching Ridges and then 
describe the algorithm for calculating ridges.  The 
algorithm is divided into ridge finding strategies, both 
general (not depending on the codimension of the ridge) 
and specific (depending on the codimension of the ridge), 
and marching strategies, also both general (not depending 
on the dimension of the ridge) and specific (depending on 
the dimension of the ridge).  Following this is a brief 
discussion of the time and space complexity of the 
Marching Ridges algorithm. 

 
2. Grid elements 

 
Marching Ridges is organized around a regular 

partition of the -dimensional product space in which 
the ridge is to be found.  The subdivision of the product 
space into unit -cubes produces grid elements.  We use 
the term grid element in preference to dimension specific 
terms such as pixel and voxel for two reasons.  First, 
Marching Ridges has been designed for the general 
purpose of finding -dimensional ridges in an n -
dimensional function domain space, and the use of grid 
elements allows a dimensionally neutral discussion of the 
algorithm.  Second, a grid element has vertices that are 
sample points of the function in its domain space rather 
than the more common notion of pixels and voxels, in 
which the pixel or voxel is centered at a sample point of 
the function.  Thus, the grid element of a 2D space would 
contain four sample points, one at each vertex of a square 
and the grid element would reference four function values 
rather than the single value associated with a pixel.  We 

n

n

d

mailto:jfurst@cti.depaul.edu


  2001 IASTED International Conference
  on Signal and Image Processing, 22 - 26 
 
 
 
will also refer to subelements: lower-dimensional 
components of grid elements.  For example, grid elements 
of a 3D space are cubes, while the various subelements 
are faces (containing four sample points), edges 
(containing two sample points) and points (containing a 
single sample point).  We will further use the term border 
element to distinguish the largest subelement that two 
grid elements share.  This will be the subelement of 
dimension one less than the grid element; for example, 
the border element for a cubic grid element is a square 
element. 

 
3. Interface 

 
The interface to the Marching Ridges algorithm is a 

window containing a central image canvas 512 pixels 
square surrounded by sliders and buttons to provide 
parameters and instructions to the algorithm. The controls  
of the interface set and maintain five important quantities: 

• the dimension of the original image  n
• the number of optimal parameters , s
• the dimension of the grid elements sng −= , 
• the dimension of the ridge d , and 
• the codimension of the ridge with respect to the 

dimension of the grid elements . dgc −=
Each of these quantities is initially 0 but will change as 

the user sets the parameters of the ridge-finding task by 
selecting certain buttons.  As we describe each set of 
buttons below, we will indicate how particular choices 
affect the values of , ,n s g ,  and c . d

 
3.1. Control buttons 

 
The quit button allows the user to exit the program 

after completing any ridge. The load button allows the 
user to work with a new image.  When the image is 
selected and loaded, the value of n  is set to the 
dimensionality of the image.   The draw button allows the 
user to redraw the image without any ridge points on it, or 
to redraw the image with the current ridge superimposed.  
When loading a 3D image, Marching Ridges determines 
how many slices of the image can be displayed on the 
image canvas.  Marching Ridges then breaks the original 
image into metaslices, each containing the number of 
slices than can be simultaneously displayed in the 
interface.  The up and down buttons are used to view 
different metaslices of the images.  The track button 
initiates ridge finding based on a user supplied grid 
element (Section 5.1).  The trace button provides a 
diagnostic tool for examining function values at a single 

spatial position parameterized by scale or scale and 
orientation.  The single button allows the user to calculate 
ridges for a single grid element of the function domain 
space.  It provides action identical to the track button but 
will not extend the ridge if the single element contains a 
ridge nor search for initial ridge points if the element does 
not. 

 
3.2. Image measurements 

 
Marching Ridges allows the user to choose from three 

functions on which to find ridges.  The first choice is an 
intensity function, similar to [7], in which Marching 
Ridges measures the intensity of the image using a zero-
mean Gaussian weighting function of a specified standard 
deviation (Section 3.5).  The second choice is a 
boundariness function, based on [2], in which Marching 
Ridges measures boundariness using either gradient 
magnitude or oriented first derivatives using a zero-mean 
Gaussian first derivative weighting function of a specified 
standard deviation and orientation (in the case of oriented 
first derivatives).  The third choice is a medialness 
function [10], in which Marching Ridges measures 
medialness using either an isotropic Laplacian, an 
oriented Laplacian or an oriented Morse/Fritsch 
medialness weighting function; the Morse function is 
used to find 2D cores of 3D images while the Fritsch 
medialness is used to find 1D cores of 3D images.  The 
algorithm uses medialness weighting of a specified 
standard deviation and orientation for the oriented 
weighting functions.  The choice of measurement may 
also affect the dimension of the grid elements.  Oriented 
boundariness adds 1−n  to g , isotropic Laplacian 
medialness adds 1, and any of the oriented medialness 
measurements add . n

 
3.3. Ridge dimension 

 
Marching Ridges currently allows the user to find 1D 

or 2D ridges.  In the case of 2D images, only the 1D 
ridges are appropriate, while both may be sought in the 
case of 3D images.  This choice also sets the ridge 
dimension  and codimension . d dgc −=

 
3.4. Parameters 

 
The radius parameter affects the size of the weighting 

function used to measure the image.  In the case of 
intensity and boundariness measures, the radius is the 
standard deviation of the Gaussian weighting function.  In 
the case of medialness measures, the radius is a constant 
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mulitple of the standard deviation of the Gaussian 
weighting function.  The theta orientation parameter is 
used only for oriented weighting functions: directional 
derivatives (boundariness) and oriented medialness.  
Similarly, the phi orientation parameter is used only for 
weighting functions oriented in 3D.  All three parameters, 
radius, theta and phi, are set by the user to determine an 
initial value for optimization when finding optimal 
parameter ridges or to determine the initial grid element 
for the Marching Ridges algorithm when finding other 
ridges.  The extent parameter determines the support of 
the weighting function.  In most cases, the support of the 
weighting function is the product of radius and extent.  In 
the case of Fritsch and Morse medialness, the size of the 
support is )1( σξ+r , where r  is the radius and ξ  is 
the extent.  The rho parameter is additionally used as the 
ratio between radius and aperture for Morse and Fritsch 
medialness weighting functions.  Finally, the Z parameter 
is the ratio of the interslice distance to the intraslice 
distance for 3D images. 

 
3.5. Optimizations 

 
The three optimization buttons provide the user the 

choice of no optimization, scale optimization only, or a 
combination of scale and orientation optimizations and 
correspond to choosing certain parameters as transverse 
directions.  These optimizations are used to calculate 
optimal parameter ridges. The Marching Ridges 
algorithm was designed around the decision to make all 
auxiliary parameters optimal or to make none of them 
optimal.  Thus, for example, it is not possible to find 
optimal scale ridges of an oriented medialness function.  
The choice of optimizations may also affect and  (and 
thus 

s
g ).  Scale optimization increases  by 1 and 

decreases 
s

g .  A scale and orientation optimization 
increases  by and  decreases s n g  by . n

 
3.6. Object/background polarity 

 
Marching Ridges is able to find intensity and 

medialness ridges of white objects on black backgrounds 
or black objects on white backgrounds.  The decision is 
not material in the case of ridges of boundariness; 
gradient magnitude is unaffected by polarity and 
directional first derivatives merely indicate opposite 
normals, depending on polarity, which does not affect the 
location of the ridge. 

 
3.7. Mouse 

 

Marching Ridges supports a three-button mouse.  The 
left button sets a spatial position in the image for the 
track, trace, and single buttons.  The middle mouse button 
reports the image value and coordinates of the location at 
which the button is pressed.  It does not set an initial 
location.  The right mouse button allows the user to enter 
an initial spatial position and auxiliary parameter values 
through the keyboard, rather than the mouse and sliders.  
These values are then used in a trace. 

 
3.8. General ridge-finding strategies 

 
Most of the ridge-finding strategies of Marching 

Ridges are dependent on the codimension c  of the ridge, 
as that determines what particular subelement identifies 
ridge elements.  However, there are two actions that are 
essentially independent of c : actions at points and 
averaging transverse directions. 

 
3.9. Actions at points 

 
Points are the lowest dimensional subelement for any 

product space. There are three actions that occur at every 
point, and form the basis for any ridge calculation: 

• the calculation of derivatives in coordinate 
directions, 

• the determination of transverse directions, and 
• the alignment of transverse directions and the 

calculation of derivatives in transverse directions. 
 

3.9.1. Calculation of derivatives. The first action at 
points is the calculation of derivatives.  In the case of 
optimal parameter height ridges, the calculation of 
derivatives is preceded by a local maximization of the 
original function f over the optimal parameters.  The point 
then calculates derivatives of the original function using 
the coordinates of the point and any optimized parameter 
values.  This is done using symbolic manipulation of the 
original weighting function to produce derivative 
weighting functions that are then applied to the image.  
Each point will apply a large number of derivative 
weighting functions to the image.  In the case of optimal 
parameter ridges [9], the derivatives of the optimal 
parameter function are then calculated from the 
derivatives of .  The result is a set of first and second 
derivatives at each point. 

f̂
f

 
3.9.2. Determination of transverse directions. The 
determination of transverse directions may follow two 
different paths, depending on whether ridges are optimal 
orientation or not.  In the case of optimal orientation 
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ridges, the transverse directions are determined from the 
optimal orientation: transverse directions are 
perpendicular to the optimal orientation.  If the ridge 
finding requires more than one transverse direction 
(notably 1D ridges from 3D images), they are chosen 
from the space perpendicular to the optimal orientation 
using an a priori choice that prevents a degenerate set of 
transverse directions.  Given that the weighting function 
is isotropic in the plane spanned by the two transverse 
directions, the only critical need is to identify two 
orthogonal directions.  In all other cases, the transverse 
directions are chosen from an eigen-analysis of the 
Hessian matrix of second derivatives. 

 
3.9.3. Alignment of transverse directions. Because the 
Marching Ridges algorithm relies on zero-crossings of 
directional first derivatives, it is important to insure that 
the directions all share the same sense or sign.  Marching 
Ridges accomplishes this by computing an average set of 
transverse directions, and then comparing each point's 
transverse directions with the average.  If the dot product 
of a transverse direction and its average is negative, then 
the transverse direction is multiplied by -1.  This action 
does depend on the codimension c of the ridge since a 
point has c transverse directions that it must align.  Once 
each transverse direction has been aligned, the point 
calculates derivatives in the transverse direction(s) ivr  

fvfD ivi
∇•=

r
 

 
3.10. Average transverse directions 

 
Stetten [12] has a method of performing an eigen-

analysis on unit vectors in order to capture an “average” 
orientation of the vectors without regard to the sense of 
the vector.  This is the method that Marching Ridges uses 
to create a set of average transverse directions for points. 

Given  vectors h ivr ,  each representing a 

transverse direction, construct a matrix  such that 

hi ≤≤1
C

∑
=

=
h

i
i

t
i vv

h
C

1

1 rr
 (Equation 1) 

and perform an eigen-analysis of C .  The “average” 
transverse direction vr is the eigen-vector of  
corresponding to the greatest eigen-value.  If there is 
more than one transverse direction, perform this analysis 
separately for each. 

C

 
4. Specific ridge-finding strategies 

 

The strategy of Marching Ridges is to use the 
codimension  of the ridge to push ridge finding to the 
lowest subelement possible.  This will always result in 
finding ridge points contained in the subelements of a 
given grid element.  If necessary, these points can be 
“sewn” together to form higher dimensional 
representations of a ridge (e.g., splines and patches).  The 
particular subelement identifying a ridge point is the one 
having dimension equal to c .  This is merely a 
restatement of the fact that two manifolds will generically 
intersect at points when the sum of their codimensions 
equals the dimension of the space in which they lie.  For 
example, when finding 1D ridges in a 3D grid element 
(ridges of codimension two), the actual identification of 
ridge points is done at the faces (subelements of 
dimension two) of the cubic grid elements.  If necessary, 
the ridge points on the faces of the cubic grid element can 
be stitched together to form a curve in the grid element.  
Marching Ridges currently supports ridges of 
codimension one and two, so the following sections 
concentrate on the actions of edges and faces that produce 
ridge points. 

c

 
4.1. Ridge-finding edges 

 
Ridges of codimension one ( ) share the property 

of only requiring a single transverse direction.  As 
explained above, the subelement on which to search when 

1=c

1=c  will be the edge.  Examples in which 1=c  
include boundaries of objects and generic skeletons of 
objects.  The edge performs three actions in the 
calculation of ridge points: 

• the determination of average transverse 
directions, 

• the calculation of zero-crossings, and 
• a check on second derivatives. 
 

4.1.1. Determination of average directions (Figure 1). 
As mentioned, points attempt to align their transverse 
directions with an average set of transverse directions.  
Since in this case, edges are identifying ridge points, the 
edge is responsible for averaging the transverse directions 
of its endpoints and reporting this information to those 
points.  The edge queries its endpoints and uses Stetten's 
algorithm (Equation 1, ) to identify an average 
transverse direction.  Each of its endpoints then aligns its 
own transverse direction with the average. 

2=h
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Figure1. Average transverse direction on an edge 

 
4.1.2. Calculation of zero-crossings  (Figure 2). Once 
the endpoints of the edge have aligned their transverse 
direction to the average, the edge looks for zero crossings 
of the first directional derivative of the ridge function in 
the transverse direction.  Assuming that the first 
directional derivative is a continuous function, the 
intermediate value theorem ensures that, given first 
directional derivatives of opposite sign at each endpoint, 
there will exist at least one point on the edge for which 
the first directional derivative is zero.  Assuming that the 
first directional derivative is linear, the edge interpolates a 
location for a single zero crossing.  This is a potential 
location for a ridge point, having satisfied the first 
condition of being a ridge: a vanishing first derivative in 
the transverse direction. 

 
Figure 2. Interpolated zero crossing of the first 
directional derivative 

 
4.1.3. Second derivative check (Figure 3). Having found 
a zero crossing of the first directional derivative, the edge 
must check the second condition for being a ridge: a 
negative second directional derivative.  The interpolated 
zero crossing performs all the actions that a grid point 
does in calculating derivatives, finding transverse 
directions, aligning the transverse direction to the edge 
average, and recalculating the second derivative in the 
transverse direction 

t
iivv vfHvfD

ii

rr )(=  
This derivative is tested against zero, with a true result 

marking the point as a ridge point.  The point is then 
drawn to the image window and added to a list of ridge 
points. 

 
Figure 3. Positive identification of ridge point based 
on second directional derivative 

 
Note: the first derivative is not recalculated at the 

potential ridge point.  The linear interpolation is assumed 
to have provided a close estimate of the zero crossing of 
the first derivative, so no further check is actually made. 

 

4.2. Ridges-finding faces 
 
Ridges of codimension two ( ) share the 

property of requiring two transverse directions.  As 
explained above, the subelement on which to search when 

2=c

2=c  will be the face.  An example in which 2=c  is 
the skeleton of a tubular object.  The face performs four 
actions in the calculation of ridge points: 

• the determination of average transverse 
directions, 

• the calculation of zero-crossings of first 
directional derivatives in the first transverse direction, 

• the calculation of zero-crossings of first 
directional derivatives in the second transverse direction, 
and 

• a check on second derivatives. 
 

4.2.1. Determination of average directions (Figure 4). 
As with the edge, a face identifying ridge points must 
determine a pair of average transverse directions formed 
from the transverse directions calculated at each of its 
vertices.  Each transverse direction is averaged 
independently (Equation 1, h ) and the results 
reported to the vertices of the face. 

4=

 
Figure 4. Average transverse directions on a face 

 
4.2.2. Calculation of zero-crossings in first transverse 
direction (Figure 5). Once the vertices of the face have 
aligned their transverse directions to the average, the face 
looks for zero crossings of the first directional derivative 
of the ridge function in the first transverse direction on 
each of its four edges.  At this stage, the face is 
identifying a codimension one ridge as determined by the 
first transverse direction.  As before, the assumptions of 
continuity and linearity provide a single location for a 
zero crossing on any edge containing endpoints with 
derivatives of opposite sign. 
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Figure 5. Interpolated zero crossings in first 
transverse direction 

 
4.2.3. Calculation of zero-crossings in second 
transverse direction (Figure 6). If less than two edges 
identify zero-crossings, then there is no ridge in the face.  
If more than two edges identify ridge points, the face 
chooses the two most convex.  (See Section 5.5.2.)  These 
two points then perform the standard actions of points, 
resulting in first directional derivatives in the second 
transverse direction.  These derivatives are checked for 
sign, and if they are opposite, a zero-crossing is 
interpolated along the segment connecting the two.  This 
zero-crossing is a potential ridge point in the face, having 
satisfied the condition that the first derivatives vanish in 
each transverse direction. 

 
Figure 6. Interpolated zero crossing in second 
transverse direction 

 
4.2.4. Second derivative check (Figure 7). Having found 
a zero crossing of the first directional derivative in the 
second transverse direction, the face must check the 
second condition for being a ridge: negative second 

directional derivatives.  The interpolated zero crossing 
performs all the actions that a grid point does in 
calculating derivatives, finding transverse directions, 
aligning the transverse directions to the face average, and 
calculating the second derivatives in the transverse 
directions.  These derivatives are tested against zero, and 
if both are negative, then the point is marked as a ridge 
point.  The point is then drawn to the image window and 
added to a list of ridge points. 

 
Figure 7. Positive identification of ridge point based 
on second directional derivatives 

 
5. General marching strategies 

 
Most marching strategies are a function of ridge 

dimension .  However, three actions are not: d
• specifying the initial grid element, 
• searching for the initial ridge points, and 
• creating new grid elements. 
 

5.1. Initial grid element 
 
Marching Ridges is a semi-automatic algorithm: it 

requires the intervention of a user to identify a starting 
point.  The user supplies an initial grid element in which 
to search for a ridge using two mechanisms, the mouse 
and the parameter sliders.  As mentioned above, the 
parameter sliders are used to specify the radius and 
orientation of the initial grid element, while the mouse is 
used to indicate the spatial position of the initial grid 
element.  (For large 3D images, the up and down buttons 
may be necessary to locate the correct metaslice before 
identifying the spatial position with the mouse.)  The 
position so identified is called the anchor vertex of the 
grid element.  The rest of the vertices of the grid element 
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are calculated as a unit cube whose smallest coordinate is 
the anchor vertex (Figure 8).  From this initial grid 
element, Marching Ridges will search for the closest 
ridge point and then extend the ridge from this identified 
point. 

 
Figure 8. Initial grid element 

 
5.2. Expanding the search 

 
If the user-specified grid element contains a ridge, then 

the initial search has succeeded and extending begins.  If 
not, then Marching Ridges begins a breadth first search of 
the grid elements neighboring the initial grid element 
until it either finds a ridge point or searches all the grid 
elements of the search space.  If a ridge point is found, 
Marching Ridges immediately begins extending it.  In this 
way, Marching Ridges finds the ridge point closest to the 
user specified grid element. 

 
5.3. Creation of new grid elements 

 
When a new grid element is required, either in the 

initial search for a ridge or in the extension of an existing 
ridge, Marching Ridges creates one.  It then identifies the 
subelements of the new grid element that have already 
been created and assigns them to the new element.  Any 
subelements that have not been created are then created, 
with points performing their three actions, and any 
subelements responsible for identifying ridge points 
(depending on ) performing their necessary actions.  In 
this way, the creation of a new grid element automatically 
initiates ridge-finding procedures. 

c

 
5.4. Specific marching strategies 

 
Extending a ridge is similar to the initial search for a 

ridge point, except that instead of exploring all 
neighboring grid elements, Marching Ridges only 

searches grid elements into which the ridge extends and 
thus depends on . d

Once ridge points have been found in a particular grid 
element, Marching Ridges determines the existence of a 
ridge in each of the border elements of the grid element.  
Since border elements are shared by two grid elements, 
each border element that contains the ridge identifies a 
neighboring grid element into which the ridge extends.  
The anchor vertex of each of these grid elements is added 
to a queue of vertices in which Marching Ridges will 
search for ridge points. 

 
5.5. Curve ridges 

 
All 1D ridges are curves, and share the same 

topological problems, the same heuristics, and the same 
manner of identifying, continuing, and ending the ridge. 

 
5.5.1. Topological problems. Damon [3] has shown that 
the maximum convexity height ridge does not generically 
branch while Miller [9] has shown the same for optimal 
scale ridges.  Marching Ridges uses this assumption even 
in the case of more general optimal parameter height 
ridges, for which comparable results are not fully known.  
To implement this topological constraint, Marching 
Ridges assumes that any grid element containing a piece 
of a 1D ridge will only contain two ridge points among its 
border elements. 

 
5.5.2. Heuristic solutions. The solution to a grid element 
that identifies too many ridge points is to choose the two 
ridge points that are most convex, where convexity  is 
defined as the magnitude of the product of second 
derivatives in each of the transverse directions. 

C
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This heuristic is the maximum convexity heuristic and 
assumes that the most convex ridge points are the ridge 
points of greatest interest to the user. 

 
5.5.3. Finding an initial ridge segment. During the 
initial search for a ridge, a grid element will only identify 
a ridge if at least two of its border elements identify ridge 
points. Having identified at least two ridge points, it will 
then choose the two most convex ridge points from 
among all those found and report success for the search. 

 
5.5.4. Continuing the ridge. Having identified the first 
grid element containing a ridge, each border element of 
the grid element containing a ridge point identifies a 
neighboring grid element in which to extend the ridge 



  2001 IASTED International Conference
  on Signal and Image Processing, 22 - 26 
 
 
 
(Figure 9).  The anchor of each of these grid elements is 
entered into a list of grid elements in which Marching 
Ridges will search for ridge points.  Each such grid 
element is then required to identify one other ridge point 
(the exit point) to continue the ridge.  If it identifies more 
than one ridge point among its border elements, it 
chooses the most convex as the extension of the ridge. 
This border element in turn identifies a grid element 
whose anchor is entered into the list.  This continues until 
the ridge ends. 

 
Figure 9. A curve ridge continuing into an adjacent 
cube 

 
5.5.5. Ending the ridge. The ridge can end in three ways.  
It may exit the image when a border element containing a 
ridge point is unable to identify a neighboring grid 
element contained in the image.  It may close on itself, 
when a grid element is created with two ridge points 
already identified among its border elements.  Finally, the 
ridge may end when a grid element with one ridge point 
(the entry point) fails to identify another ridge point (the 
exit point). 

 
5.6. Surface ridges 

 
All 2D ridges are surfaces and share the same 

topological problems, the same heuristics, and the same 
manner of identifying, continuing, and ending the ridge. 

 
5.6.1. Topological problems. The main topological 
problem with finding a piece of a surface ridge in a grid 
element is that each border element finds ridge segments 
independently of the other border elements.  Ideally, the 
ridge segments in each border element of a particular grid 
element would connect to form a closed loop: the border 
of the ridge contained in that grid element.  However, 
with each border element finding ridges independently, 
there is no guarantee that the ridge segments will connect.  
Further, there is the same problem of topological 
ambiguity that appears in the marching cubes algorithm 
where there are multiple possible connections among 
ridge segments. 

 
5.6.2. Finding an initial ridge patch. The basic step in 
identifying an initial ridge patch in a grid element is 
having the border elements identify ridge curves.  This is 
done exactly as indicated in Section 5.5, with the 
exception that border elements are finding ridges 
segments, not the original grid element.  If any border 
element of the grid element finds a ridge segment, the 
grid element contains a ridge patch, and the search has 
succeeded.  The ridge is then continued. 

 
5.6.3. Continuing the ridge. As with 1D ridges, having 
identified the first grid element containing a ridge, each 
border element of the grid element containing a ridge 
identifies a neighboring grid element in which to extend 
the ridge (Figure 10).  The anchor of each of these grid 
elements is entered into a list of grid elements in which 
Marching Ridges will search for ridge points.  Each such 
grid element is then required to identify at least one other 
boundary element containing a ridge (an exit curve) to 
continue the ridge.  If it identifies more than one ridge 
curve among its border elements, the ridge continues into 
all such adjacent grid elements.  This continues until the 
ridge ends. 

 
Figure 10. A surface ridge continuing into adjacent 
cubes 

 
5.6.4. Ending the ridge. A 2D ridge does not “end” in 
the intuitive way that a 1D ridge does.  Rather, the 2D 
ridge encounters its boundaries.  This may happen in two 
ways.  The ridge may exit the image when a border 
element containing a ridge is unable to identify a 
neighboring grid element contained in the image.  Or the 
ridge may end when a grid element fails to identify any 
border elements containing the ridge except for the border 
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elements that contain the incoming ridge.  This is the 
same result that occurs when a 2D ridge closes. 

 
6. Complexity of marching ridges 

 
6.1. Time complexity 

 
Marching Ridges runs two major loops.  The first 

searches for a ridge and the second extends an identified 
ridge.  Given a good approximation by the user for an 
initial ridge point, the search loop will end quickly, so we 
will concentrate on the extension loop.  This loop will 
iterate once for each grid element that contains a ridge.  
Let p  be the number of ridge points.  Each grid element 
will be processed in the same fashion, in which the bulk 
of the work is in the optimization of optimal parameters 
and the calculation of derivatives of medialness.  Each 
grid element after the first will have no more that half of 
its vertices performing these calculations.  If g  is the 

dimension of the search space, then 2  is the 
maximum number of new vertices at each step of 
extension.  Additionally, the identification of ridge points 
requires the same computations as at vertices of a grid 
element.  Each new grid element identifies no more than 

 potential ridge points, where  is the codimension 
of the ridge.  Thus, there are no more than  
optimization and derivative calculations.  The number of 
optimizations depends on the nearness of the initial 
values to a local maximum, the complexity of the image 
and the complexity of the medialness weighting function.  
Experience has shown the optimizer to converge at about 
100 iterations; it is coded to stop optimizing after 200 
iterations.  The number of derivatives calculated depends 
on the dimension of the search space and the kind of 

optimization.  It will not exceed 

1

2

−g

c+g2 c
12 −+cg

2
)1+(nn  where  is 

the number of arguments of the weighting function.  This 
limits the number of weighting function applications to 

n

122
2

)1( −++ cgnn200 +
.  The final consideration is the 

support of the weighting function. 
 
6.1.1. Isotropic Laplacian and oriented Laplacian 
medialness. The isotropic Laplacian and the oriented 
Laplacian weighting functions are both used for 1D from 
3D cores and 2D from 3D cores.  They have identically 
sized supports.  If r  is the radius of the weighting 
function and ξ  is the extent, then the support of 

weighting function is 33

3
4 rπξ .  This limits the number 

of voxel operations in the calculation of a ridge to 
33122

2
)1(200

3
4 rnn cg ξπ −+++

 

 
6.1.2. Oriented Fritsch medialness. The oriented Fritsch 
weighting function is used in the calculation of 1D from 
3D cores because it is easier to symbolically differentiate.  
If r  is the radius of the weighting function, ξ  is the 
extent, and ρ  is the ratio of the radius to the weighting 
function aperture, then the support of the weighting 
function is , limiting the number of 
voxel operations to 

23 )1( ξρξρ +r2π

3212 )1(2
2

)1(2002 rnn cg ξρξρπ +
++ −+  

The ratio of this to the oriented Laplacian weighting 

functions is 2

2

2
)1(3

ξ
ξρρ +

, and given typical values of 

25.0=ρ  and 4=ξ , the oriented Fritsch weighting 
function is about 10 times as fast to apply. 

 
6.1.3. Oriented Morse medialness. The oriented Morse 
weighting function is used in the calculation of 2D from 
3D cores because of its very small support.  If r  is the 
radius of the weighting function, ξ  is the extent, and ρ  
is the ratio of the radius to the weighting function 
aperture, then the support of the weighting function is 

333

3
8 rρπξ , limiting the number of voxel operations to 

333122
2

)1(200
3
8 rnn cg ρξπ −+++

 

The ratio of this to the oriented Laplacian weighting 
functions is , and given a typical value of 32ρ

25.0=ρ , the oriented Morse weighting function is 
about 32 times as fast to apply. 

 
6.2. Space complexity 

 
Marching Ridges use 3  data structures in the 

calculation of ridges.  The first is the list of grid elements 
waiting to be searched.  The second is the list of ridge 
points found.  The sum of their lengths will not exceed 

g+

p , the number of ridge points in the final ridge.  The 
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other  data structures are hash tables that contain all 
the grid elements and their subelements calculated in the 
course of finding a ridge.  This limits the number of 
elements to a linear function of 

1+g

p  dependent on the grid 
dimension g . 

All of the data structures have linear access time and 
do not affect the time complexity of the algorithm. 

 
7. Summary 

 
This paper described a general algorithm for 

identifying optimal parameter and maximum convexity 
height ridges.  It describes the algorithm in a 
dimensionally neutral way, showing that ridge finding 
strategies are generally dimensionally based while 
marching strategies are generally codimensionally based.  
This provides a basis for arbitrary extensions to the 
algorithm. 
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