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ABSTRACT 
Purpose: Dose escalation to intraprostatic tumor domains detected by magnetic 
resonance spectroscopy imaging (MRSI) requires non-rigid registration of MRSI-positive 
volumes (visualized in a prostate gland deformed by the endorectal balloon coil) with 
ultrasound (US) and/or CT images used for treatment planning. Finite element analysis 
is a principled method for modeling physical deformation that can be applied for 
analyzing deformed anatomical structures in medical images. However current 
implementations of the finite element modeling (FEM) are too laborious and 
computationally inefficient for routine clinical use. The purpose of this investigation was 
to validate improved methodology based on deformable m-rep models, for automatically 
constructing FEM mesh models, defining boundary conditions for the starting and 
ending states of the deformation process, and efficiently solving the large system of 
FEM equations to yield a non-rigid transformation. In this paper this approach is referred 
to as m-rep-based finite element modeling (MFEM). 
 
Methods and Materials: A pelvis phantom was constructed from tissue-like materials 
to simulate the prostate and surrounding structures including bladder, expandable 
rectum, and bone. An inflatable balloon simulating the MR coil was placed in the rectal 
cavity and 75 dummy (non-radioactive) seeds were implanted in the prostate. CT 
images were acquired with the rectal balloon empty and inflated. The prostate was 
carefully contoured on all slices and the benchmark coordinates of the centers of all 
seeds were identified using an interactive point-and-click method. An m-rep model of 
the relaxed prostate was created by deforming a stock prostate model into the volume 
defined by the prostate contours. A multiscale FEM mesh model was then automatically 
generated from the m-rep model. The surfaces of the relaxed and deformed prostate 
were used to define boundary conditions, and the system of partial differential equations 
for a linear elastic system was solved using FEM in a computationally efficient 
multiscalar fashion facilitated by the properties of m-reps. The locations of seeds in the 
deformed prostate predicted by MFEM were compared to the benchmark coordinates.  
 
Results: The mean error of the MFEM-predicted seed coordinates compared to human 
labeling in the deformed prostate was slightly less than 1 pixel along the axes in the 
transverse plane and slightly less than one-half the slice thickness along the cephalo-
caudal axis.  
 
Conclusion: The MFEM-predicted seed locations agreed with human labeling within 
limitations imposed by the experimental conditions such as the discrete nature of the CT 
data and image artifacts. The automatic meshing algorithm and computational efficiency 
gained from m-rep methodology offer significant computational improvements that can 
move finite element modeling closer to clinically practical implementation. 
 
Keywords: Image registration, finite element analysis, m-rep, prostate 
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INTRODUCTION 
The ability to image intraprostatic tumor domains with magnetic resonance 
spectroscopy imaging (MRSI) offers the potential for targeting localized concentrations 
of tumor cells for delivery of boost doses of radiation to improve the probability of local 
control. Implanting radioactive seeds under ultrasound (US) guidance is one approach 
being investigated for delivering a boost dose (1). The desired accuracy of seed 
placement for highly localized boost therapy is more demanding compared to a full 
prostate implant however and thus standard US guided implant procedures do not meet 
the needs of boost therapy. In particular non-rigid image fusion is required for 
comparison of US images acquired at the time of implant with MRS images acquired 
earlier for localizing tumor domains and perhaps CT images for preplanning seed 
placement. The prostate is essentially relaxed in CT images and deformed to different 
degrees by endorectal devices in US and MRS images. Rigid registration techniques do 
not correct for the resulting image differences and thus cannot accurately transfer seed 
coordinates from one image to another image of the prostate in a different deformed 
state. When considering possible non-rigid solutions it is important to note that the 
underlying methodology must be able to accurately predict seed locations for any 
possible deformed state of the prostate. This requirement can be met by methods that 
model tissue deformations in a physically correct manner. Finite element analysis is a 
proven approach that is well established in mechanical engineering and is being applied 
to the study of human tissues. However, current implementations of FEM involve 
laborious construction of 3D mesh models and computationally expensive solution of a 
large system of equations. This paper reports results from a validation study of new 
methods, based on medial deformable models called m-reps, to automatically generate 
mesh models from an image, derive boundary conditions from images of deformed 
objects, and efficiently solve the large system of finite element equations.  
 
METHODS AND MATERIALS 
Elastic Properties of Solid Objects 
In general a solid object will deform when a stress is applied to its surface. The object's 
elastic properties describe the physical nature of the deformation process. Objects with 
isotropic linear elastic properties behave in an ideal manner. The amount of 
deformation, or strain, is instantaneous and directly proportional to the stress applied, 
and the deformed object immediately springs back to its original form when the 
deforming stress is removed. Objects with viscoelastic properties exhibit the more 
complex behaviors of relaxation, creep, and hysteresis. Relaxation occurs when the 
stress in an object slowly diminishes as its strain is kept constant. Creep occurs when 
an object continues to slowly deform as constant stress is applied. Hysteresis occurs 
when the deformation process is not exactly reversible when the deforming stress is 
removed. 
 
Extensive knowledge is available about the elastic behavior of many materials such as 
steel, plastics, and wood. And while the deformation properties of some soft biological 
materials including lung (2), muscle (3), and brain tissue (4) have been investigated, 
less information is available about the elastic properties of a number of soft tissue 
structures including the prostate. At least one study shows evidence that the prostate 
can be reasonably modeled as a linearly elastic object (5). In addition, other work that 
involved modeling the prostate also relied on the used a linear elastic prostate model, 



  Chaney Page 4 

with apparent success (6). In the absence of more complete data from experiments with 
prostate tissue samples that supports a more specialized form of viscoelastic behavior, 
isotropic linear elasticity is the most reasonable form of elasticity to assume. Even if the 
prostate is predominately viscoelastic this assumption should be reasonable under 
conditions where stress and strain are not extreme as in this investigation (7). 
 
Under equilibrium conditions where an object remains stationary, the deformations of an 
isotropically elastic solid are described by a linear elastic partial differential equation 
(PDE). The most general form of this equation found in standard text books is given in 
Equation 1. 
 

  
µ∇ 2 r u + µ + λ( )∇ ∇ T r u ( )+

r 
b = 0  Eqn. (1) 

 
where the vector     denotes a function describing the displacement of a point in the 
object under the influence of a force, 

r u
 
r 
b , on the solid. The constants µ and λ are known 

as Lamés coefficients and can be determined from Young’s modulus and Poisson’s 
ratio. Young’s modulus is the ratio of stress to strain for a stress applied along one 
direction. Poisson’s ratio is the amount of an object's contraction perpendicular to an 
applied stress divided by the amount of elongation parallel to the stress. The 
relationships between Young’s modulus, E, Poisson’s ratio, ν and Lamés coefficients 
are given by Eqns. (2) and (3). 
 

E =
µ 3λ + 2µ( )

λ + µ
  Eqn. (2) 

 
 

υ =
λ

2 λ + µ( )
  Eqn. (3) 

 
For the experiments reported here the prostate was assigned E = 60kPa and ν = .495 
based on published prostate tissue test results (8). The meshed area exterior to the 
prostate was assigned E = 10kPa and ν = .3. 
 
Finite Element Modeling 
In cases similar to the prostate deformation problem, Eqn. (1) cannot be solved by 
deriving an analytic solution. Finite element modeling is a method based on 
fundamental physics principles for modeling mechanical deformations to calculate a 
solution numerically at a finite number of points, called nodes, in the object (9). 
Solutions at other points are found by interpolating between nodes. FEM has been 
applied with good results to medical simulations including maxillo-facial surgery (10), 
liver surgery (11), and childbirth (12). FEM also has been investigated for non-rigid 
registration of different images of the same patient (8; 13-15). 
 
The FEM approach assumes that an object undergoing deformation can be modeled as 
a mesh of solid elements that collectively give a good approximation to the object's 
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geometric shape and individually undergo compression or extension when subjected to 
a force (Figure 1). The nodes at which numerical solutions are computed are located at 
the vertices of the mesh elements. Typical three-dimensions shapes for mesh elements 
are tetrahedra, pyramids, wedges, and hexahedra, with tetrahedral and hexahedral 
elements being preferred (Figure 2). Meshes can be comprised of elements of single or 
mixed shapes. Research has shown that the error in a finite element solution is less for 
a mesh of linear hexahedral elements than for a mesh of similarly sized linear 
tetrahedral elements (16). 
 
Solving PDEs such as Equation 1 requires boundary conditions describing specific 
parameters at the initial and end states of a deformation process. For example the 
forces causing the mesh to deform can be described, or the vector displacements of 
points on the object’s surface from the initial to the end states of deformation can be 
specified in detail. In this study m-rep surfaces were used to compute vector 
displacements. 
 
In the general case creating an FEM mesh for an object is too laborious and time 
consuming for clinical applications requiring interactive or on-line computer feedback to 
guide medical decisions or tasks. When dealing with medical images this problem is 
made more complex by the necessity to first extract the objects of interest from image 
data. The advantages offered by m-reps are automatic extraction of objects, an object-
based coordinate system that facilitates automatic generation of FEM meshes, and 
means for scaling mesh fineness to solve the FEM system of equations in a 
computationally efficient coarse-to-fine fashion. 
 
Deformable medial models (m-reps) 
M-reps are deformable medial models for representing the interiors and surfaces of 3D 
objects and groups of objects (17). Objects can have one or more figures, e.g., 
indentations or protrusions. An m-rep is made from a lattice of medial atoms whose 
centers are located on the medial sheet - the sheet that defines the middle of an object 
(Figure 3). Atoms have two radial vectors of equal length extending to points on the 
surface whose location is implied by the model to within a tolerance proportional to the 
width of the object. Atoms associated with a crest have a third vector that bisects the 
two main vectors and touches the peak of the crest.  
 
M-reps are well suited for building models of normal anatomic objects for use in 
automatic image segmentation, i.e., extracting normal anatomical objects from images 
(17). The process of building a "stock" m-rep for segmentation includes training the 
model from a broad sample of particular instances of the corresponding object. Training 
defines the model geometric properties such as the configuration of the mean model 
and statistical distributions for shape variations relative to the mean across all training 
cases. Training also produces statistical distributions for gray scale intensity profiles at 
many locations around the surface of the object. The profiles define an intensity 
template against which intensity profiles in the target image are compared to yield an 
image match term that estimates how well a particular deformed state of the m-rep 
matches the target image data over the region of the implied boundary. When a trained 
m-rep is initialized in a target image it undergoes a global transformation that roughly 
registers the whole m-rep with the corresponding object in the image. Global 
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transformation is followed by figure-by-figure registration and then atom-by-atom 
deformations in a cyclic fashion with random order over the medial lattice. A final step 
displaces the surface implied by the deformed model to closely match the target image 
data. All transformations and deformations are driven by an algorithm that optimizes an 
objective function which is the sum of the image match term and a geometric term that 
measures how well the current deformed state matches the mean m-rep. 
 
One powerful property of m-reps is their object based coordinate system enabled by the 
atomic-level reference frame illustrated in Figure 3. Each model has its own coordinate 
system for referencing all points inside and on the surface, and points associated with 
figures and other models. When an object undergoes deformation the world coordinates 
of every point inside and on the surface of the object change. However the object based 
coordinates of each point remain the same, preserving spatial and orientation 
correspondence between deformed versions of the same object. That is, when the m-
rep is deformed the object based coordinates do not change; only the mapping between 
object and world coordinates changes. The mapping transformation is known at all 
times so that corresponding points can be referenced in world coordinates. An 
advantage of preserving point correspondence in object space is that an FEM mesh 
built to fit a particular m-rep model and expressed in the m-rep's object based 
coordinates will automatically fit any deformed version of the m-rep model. Another 
advantage for building meshes is that object-based distance coordinates are expressed 
as a fraction of object width. This property provides a natural way to scale the 
dimensions of mesh elements relative to the size of an object, and is particularly 
powerful for defining progressively finer meshes to facilitate a multiscale approach to 
solving the FEM system of equations. Progressively finer meshes conform better to the 
shape of the object because the elements are not simply subdivisions of coarser mesh 
elements but are computed using the same algorithm used for coarse grids that places 
element nodes directly on the object surface. Better conformance to the object shape 
contributes to the improved precision offered by finer m-rep generated meshes.  
 
M-rep Based Meshing 
This work evaluates the performance of two algorithms discussed in detail by Crouch 
(18) and reviewed briefly here. One algorithm automatically generates a mesh from an 
m-rep segmentation of an image and defines boundary conditions for the beginning and 
end stages of the deformation. The other is an efficient solution algorithm that takes 
advantage of the multi-scale nature of solving the FEM system of equations.  
 
The meshing algorithm constructs a hexahedral mesh for each object and for the space 
separating multiple objects. Mesh properties are determined completely by information 
contained in the m-rep model, eliminating the need for user interaction. Since an m-rep 
model of a prostate has only a main figure, the single-figure version of the algorithm is 
discussed here. The first step is to construct a sampling grid on the medial surface of 
the segmented prostate. The vertices of the sampling grid are placed at regular intervals 
in the object coordinate frame. The grid spacing is determined by the ratio of the 
average width of the object to the average distance between medial atoms in world 
space. This spacing produces hexahedral elements with approximately equal 
dimensions. The coordinates of other layers of nodes are derived from the sampling 
grid. For sample points on the interior of the grid, five nodes are created. For sample 
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points on the edge of the grid, associated with a crest region, a sixth node is created 
positioned on the object crest. A resulting two-dimensional mesh pattern is illustrated in 
Figure 1. The prostate meshs for the three mesh levels in this study are shown in Figure 
4. Figure 5 shows undeformed and deformed prostate meshes superimposed on CT 
data. 
 
The meshing process generates a regular hexahedral mesh in object space. When the 
mesh is mapped to world coordinates, where FEM is performed, the shapes of most 
transformed elements are well suited for FEM calculations (Figure 6). However some 
elements can have geometries that are distorted which leads to folds in the mapping 
transformation.  Such distortions can degrade the accuracy of FEM calculations, and 
thus further analysis is performed to detect and correct flawed elements in world space 
(18). This mesh optimization process successfully produced meshes for the prostate 
which meet well established criteria for a high quality solution to the FEM system of 
equations (16). 
 
Space external to m-rep models 
The male pelvis contains multiple objects that must be meshed to solve a general 
deformation problem. In this study however the only object of interest is the prostate, 
and thus individual mesh models for other objects does not improve accuracy or provide 
additional information. For this reason the tissues and structures around the prostate 
were treated as homogeneous linearly elastic material. This space around the prostate 
needed to be meshed as well, but a different approach was used since the space was 
not modeled by m-reps. First a layer of pyramids was automatically built on top of the 
hexahedral elements generated by the m-rep meshing algorithm. Then the remainder of 
the volume of interest was filled with tetrahedra using existing software called CUBIT 
available from Sandia National Laboratories (19). The pyramid and tetrahedral elements 
filling the space external to m-rep models are shown in Figure 4.  
 
It should be noted that CUBIT was not considered suitable for generating meshes for m-
rep models for the two important reasons related to solution quality and computational 
efficiency. First, CUBIT generates tetrahedral meshes, but reliable hexahedral meshing 
is not available. As mentioned in the section on Finite Element Modeling, linear 
hexahedral meshes offer better solution accuracy than linear tetrahedral meshes. 
Second, the m-rep meshing algorithm provides a reasonably good solution estimate that 
can be iteratively refined. The solution estimate is not available from CUBIT or other 
meshing software. 
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Boundary Conditions 
The FEM solution of PDEs requires boundary conditions specified in terms of either 
applied forces or vector displacements of points on the surface of the object undergoing 
deformation. Images provide information about the effects of forces but no direct 
information about the forces themselves. And although the surfaces of the undeformed 
and deformed object can be identified, only with the aid of a solid model and an object 
representation such as that provided by m-reps can the vector displacements be 
automatically derived from surface deformations observed in two images.  
 
Boundary conditions are established in the following manner for the prostate. The m-rep 
segmentation of the undeformed prostate, including the mesh generated as described 
above, is transferred onto the image of the deformed prostate and used as a model to 
segment the deformed prostate. The m-rep models for the undeformed and deformed 
prostates have the same topology and their object-based coordinates span exactly the 
same parameter space. This correspondence means that the object based coordinate 
system defines a one-to-one geometry-based correspondence between points in the 
relaxed and deformed prostates. The algorithm examines each node of the hexahedral 
mesh that lies on the prostate surface and computes a vector displacement in world 
coordinates. To be consistent with physically realistic modeling, the solution to the 
system of equations is optimized by minimizing the work expended to produce the 
displacements. For a linearly elastic system, as assumed for this study, the work 
expended is equal to the change in the elastic potential energy given by Equation (4). 
 

  
PE = 1

2
r 
σ • r ε dV

V∫ −
r 
b • r u dV

V∫ −
r 
t • r u dS

S∫   Eqn. (4) 
 

where 
P  = elastic potential energy E
  
r 
σ  = stress r
  ε  r = strain 
 

  b r  = body force applied to object 
  u  r 
 
= vector function describing node displacement 

  t = surface force applied to object 
 
In this investigation body forces such as gravity were ignored and surface forces were 
not modeled. Thus the first term on the left side of Equation (4) is minimized to optimize 
the boundary conditions.  
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Efficient Solution Algorithm 
To deform a mesh using FEM, an NxN system of linear equations must be solved, 
where N is the number of nodes in the mesh. Approaches that use fine meshes, i.e., 
large N, are computationally expensive. Fortunately the large systems of equations 
encountered in a coarse-to-fine-mesh approach can be more efficiently solved by 
borrowing an idea from multigrid theory (20, 21). In multigrid theory an iterative solver is 
applied at each grid level, i.e., mesh size in this study, to improve the approximation at 
that level, and then the approximation is transferred to a different grid and the process is 
repeated. A scheduling algorithm determines the order in which grid levels are visited. 
The approach taken in this study was to estimate the solution using m-rep geometry 
correspondences, apply a conjugate gradient algorithm to refine it iteratively, and then 
interpolate the solution to a finer mesh. The conjugate gradient algorithm was applied to 
the finer mesh to further improve the solution. An arbitrary number of interpolation and 
refinement steps is possible, but only three mesh levels were used in this study. The 
number of iterations required to converge to a solution was reduced due to the good 
approximation from the initial coarse mesh. The numbers of nodes and elements for 
each mesh level are shown in Table 1. 
 
EXPERIMENTAL PROCEDURE 
For the purpose of validating the algorithm, a pelvis phantom was constructed from 
tissue-like materials to simulate the prostate and surrounding structures including 
bladder, expandable rectum, seminal vesicles, and bone (CIRS, Norfolk, VA). All 
simulated organs were made of zerdine® (a water based polymer) as was the 
background phantom material.  Pelvic bone was simulated with epoxy. An inflatable 
balloon simulating the MR rectal coil was placed in the rectal cavity and 75 dummy 
radioactive seeds were implanted in the prostate. According to the manufacturer, 
zerdine was made to simulate the ultrasound characteristics of human liver tissue. The 
speed of sound, acoustic attenuation, and backscatter properties of this material can be 
adjusted to simulate different tissues. Thus, the contrast for different structures (built by 
molding zerdine in the respective shapes) is such that they are visible using both 
ultrasound and CT (the prostate is darker than background material, urethra material is 
darker than prostate, etc.). To track the deformation of the prostate, seventy-five 
“dummy” seeds were placed within the simulated gland in a quasi-regular pattern 
(Figure 7). To simulate the deformation of the prostate by the MRS probe, the rectum 
was simulated by an empty space into which the MRS probe was inserted.  Inflation and 
deflation of the probe inside the phantom thus produced the same type of deformation 
produced by an endo-rectal probe. 
 
CT images with 3 mm slice thickness and .78 mm x.78 mm pixel size in the transverse 
plane were acquired with the rectal balloon empty and inflated. The prostate was 
carefully contoured and the benchmark centers of the seeds were defined in the CT 
data using and interactive point-and-click method. The CT data was windowed and the 
window was centered so that only very bright pixels were displayed, facilitating 
identification of pixels near the seed centers.  
 
At the time of this study a fully trained m-rep model for segmenting the prostate from a 
gray-scale CT image was not available. To obtain m-rep segmentations, the gray-scale 
CT images were replaced with a binary images created from the prostate contours. The 
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prostate was segmented in the binary images with an m-rep prostate model and an 
analytic Gaussian-based image match term that gave a strong response at the prostate 
boundary. An FEM mesh model was then automatically generated from the m-rep 
model of the undeformed prostate as described in the section on M-rep Based Meshing. 
 
The m-rep surfaces of the undeformed and deformed prostate were used to define 
boundary conditions in terms of vector displacements. The FEM system of equations for 
the deformation process was solved in a multiscalar fashion as described in the section 
discussing the Efficient Solution Algorithm. The CALFEM package (22) was selected as 
the core software for assembling and solving the equations. CALFEM is a finite element 
package from the Department of Mechanics and Materials at Lund University that is 
written in MATLAB (23). The CALFEM code was modified to handle tetrahedral and 
pyramid elements as well as hexahedral elements, but the logic was not changed. The 
solution step was accomplished with a conjugate gradient solver that is a standard 
module of MATLAB. 
 
The output of interest from the above computations was the transformation function for 
mapping the undeformed FEM mesh onto the deformed prostate. This transformation 
was applied to the seed locations in the undeformed prostate to predict the seed 
locations in the deformed prostate. 
 
RESULTS AND DISCUSSION 
The MFEM-predicted locations of the 75 seeds implanted in the phantom prostate were 
compared to benchmark coordinates. The comparison between the predicted and 
benchmark seed locations is presented in Table 2 for the three mesh subdivision levels 
and for unoptimized and optimized boundary conditions. Figures 7 and 8 show 
agreement of MFEM-predicted seed locations with image data for a selected transverse 
plane.   
 
Table 3 shows the incremental improvement in all error categories gained from 
computing the deformation over successively finer meshes. It is conceivable that further 
improvements could be realized by going to even finer meshes. However the mean 
errors for the finest mesh (level 3) are smaller than the dimensions of a single voxel, 
which is an excellent result under the conditions of this experiment.  
 
The overall best agreement is obtained for the finest mesh level (level 3) where the total 
mean error over all 75 seeds is .2 cm. The mean errors along the x and y axes in the 
transverse plane are .0766 cm and .0761 cm respectively, less than one pixel width 
along both axes. As would be expected for the direction of poorest spatial resolution, 
the largest component of the total error is along the cephalo-caudal axis (z axis) where 
the mean error is .1393 cm, less than half the slice thickness.  
 
Figure 9 shows the histograms for errors along the x, y, and z axes. The maximum 
disagreement in the transverse plane was less than 4 pixels in the x direction and less 
than 3 pixels in the y direction. The maximum disagreement in the x direction occurred 
for a single outlier; otherwise the histograms are comparable for the x and y directions. 
The standard deviation for both axes in the transverse plane was about three-fourths of 
a pixel. Along the z axis the maximum disagreement was about 1.5 times the slice 
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thickness for three seeds. For the remainder of the seeds the maximum disagreement 
along the z axis was within the thickness of a single slice. The standard deviation along 
the z axis was about one-third of the slice thickness. 
 
The difference between unoptimized and optimized boundary conditions is that the work 
required for deformation (Equation 4) was minimized for the optimized boundary 
conditions. The results in Table 2 show that optimization did not improve agreement in 
this investigation. This result may follow from the fact that the deformation created by 
the inflated balloon in this study, while representative of actual clinical situations, was 
fairly mild. Under these circumstances Equation 4 may be moderately insensitive to 
differences in paths taken by nodes in the prostate to traverse the moderate distance 
from their relaxed to deformed positions. However further study is needed to understand 
the effects and importance of optimizing boundary conditions for deformed tissues.  
 
For the results reported in Table 2 the prostate was assigned a Young's modulus of 
60kPa and ������������� of .495 (8). FEM methods in general are sensitive to 
the particular values of Young’s modulus and Poisson's ratio. However compared to 
methods like MFEM that specify boundary conditions in terms of the undeformed and 
deformed surfaces, FEM methods that describe boundary conditions in terms of applied 
forces are more sensitive to Young's modulus. This result is expected since Young's 
modulus is defined in terms of the applied forces. As seen from the results shown in 
Table 4, the MFEM methodology is insensitive changes in Young's modulus over a 
couple orders of magnitude, but is sensitive to Poisson’s ratio.  
 
Error Evaluation 
The primary sources of error contributing to the observed differences between MFEM 
predictions and benchmark coordinates can be separated into two categories: 1) 
experimental conditions, and 2) MFEM algorithm errors in computing the deformation. 
Experimental conditions affecting the observed error include 1) the discrete nature of 
the CT image data; 2) partial volume and streaking artifacts; and 3) human errors in 
contouring the prostate. The MFEM method is quite complex and involves many 
calculations that can contribute to the observed error. The most significant potential 
sources of error are 1) differences between prostate tissue mechanics and the linear 
elastic model; 2) specific elastic properties assigned to the prostate; and 3) 
discretization of the solution space. 
 
In this experiment the exact coordinates of seeds were unknown and were estimated 
using an interactive point-and-click method. Thus the errors reported in this study are 
related to the comparison of human-identified benchmarks (Figure 10). The properties 
of the CT image data affects the quality of the benchmark coordinates. The discrete 
nature of the image data essentially means that the limiting accuracy of an interactive 
method for finding seeds under ideal imaging conditions is determined by voxel 
dimensions. The best a human can do using a point-and-click method is to localize the 
center of a seed to a particular voxel. If this task were performed correctly in every 
instance, the precision (reproducibility) would be half a pixel (.39 mm) in the transverse 
plane and half the slice thickness (1.5 mm) along the z axis, for a total reproducibility of 
1.6 mm computed as the square root of the sum of the squares for all three axes. In real 
images these limiting values are degraded by artifacts. For example since seeds were 
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4.5 mm long, each seed appeared in at least two slices and sometimes three. In the 
transverse plane streaking artifacts obscured the cross sections of seeds. Unfortunately 
the effects of imaging artifacts on seed identification cannot be assessed for the images 
used in this study. However the observed standard deviation of 2.0 mm compares quite 
well to the ideal limiting precision of 1.6 mm. 
 
Errors in the contours defining the boundary conditions for computing the deformation 
can introduce inaccuracies in the computed seed positions. To examine the effect of 
segmentation error, five perturbed versions of the prostate m-rep model from the image 
of the deformed prostate were created. The mesh mapping transformation was 
computed for each of the perturbed models, and the seed displacement error estimates 
were calculated for each of those mappings. The original m-rep model from the inflated 
probe image has a volume of 39.22 cm3, and is pictured in Figure 11 along with the 
perturbed models. A description of each of the perturbed models follows, and the error 
estimates for each model are presented in Table 5. 
 

1. Perturbed model with a flat end and a volume of 36.06 cm3. 
2. Perturbed model with a depression .6 cm deep on the top surface and a volume of 

38.46 cm3. 
3. Perturbed model with a bump .6 cm high on the top surface and a volume of 40.06 

cm3. 
4. Perturbed model with a depression .6 cm deep on the bottom surface and a 

volume of 38.38 cm3. 
5. Perturbed model with a bump .6 cm high on the bottom surface and a volume of 

40.23 cm3. 
 
These results in Table 5 show that segmentation errors do lead to an increase in 
registration error, as expected. The amount of registration error is related to the extent 
of the segmentation error and the location of the segmentation error. For the prostate 
model, a segmentation error on the prostate’s lower surface had a more detrimental 
effect than a similar error on the prostate’s upper surface. In this study the edge of the 
prostate was clearly visible on most but not all slices, leading to a high level of 
confidence that contouring errors were small. Based on this confidence and the results 
in Table 5, the effects of contouring errors are thought to be small compared to other 
sources of error. 
 
The material for constructing the prostate phantom is not known to be an ideal, 
homogeneous linearly elastic solid, especially in the presence of implanted seeds. To 
the extent that the mechanical behavior of the material deviates from the linear elastic 
model, the model will provide inaccurate predictions. Within the limits of the relatively 
mild deformation in this study the deviation from an ideal is assumed to be small 
compared to other effects.  
 
The solution to the linear elastic equations is approximated at a finite number of nodes 
on the MFEM mesh. The error in the solution due to this discrete approximation can be 
made arbitrarily small by using a very fine mesh as illustrated in Table 2. At mesh level 
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3 and higher, other components of the error outweigh the discretization component. 
 
CONCLUSION 
The MFEM-predicted seed locations agreed with human labeling within limitations 
imposed by the experimental conditions such as the discrete nature of the CT data and 
image artifacts. The automatic meshing algorithm and computational efficiency gained 
from m-rep methodology offer significant computational improvements that can move 
finite element analysis closer to clinically practical implementation. 
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Figure 1. Example of a two-dimensional finite element mesh automatically generated 
from an m-rep model. Notice that the mesh closely models the shape of the object. The 
nodes in the mesh are labeled ai, bi, and ci. The nodes a0, and b0 are samples on the 
center portion of the medial surface and give rise to nodes a0 - a4 and b0 - b4, 
respectively. The node c0 is a sample on the perimeter of the medial surface and give 
rise to nodes c0 - c5. 
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Figure 2. Three-dimensional mesh elements. Left: Tetrahedral element. Center: 
Pyramid element. Right: Hexahedral element. 
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Figure 3. Left: Diagram of a medial atom. The atom hub is shown as a ball at the 
center. Radiating from the hub are two spokes y and y0  of length r.  The object’s 
surface implied by the atom is perpendicular the  spokes at their tips. Attached to the 
hub is a reference frame (n,b,  ). b is the unit vector bisecting the angle 2ϑ between 
the radial spokes;    is the unit vector perpendicular to the plane defined by b, y and 
y

b⊥

b⊥

0; and n is the unit vector perpendicular to b and b ⊥ . The reference frame provides the 
basis for the object-based coordinate system associated with m-rep models. Center: A 
single figure m-rep model of the prostate composed of a lattice of medial atoms. Right: 
Prostate m-rep with wireframe implied surface. Notice that atoms on the periphery of the 
medial lattice have a third radial spoke extending to the tip of the crest. 
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Figure 4. Prostate meshes at three scale levels. (a) Prostate m-rep model. (b) Level 1 
prostate mesh (coarse). (c) Level 2 prostate mesh. (d) Level 3 prostate mesh (fine). (e) 
Exterior view of entire meshed volume. (f) Sliced view of level 1 meshed volume. g) 
Sliced view of level 2 meshed volume. (h) Sliced view of level 3 meshed volume.  
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Figure 5. Left: Undeformed level 2 prostate mesh overlaid on a slice of the 
corresponding image. Right: Deformed level 2 prostate mesh overlaid on the same 
slice. 
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Figure 6. Left: Hexahedral element in object related parameter space. Right: 
Hexahedral element mapped into world space. Corresponding nodes are labeled.  
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Figure 7. Left: CT Slice of the phantom prostate with uninflated probe. Center: Same 
slice as left, after MFEM-computed deformation has been applied. Right: CT slice of 
the phantom prostate with inflated probe.  
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Figure 8. Computed seed positions (red) overlaid on the corresponding CT slice 
through the deformed prostate. This image illustrates how well the computed positions 
match the actual imaged positions. 
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Figure 9. Histograms for errors along the x, y, and z axes of the CT images. 
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Figure 10. Illustration of error analysis for a single seed. Graphs are shown in two 
dimensions but generalize to three dimensions. Left: The true and human-estimated 
source positions, S and Se respectively, in the CT of the undeformed prostate. The true 
position S is unknown. The random human error associated with estimating S is Ee. 
Center: Unknown true and human-estimated source positions, S' and S'e respectively, 
in the CT of the deformed prostate. The random human error is E'e. Right: After finite 
element computations, the computed deformation is used to map the coordinates of Se 
onto the image of the deformed prostate. The error observed in this study is Eo. The 
true error Et could not be measured. 
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Figure 11. Perturbed prostate models used to examine the effect of segmentation 
errors on the predicted locations of seeds in the deformed prostate. 
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Table1. Complexity of Subdivided Mesh Levels 
 
Mesh 
Subdivision 
Level 

Total 
Node 
Count 

Total 
Element 
Count 

Hexahedral 
Element 
Count 

Pyramid 
Element 
Count 

Tetrahedral 
Element 
Count 

1 254 836 76 52 708 
2 1,836 6,792 608 312 5,872 
3 14,068 54,960 4,864 1,872 48,224 
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Table 2. Error estimates for the predicted seed locations that result from the uninflated-
to-Inflated mapping. All errors are in units of centimeters and are averages of the 
measurements for each of the 75 seeds. The x and y components lie in a high 
resolution image plane. The z component lies across the image planes. Errors are 
stated in units of cm. 
 
 Mesh 

Sub- 
division 
Level 

Total 
error 

Total 
std 
dev 

x 
error 

x std 
dev 

y error y std 
dev  

z error  z std 
dev  

Unoptimized 
boundary 
conditions 

1 
2 
3 

.2273 

.2044 

.1999 

.0934 

.0790 

.0808 

.1043 

.0857 

.0763 

.0642 

.0617 

.0580 

.0696 

.0666 

.0764 

.0641 

.0534 

.0599 

.1608 

.1474 

.1392 

.1036 

.0893 

.0930 
Optimized 
boundary 
conditions 

1 
2 
3 

.2705 

.2054 

.2000 

.0869 

.0799 

.0807 

.1308 

.0852 

.0766 

.0785 

.0605 

.0580 

.1026 

.0679 

.0761 

.0776 

.0547 

.0598 

.1730 

.1485 

.1393 

.1057 

.0900 

.0928 
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Table 3. Amount of change in predicted seed locations produced by computing the 
deformation using finer subdivision levels. Error changes are stated in units of cm. 
 
Mesh 
level 

Total 
error 
decrease 

Total std 
dev 
decrease 

x error 
decrease

x std dev 
decrease

y error 
decrease

y std dev 
decrease 

z error 
decrease 

z std dev 
decrease

1→2 .1006 .0515 .0496 .0349 .0493 .0392 .0542 .0470 
2→3 .0374 .0169 .0148 .0111 .0224 .0182 .0174 .0146 
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Table 4. Effects of Poisson's ratio and Young’s modulus on observed error. Error values 
are stated in units of cm.  
 
Young’s 
Modulus 

Poisson’s 
Ratio 

Total 
error 

Total 
std 
dev 
 

x 
error 

x std 
dev 

y 
error 

y std 
dev 

z 
error 

z std 
dev 

6 kPa .495 .2044 .0790 .0857 .0617 .0666 .0534 .1473 .0893
60 kPa .495 .2044 .0790 .0857 .0617 .0666 .0534 .1474 .0893
600 kPa .495 .2044 .0790 .0857 .0617 .0666 .0534 .1474 .0893
60 kPa .3 .2207 .0818 .0900 .0621 .0720 .0619 .1592 .0961
60 kPa .35 .2156 .0802 .0870 .0608 .0694 .0583 .1570 .0945
60 kPa .40 .2101 .0781 .0834 .0594 .0666 .0551 .1543 .0929
60 kPa .45 .2048 .0761 .0799 .0583 .0643 .0533 .1511 .0909
60 kPa .495 .2044 .0790 .0857 .0617 .0666 .0534 .1474 .0893
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Table 5. Effects of segmentation errors on observed error. Error values are stated in 
units of cm.  
 
Perturbed 
model 

% vol. 
change 

Total 
error 

Total 
std dev

x error x std 
dev 

y error  y std 
dev  

z error  Z std 
dev 

Original 0% .2044 .0790 .0857 .0617 .0666 .0534 .1474 .1309 
Flat end -8.1% .3016 .0995 .1162 .0809 .1568 .0772 .1828 .1309 
Top 
depression 

-1.9% .2062 .0835 .0850 .0623 .0757 .0684 .1408 .0911 

Top bump +2.1% .2176 .0827 .0979 .0690 .0786 .0601 .1474 .0922 
Bottom 
Depression 

-2.14% .2567 .1719 .1045 .0906 .1417 .1586 .1562 .1117 

Bottom bump +2.6% .2771 .1237 .1068 .0823 .1443 .1476 .1524 .0912 
 
 


