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MIDAG at UNC is, at over 100 members, the largest and among the oldest medical image display and 
analysis research groups in the world.  Our history and philosophy can be found in our guest editorial in 
IEEE Transactions on Medical Imaging  [2003]. Around 30 of our members are graduate students, 
around 50 are faculty, and the remainder are postdocs, undergrads, and staff. We come from a half-
dozen or so departments in the sciences and a half-dozen or so departments in the Medical School, 
collaborating in a scientifically and administratively seamless way. Our success derives from this 
collaboration of computer scientists, mathematicians, statisticians, physicists, and engineers with 
medical doctors from a variety of disciplines and biomedical scientists. We help physicians plan and 
deliver therapy, such as radiotherapy of tumors and both minimally invasive and open surgery. We help 
them provide diagnoses. We help biomedical scientists understand the processes of disease. 
 
We develop and use methods across the gamut of image analysis and computer graphics: statistical 
pattern recognition, nonlinear diffusion, height ridge following, posterior optimization for deformable 
models segmentation, rendering, augmented reality, etc. We are concerned with images, whether using 
image analysis to understand them and make measurements in them or using computer graphics to 
produce them, and we place no boundary between these interrelated subdisciplines. We are driven by 
problems from mental disease understanding, neurosurgery, breast and abdominal surgery, radiation 
oncology, interventional radiology, radiological diagnosis, trauma care, and medical education. But 
perhaps what we are best known for in the IJCV community is analysis via medial models, whether it be 
of blood vessel trees, of anatomical objects of a well comprehended shape such as livers, kidneys, or 
hippocampi, or of ensembles of such objects, such as those forming the male pelvis, the abdomen, the 
subcortical brain, or the heart. 
 
The one- letter difference in the words “medial” and “medical” has caused certain typographical 
confusions in the writings of MIDAG scientists. Their closeness ironically foreshadows the benefits of 
applying the medial form of object analysis to medical images (and other images, as well). In this 
editorial I will discuss the great advantages of medial models for problems of medical image analysis 
that UNC-MIDAG faces, as well as for non-medical applications.  
 
This issue of IJCV is made up of 5 recent papers on medial image analysis. We in MIDAG have been 
doing research on medial geometry, medial representations, and medial algorithm development since 
around 1980. Our group’s medial research began [Nackman 1985] with methods to extract medial 
representations from object boundaries. These were the approaches stimulated by Blum’s pioneering 
work [1967] in medial shape analysis. The best of these methods, I judge, are described and compared in 



the final paper in this issue, by Kaleem Siddiqi from McGill University, Gabor Székely from ETH 
Zürich, and Steven Zucker from Yale University, together with two members of MIDAG, James Damon 
and me. I am honored that these accomplished scientists from other universities were willing that our 
paper appear in a special issue focused on work at UNC. 
 
MIDAG’s medial research moved from methods for transforming boundaries to medial representations 
to methods for extraction of medial representations directly from images by following height ridges of 
medial strength measures to produce cores (see the final paper in this issue). Though we are still 
working on cores [Aylward 2002, Fridman 2003], in the last seven years we have featured methods in 
which a medial representation was deformed into image data.  
 
This change of focus resulted from a realization that it is constructive for researchers in image analysis 
to consider this name a misnomer: we should see ourselves as being in real world analysis with images 
as evidence. Certainly in medic ine, we are about helping patients’ health, not about analyzing images for 
their own sake. That is, we are helping the physicians or biomedical scientists understand the biological 
real world of the patient’s anatomy or physiology. To do real world analysis, we need models of the real 
world, and that is where medial models are so useful. Images are evidence about the anatomy or 
physiology, and this spatial evidence needs to be taken in relation to the spatial layout of the anatomy of 
the particular patient, i.e., relative to our models of the world. Medial models have special strengths in 
providing object-relative coordinates in which to consider these image intensities. Besides the 
information in an image, information on the objects is available on the prevalence of certain geometric 
conformations in the real world, within a class, e.g., healthy patients or patients with a particular disease. 
Medical real world analysis from images thus depends on both descriptions of the real world geometry 
and probability functions on these geometric descriptions. Medial representations have a special role in 
describing this geometry and its probability. To explain this role, we chose to use the word figure to 
describe the solid region associated with a single, smooth, non-branching medial sheet. The discussion 
here is primarily in 3D, with corresponding 2D properties sometimes included in parentheses. 
 
From the beginning discussion of medial models for image analysis by Harry Blum, it was intuitively 
obvious that they provided important opportunities of subdividing objects into positive (protrusion) and 
subtractive (indentation and hole) figures and of dividing geometric transformations on these objects 
into widening/narrowing, bending/twisting, and elongation. However, over time medial analysis got a 
bad name among image analysts for a number of reasons. First and foremost, when starting from a 
boundary and trying to achieve a full medial description at all levels of scale, it is distressingly sensitive 
to boundary details and thus to image noise. Second, and related to the first, much of each branch of the 
medial locus describing protrusions and even quite small boundary pimples account for very little of the 
volume (area in 2D) of the object. Third, medial analysis had a sensitivity in locating the important 
positions of object boundary crests (vertices in 2D), or equivalently, medial locus ends, due to the fact 
that the angle between the spokes from the medial point to the two associated sphere bitangent points on 
the boundary moves to zero with infinite speed as that medial endpoint is approached. Fourth, it was not 
understood how to correctly derive the object boundary from a discrete representation of the medial 
locus. Fifth, the 2D medial sheets from a 3D object degenerated into 1D loci for a tube and even a 0D 
locus for spheres, and as objects transformed in a 1-or-more parameter family, they might pass through 
such singular cases.  
 



Rather than give up the apparent advantages of the medial representation, we believe tha t we have 
solved these problems, provided some mathematical understanding of this representation, and extended 
the opportunities by the following additions to the medial apparatus:  
 

1) Medial atoms: hubs with spokes. What Harry Blum saw intuitively, that geometric 
transformations on objects could be decomposed into widening/narrowing, bending/twisting, and 
elongation, we made real (see Fig.1) by adding to the medial hub and the associated radius of the 
bitangent sphere, the spokes from the hub to the boundary bitangent points; thus we associated a 
frame and a metric to the medial origin to produce a medial atom and transformed the medial 
locus into a manifold (with boundary) of medial atoms, and we saw the atom as producing a full 
local coordinate system for points in and near the figure. They described the relation between 
atoms not only in terms of position but also in terms of orientation and size. Moreover, these 
atoms swept out the volume of the object; they modeled the object interior, not just the boundary. 
The object descriptions using medial atom meshes easily extend to topologies other than 
branching slabs, such as branching tubes, cyclic topologies such as bagels, etc. 

  
Fig. 1. Left: a medial atom with its figural coordinates and implied boundary section. Right: a kidney 
represented by a discrete grid of medial atoms, sampling a continuous sheet of medial atoms. 
 

2) Medial primitives imply a boundary. It was clear to all that extracting the medial locus from 
the primitive boundary was an unstable trans formation at small scale. We noted that it followed 
that the inverse operation had to be extraordinarily stable. Thus, while in stable situations of high 
contrast going from the boundary to the medial manifold was possible, as realized most 
effectively by Kimia, Zucker, and Siddiqi, going from the medial manifold to the boundary was 
the preferred transformation. Consequently, one wished to describe geometry by a base medial 
locus that should be deformed to produce a boundary. As a result, the wonderful singularity 
theory of the transformation from the boundary to the medial locus culminating in the work of 
Giblin et al. required an addition of the mathematics of the transformation from a locus of medial 
atoms to the object interior and thence to the boundary. James Damon of UNC-MIDAG, a noted 
singularity theorist in his own right, produced that mathematics [2002, 2003]. All this allowed 
fitting a medial description into an image, just as others using deformable boundary models fit 
their models into images. 

3) Boundary-attached subfigures. We saw the instability of subfigures interrupting main figures’ 
medial loci as an impediment. Others had noted that major medial locus sections of these 
subfigures were responsible for little volume, and we associated this fact with the instability. 
Thus we redescribed protrusion and indentation subfigures as additive and subtractive figures 
riding on the implied boundary of a host figure. This description required developing a means of 

t=+1 

t=-1 

τ 

τ 

(u,v) 



blending the seam of a subfigure with its host figure [Thall 2003], an idea that we inherited from 
computer graphics. 

4) End atoms. We saw the importance of figural ends, which correspond to crests on the implied 
boundary. But we noted not only their instability as the end was approached but also the 
instability of deriving them from but a point of the image information on which they depended. 
Thus we invented a new representation called end atoms for figural ends that was designed to be 
stable in both of these senses. To be stable, this description needed to avoid the infinitely fast 
collapse to zero of the angle between the medial spokes, so it could allow only a subset of the 
types of ends generally allowed. At the same time, it needed to be consistent with the description 
used for the interior portion of the medial manifold. We therefore cut off the interior description 
while there was still a significant angle between the spokes and insisted that the Blum medial 
axis of the end portion continue straight from the place where the interior description stopped. 
We provided the end atom with a parameter of crest sharpness additional to the parameters of the 
interior medial atoms, thus allowing crests of arbitrary sharpness and even corners. 

5) A figural coordinate system. Figures with interior medial atoms and special end atoms yielded 
a natural medially based coordinate system for the whole interior and near exterior of figures. 
We also designed a coordinate system for the blend region between a host figure and its 
subfigure that was consistent with the two figural coordinate systems of the respective figures. 
This medially based coordinate system supported transformations of subfigures while remaining 
attached to their hosts, by considering the transformation in the host’s figural coordinate system. 
It also allowed considering the relation between nearby and possibly abutting figures by 
considering the boundary of one in the figural coordinate system of the other. Most importantly, 
it provided a useful positional correspondence across object or object ensemble instances that is 
necessary to summarize classes of individuals statistically and to describe changes within an 
individual across time. 

6) Multiscale object descriptions; marriage with deformations at small scale. The sensitivity of 
a medial description at small scales but its important strengths at large and moderate scales made 
us realize that a full geometric description should be medial at large and moderate scales but 
needed to be combined with a nonmedial means of describing small scale spatial deformations. 
We call these multiscale descriptions m-reps. Choosing their scale levels as object ensemble, 
object, figure, medially described figural through-section, and small scale spatial deformation, all 
interrelated via a medially based coordinate system, was driven by the need to understand 
anatomy at many user-relevant levels of spatial scale. Inspired by the Laplacian pyramid and the 
wavelet, we invented the notion of medially based geometric residues at one scale from the 
description of a structure at the larger scale levels. 

7) Medial descriptions of object populations. Medial descriptions were originally designed to 
describe a single object instance, but we have seen that they have special strengths in describing 
a population of objects or object ensembles that have a common medial structure of separated, 
branching, and interacting manifolds with boundary. The recent advance of Fletcher et al. [2003] 
in seeing a medial description as a point on a Lie group of geometric transformations and seeing 
statistics of objects by finding means and principal geodesic components of these points on this 
Lie group has been particularly important in providing such statistics of object or object 
ensemble geometry. Also important are the advances of Lu et al. [2003] in build ing multiscale 
models of objects and object ensembles via medially based residues and then deformation 
residues using Markov random field approaches applied to a model of fixed structure. These 
approaches allow coarse to fine segmentation and statistical characterization from training sets 



with only tens of cases, but they beg the question of how to build a stable common medial 
structure from a population, even though the small-scale medial structure of the Blum medial 
locus varies across the members of the population. This question is dealt with in the paper of 
Styner et al. in this issue. The resulting probability distributions can be used not only as priors 
for posterior optimizing segmentation methods but also to probabilistically characterizing 
geometric differences between populations of objects, giving both user- intuitive descriptions of 
the differences and their locality. Methods for doing such description of geometric differences in 
populations have been developed in our group by Yushkevich [2003] and by Gerig et al. [2003], 
with applications to the study of the effect mental diseases have on brain structures. Since these 
methods are limited to populations of object ensembles that all have the same objects in the same 
interrelation structure and each with the same branching structure, Wang [2003] in our group 
began to develop statistical methods to describe populations of objects with variable branching 
structure. 

 
Deforming medial models is a very effective approach when the medial branching structure is consistent 
or includes just a few types within a population. Accomplishing such deformation as a means of 
segmentation by posterior optimization is described in the first paper in this issue. Also of interest in 
MIDAG is deformation via finite element mechanical models with multigrid meshing based on medial 
models [Crouch 2003]. However, there are many cases, such as various blood vessel trees, where the 
structure is so variable across a population that one wishes to extract the medial structure with a less 
constrained medial model. In the blood vessel example, one may use the knowledge that the structure is 
a tree of tubes.  Methods going from boundary or from an image to medial locus are applicable here. An 
important class of these methods for tubular trees has been developed by Aylward and Bullitt [2002] in 
MIDAG. The paper by Aylward et al. in this issue applies these medial segmentations to registration of 
images via their blood vessel trees. 
 
When extracting a curvilinear medial model, either of a boundary in 2D or of tubes in 3D, the complex 
branching that can result makes one face the question of which branches are continuations of another 
section of object (form a “limb”) and which are the branches from the limb. This is the question 
addressed in the paper by Katz et al. in this issue. 
 
I conclude this editorial by a summary of the usefulness of medial representation of objects and object 
ensembles and of the challenges left to be dealt with. Medial representations augmented by a small scale 
deformation are a powerful alternative to other useful object representations: landmark sets; boundary 
representations, whether as a set of points, a tiled surface, or an orthogonal function decomposition; and 
displacement vector fields from an object- labeled atlas of voxels.  In the forms described earlier what 
are the relative strengths of medial representations? They directly represent the object interior and allow 
an efficient calculation of the object boundary. They provide rather good correspondences in and near 
that interior via their figural coordinate system. They support a multiscale representation, thus providing 
efficient segmentation, statistical characterization with locality based on limited training sets, and object 
descriptions at any of a choice of spatial scales: global scale down to small scale. And, augmented by 
small scale deformations of the boundary or of the object interior, they describe object geometry in 
terms intuitive to users of image analysis; for medical applications this means objects are described in 
terms of figures that have anatomic names and through deformations that correspond to anatomically 
reasonable changes.  
 



There is much more research to do to make medial models achieve their great potential. The following 
lists many of these challenges: 

1) To do more validations of medical image analysis applications of our medial models. For 
MIDAG the measure of success of a technical development lies in its medical usefulness. While 
we have shown the effectiveness of medial modeling for certain segmentation, registration, and 
statistical shape characterization tasks for medical application, much more validation in terms of 
these uses remains to be done. 

2) To improve the figural coordinate system a) to reflect the shape of the medial sheet, b) to 
improve the correspondences across objects to produce effective statistical descriptions, and c) to 
extend the coordinate systems of individual objects to the space between objects. 

3) To use these coordinate systems in studying probabilities on images, i.e., on image intensity 
distributions. 

4) To provide the multiple medial scale levels that are probably necessary to adequately 
characterize figural shape. 

5) To provide a method to generate probabilities on populations of objects with variable medial 
branching structure, by themselves and in combinations with objects of fixed branching 
structure. This will allow the combined analysis of organs and the blood vessels that course 
within them. 

6) To provide a method to generate probabilities on populations of objects with multiple modes. 
7) To describe objects as they vary in time, i.e., to produce spatiotemporal medial geometry. 
8) To deal with families of objects or object deformations that pass through singular cases of tubes 

or spheres. 
9) To build the dense atlases of various parts of the human body, describing means and variabilities 

of geometric residues at many scales, that will provide many uses: segmentation, statistical 
characterization of the geometric effects of disease, and education, among others. 

10) To build statistical descriptions of image intensities in multiscale residue terms consistent with 
the multiscale geometric residue descriptions based on medial models and small-scale 
deformation. 

11) To combine figural geometry and Euclidean geometry to describe heavily folded objects in the 
human, such as the cerebral cortex and the intestine. 

12) To use probability distributions on complexes of medial atoms for object recognition. 
13) To apply m-reps to non-medical applications. Medial models have been shown useful for a 

variety of objectives, and extending the improved medial models to such image analysis 
objectives as segmentation of manufactured objects, their statistical geometric characterization, 
their mechanical modeling, and their object recognition and to such applications as morphing for 
animation, image-based rendering, and design of manufacturable objects and art objects seems 
very promising. 
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