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Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation
with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic
(CT) images.
Methods and Materials: Deformable shape models called m-reps were used to automatically segment right and
left kidneys from 12 target CT images, and the results were compared with careful manual segmentations
performed by two human experts. M-rep models were trained based on manual segmentations from a collection
of images that did not include the targets. Segmentation using m-reps began with interactive initialization to
position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded
through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of
the kidney model was computed to position the model closer to the target kidney. The similarity transformation
was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage,
the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no
changes were observed. The transformations and deformations at both stages were driven by optimizing an
objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional
to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term
computed a model-to-image match term based on the goodness of match of the trained intensity template for the
currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep
segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported
in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3)
maximum surface separation (Hausdorff distance).
Results: Averaged over all kidneys the mean surface separation was 0.12 cm, the mean Hausdorff distance was
0.99 cm, and the mean volume overlap for human segmentations was 88.8%. Between human and m-rep
segmentations the mean surface separation was 0.18–0.19 cm, the mean Hausdorff distance was 1.14–1.25 cm,
and the mean volume overlap was 82–83%.
Conclusions: Overall in this study, the best m-rep kidney segmentations were at least as good as careful manual
slice-by-slice segmentations performed by two experienced humans, and the worst performance was no worse
than typical segmentations from our clinical setting. The mean surface separations for human–m-rep segmen-
tations were slightly larger than for human–human segmentations but still in the subvoxel range, and volume
overlap and maximum surface separation were slightly better for human–human comparisons. These results
were expected because of experimental factors that favored comparison of the human–human segmentations. In
particular, m-rep agreement with humans appears to have been limited largely by fundamental differences
between manual slice-by-slice and true three-dimensional segmentation, imaging artifacts, image voxel dimen-
sions, and the use of an m-rep model that produced a smooth surface across the renal pelvis. © 2005 Elsevier
Inc.
Image segmentation, Kidney, Treatment planning.
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INTRODUCTION

hree-dimensional radiation treatment planning (3D RTP)
ystems require a user-created model of the patient to lo-
alize and display objects of interest, position the isocenters
f the treatment beams, shape the radiation beams to con-
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orm to the outline of the target volume and avoid nearby
ensitive tissues, incorporate tissue inhomogeneities into
ose calculations, and compute volume-weighted metrics
uch as dose–volume histograms (DVHs) that are used for
omparing competing treatment plans. The anatomic struc-
ures and tumor-related objects comprising the patient
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odel are defined by segmenting one or more volume
mages, usually computerized tomographic (CT) and mag-
etic resonance images. Due to the large number of depart-
ents practicing 3D RTP and the large number of patients

ndergoing 3D RTP every day, segmentation of medical
mages is a commonly performed clinical task that affects
ritical treatment decisions. It is likely that segmentation is
erformed more often as a clinical procedure in radiation
ncology than for all the other medical specialties com-
ined. Unfortunately current segmentation practice is inher-
ntly inefficient and expensive. Most methods in routine
linical practice are user-guided, slice-by-slice contouring
ools that require well-trained users to achieve acceptable
esults for 3D RTP. Other flaws of current segmentation
ethods that tend toward suboptimal treatment planning

nclude intra- and interuser variabilities (1–9), the lack of
ractical approaches that fully consider all three spatial
imensions, and the inability to deal with ambiguous sur-
ace localization.

The development of automatic three-dimensional (3D)
egmentation methods is motivated by several consider-
tions, including economic pressure to improve efficiency
nd contain costs and the clinical need to improve accuracy
nd reproducibility to steer user-directed planning decisions
nd inverse treatment planning algorithms consistently in
he right direction. Deformable shape models are a general
lass that is showing great promise for automatic segmen-
ation of normal anatomic structures. Kass et al. (10) first
escribed a straightforward method based on deformable
wo-dimensional contours popularly known as snakes. A
seful survey of snakes is found in the study by McInerney
nd Terzopoulos (11). Collections of articles on early de-
ormable models can be found in the book by ter Haar
omeny (12) and in proceedings of conferences such as
VRMed ’95 (13) and CVRMed-MRCAS ’97 (14); the

opic is also investigated in studies by Montagnat and
elingette (15), McInerney and Terzopoulos (11, 16), Jones

nd Metaxas (17), and Vehkomäki et al. (18). However, in
rder for classic snake-like deformable contours to be ro-
ust and reproducible in the clinical setting, the initial
uesses for shape and position of the target object essen-
ially must be equivalent hand-drawn contours. This re-
uirement effectively precludes the possibility of replacing
and contouring with snakes. Statistically grounded de-
ormable shape models that can be trained to capture a
riori information about the probability distributions of
arget object shapes overcome many problems presented by
lassic snake-like methods. A special issue of the Institute
f Electrical and Electronics Engineers’ (IEEE) journal
ransactions on Medical Imaging (19) on model-based
nalysis of medical images has a collection of articles on a
umber of these methods.
The more sophisticated deformable shape methods use

xplicit geometric models to represent object shape. Such
odels represent a priori information that can be used in a

tatistical framework for matching the model against a

arget image. For objects with predictable shapes such as r
ormal anatomic structures, the model can be thought of as
epresenting a shape that is typical for the target object. For
xample, an m-rep is a model of the mean shape that can
eform, within the limits imposed by the probability distri-
ution on target shapes, to match the shape of a correspond-
ng object in a target image. The statistical framework for
riving the deformation is reviewed briefly below and dis-
ussed in greater detail by Pizer et al. (20, 21), Fletcher et al.
22), and Lu et al. (23).

In this article, we discuss the results of an observer study
omparing automatic and human segmentations of left and
ight kidneys from planning CT images. The objective was
o compare m-reps against experienced humans to judge
hether m-reps produce reasonable segmentations. To ac-

omplish this, we conducted a biostatistically rigorous com-
arison of m-reps against two exemplars from the popula-
ion of experienced humans. Kidneys were selected for this
tudy because they are relatively unchallenging for trained
umans to contour and thus an acceptable reference stan-
ard is easily defined, and because of their importance for
reatment planning. They also are a challenging initial ob-
ective for automatic methods because they are located in a
rowded soft-tissue environment with bony structures
earby. Segmentation was performed in this study using
edial models called m-reps (20, 21). M-reps have a num-

er of strengths that are well matched to the task of seg-
enting normal structures from medical images for radio-

herapy treatment planning (24).

METHODS AND MATERIALS

-reps
Detailed discussions of the structure, building, training, and

eformation of m-reps can be found in articles by Pizer et al. (20,
1). For completeness and continuity, brief discussions relevant to
he kidney m-reps used in this study are presented below.

The simplest 3D shape is a single figure without subfigures, i.e.,
ndentations or protrusions. For this study, the combined kidney
arenchyma and renal pelvis were treated as a single figure. Such
n object is described using an m-rep model comprising a grid of
toms that implies a 3D surface, as shown in Fig. 1. The centers of

ig. 1. Frame 1: Medial atom with two equal-length spokes that
ouch points on surface patches on opposite sides of the object and
hus define object width at the location of the atom. Frame 2: A
edial sheet of a kidney as viewed from an oblique angle. The

heet is represented as a 5 � 3 grid of medial atoms with only the
tom hubs displayed. Frame 3: Medial grid with spokes displayed.
nternal atoms have two spokes (magenta and cyan) and atoms on
he edge of the grid have a third spoke (red) that defines the radius
f curvature of the crest of the object. Frame 4: Wire-frame

endering of the surface implied by the medial sheet.
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he atoms, called hubs, lie on the medial sheet. Interior atoms have
wo spokes of equal length that extend to patches on opposite sides
f the implied surface. Edge atoms have a third spoke defining the
adius of curvature for the crest section of the implied surface. The
umber of atoms in an m-rep can be selected to be the fewest
eeded to capture the full range of shape variability over the target
opulation (25). A 5 � 3 grid was used in this study (Fig. 1).
M-reps are trained using a set of images representing the pop-

lation of interest. Truth is defined in the training images by
xperienced humans who segment the kidneys using slice-by-slice
ontouring. Two types of training are necessary, geometric and
ntensity. Geometric training determines the mean shape of an
bject and the principal modes of shape variation using a method
alled principal geodesic analysis (PGA) (22). In general, the
-rep model for a particular object is taken to be the mean m-rep

etermined by PGA.
The intensity training method used in this study examined the

ntensity variation at 2,562 points over the m-rep surface (26–28). The
elative intensity variation at each location, called an intensity profile,
as measured along line segments that passed through the points (Fig.
). The line segments were half inside and half outside the kidney and
rthogonal to the kidney surface. The actual intensity profile at a
articular point was measured across all training images, and the
esulting collection was compared with three canonical forms most
epresentative of the profiles in the training data. The three forms were
1) light to dark, capturing kidney boundary locations abutting darker
at and the like; (2) dark to light, capturing kidney boundary locations
butting lighter liver, bone, and other structures; and (3) a notch,
apturing kidney boundary locations with a small amount of darker fat
etween the kidney and another section of organ tissue or bone. For
his study, the characteristic profile identified with a particular point
as defined to be the most popular profile at that vertex over all

raining cases.
When a deformable model is placed in a target image, it changes

hape to match the corresponding object. The segmentation algorithm
uns on a modern personal computer under the Windows operating
ystem. The segmentation time per kidney is on the order of 1–3 min
sing the current version on our research software, which has not been
ptimized for speed. Deformation is performed at multiple spatial
cales. At the largest scale, an m-rep model is translated and rotated
s a whole to best match the location and pose of the target object.
his step is followed by global surface deformations that are linear
ombinations of the principal modes of variation determined by PGA.
tom-by-atom deformations define the next scale. A final boundary

tage displaces individual surface points to achieve a fine-scale match
ith the target. The boundary stage captures fine detail and is best

uited for “clean” images where the edge of the target object is well
maged and free of artifacts. In this study, the target images contained
ignificant imaging artifacts that could result in irregular surfaces at
he boundary stage. To avoid capturing these artifacts, the boundary
tage was omitted, a decision that introduced bias favoring human–
uman comparisons because, as discussed later, human segmentations
end to preserve the artifacts present in the target images used in this
tudy.

Each stage in the m-rep deformation process is driven by optimiz-
ng an objective function that is the sum of two terms. The geometric
ypicality term measures the goodness of match between the current
eformed state of the m-rep and the mean m-rep determined by PGA.
his geometric term penalizes the current shape in proportion to its
eviation from the mean. The image match term measures how well
he intensity pattern in the target image data matches the intensity

attern of the characteristic profiles associated with the m-rep model. t
arget and training images
The target images were a set of 12 planning CT images (24 kidneys

n all) obtained from local department archives. The scans were
ollected using a Siemens Somatom Plus 4 CT scanner. The image
atrix was 512 � 512, the slice thickness was 5 mm, and the pixel

ize ranged from 0.098 � 0.098 mm to 0.156 � 0.156 mm. The
rimary criteria for image selection were both kidneys had to be
ompletely imaged with 2 cm superior and inferior margins, no
ontrast media, and slice thickness �5 mm. The protocol for acquir-
ng the planning CT images used in this study involved nongated
lice-based imaging, normal patient breathing (no breath hold), and no
ontrast agents to enhance structures of interest. With this protocol,
he kidneys could experience significant displacement during the time
nterval between slice acquisition due to respiratory motion, resulting
n jagged contours in sagittal and coronal planes. In addition, partial
olume and motion artifacts combined to cause the poles to be poorly
isualized or spuriously extended or foreshortened (28) (Fig. 3).
mage artifacts can obscure “truth,” and thus comparison with humans
n localized regions affected by artifacts is ambiguous. Because the
ntent was to evaluate m-reps on actual planning images, however, the
hallenge posed by the motion artifacts had to be accepted.

The efficient object representation of m-reps offers the advantage
hat relatively small numbers of training images are required (20). The
umber of training images for this study was estimated from pilot
tudies to be 40–80 images; a total of 53 images were used for the
ight kidney and 51 images were used for the left kidney. The training
mages were selected from a collection of 60 diagnostic CT images
cquired using a liver imaging protocol that did not involve contrast

ig. 2. Left: Line segments for intensity training. The segments are
erpendicular to the m-rep surface with the midpoint positioned on
he surface. Intensity values are sampled at 11 evenly spaced
oints. Right: The three canonical forms for classifying intensity
rofiles.

ig. 3. Coronal slices through two target images showing signifi-
ant motion artifacts. In both images, adjacent slices of the kidneys
re displaced in the transverse plane, and polar regions show signs
f elongation and perhaps contraction. Slice-by-slice segmentation

ends to preserve such artifacts.
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aterial. Motion artifacts in the training images were minimal, result-
ng in a model that resisted deformations that would capture the
otion artifacts seen in Fig. 3.

egmentation procedures
Two experienced humans (observers A and B in the “Results”

ection) defined the target kidneys slice by slice on the original image
ata using interactive region fill together with pixel-painting editing
ools for fine sculpting (29). This method was selected to force the
sers to make pixel-level decisions at every location on the boundary.
he work was performed without time constraints over multiple
essions scheduled at the convenience of the participants. Although no
ormal statistical comparison was performed, anecdotally this proce-
ure resulted in higher-quality segmentations than contours generated
nder clinical conditions, which generally approximate the kidney
oundary as contours composed of many straight-line segments much
onger than the dimension of a pixel and thus do not fully capture
ixel-scale boundary detail. For comparison with m-reps, the set of
wo-dimensional contours for each human segmentation was con-
erted to a binary image and from that into a 3D tiled surface using
arching cubes (30). The small-scale scalloping produced by pixel

ainting (Figs. 4–5) was smoothed in the tiling process (Fig. 6) and
layed little role in the final comparisons.

The target images were resampled using tri-linear interpolation to
.2 cm � 0.2 cm � 0.2 cm for m-rep segmentation. The first step
sing m-reps is to determine a starting point for the m-rep model in
he target image. In the future, this initialization step will be auto-
atic, but in this study it was performed by a graduate student who

ad no prior segmentation experience. This step involved interactively
ragging and dropping the m-rep over the kidney to be segmented. A
ingle soft-tissue intensity window was used for all target images. The
egmented kidneys were produced in the form of 3D tiled surfaces
hat could be directly compared with the tiled surfaces computed from
he hand-drawn two-dimensional contours. Surface comparisons were
erformed using tools provided in Valmet (31).

RESULTS

xample segmentations
Results of the best and worst segmentations, based on the
etrics described earlier, are illustrated in Figs. 4–6. Figure 4

hows good agreement in adjacent transverse slices of the
idney for the best case. Results near the midsection are

ig. 4. Adjacent transverse slices through the midsection of the
idney for the best case. The human segmentations are colored

hite and green, and m-reps are red. s
hown because in the transverse plane disagreement tended
o be more pronounced near the renal pelvis owing to
structure noise” of tubular structures entering and exiting
he renal pelvis. Figure 5 shows adjacent transverse slices
hrough the midsection for the worst case. The region of
isagreement in Fig. 5 demonstrates a large change in shape
rom one slice to the next for the human observers. Such a
arge change would be resisted by the m-rep model used in
his study, resulting in a smooth 3D surface through this
egion, as seen in the left panel of Fig. 6.

ig. 5. Adjacent transverse slices through the midsection of the
idney for the worst case. The human segmentations are colored
hite and green, and m-reps are red.

ig. 6. Left: Surface renderings for the worst case. The m-reps
esult is shown as a solid blue surface, and the human segmenta-
ion is a white transparent surface. Notice the smooth m-rep
urface near the region of disagreement at the midsection seen in
ig. 5. Regions of disagreement appear to be associated primarily
ith the types of motion artifacts seen in Fig. 2. Right: Surface

enderings for the best case showing good agreement between
uman and m-rep segmentations, primarily because the image was
elatively free of motion artifacts. Surface displacement is in the

ubvoxel range and thus related to image resolution.
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tatistical analysis of distance separation
etween surfaces
Distance separation was examined by comparing segmented

urfaces in pairs. The surfaces were designated as reference
nd trial, with each surface playing both roles. Histograms
ere built from measurements of the shortest distance between
point on the trial surface to the nearest point on the reference

urface for 2,562 points. This measurement suffers because it
s not symmetric, as a result of the lack of point correspon-
ence between the two compared surfaces, a general problem
hat is not unique to this study. In particular, for any point
elected on a kidney surface produced by m-reps, the corre-
ponding point is not uniquely defined on the surface of the
ame kidney produced by a human segmenter, and vice versa.
his lack of correspondence leads to asymmetry when mea-
uring the distance between two surfaces. For example, the
istance from a point on the trial surface to the nearest point on
he reference surface is not the same when measured in reverse
Fig. 7). The approach chosen to deal with this problem was to
easure distances between each pair of surfaces twice, with

he role of reference and trial exchanged. The two resulting
istograms were pooled by summing counts in individual
istance bins. Two metrics derived from the distance histo-
rams, Mean and Q4, were used to compare m-reps (denoted
s segmenter “C”) with human segmenters (referred to as “A”
nd “B,” respectively). The mean is the average absolute
istance over all test cases for a pair of segmenters, and Q4 is
he fourth quartile of distances and is equivalent to the Haus-
orff maximum separation distance. (Note: Quartile ratings
ive the surface separation associated with each quartile, e.g.,
value of 0.18 cm for Q2 means that 50% of all points on the

ompared surfaces are separated by no more than 0.18 cm. In
his study Q1–Q3 produced no discrimination between hu-
an–human and human–m-reps comparisons.)
Percent volume overlap can be defined in several ways,

epending on the reference volume. In this study, overlap was
efined as the intersection of two segmentations divided by
heir union. Excluding the rare exception, which did not occur
n this study, where one segmentation is contained entirely
ithin the other, the union volume will be larger than either of

he compared volumes. This results in smaller overlaps com-
ared with using 1, or the average, of the two segmentations as
he reference (Table 1). For example, in this study the reported
min, max) ranges for human–human and m-reps–human
verlap were (92.6, 80.3) and (88.4, 76.8), respectively. These
anges increase to (96, 90) and (96, 84) when the average
olume is used as the reference.

Table 1 displays the mean, Q4, and volume overlap with
tandard deviations for each segmenter pair over right and left
idneys grouped separately and together. Averaged over all
idneys the mean volume overlap for human segmentations
as 88.8%, the mean surface separation was 0.12 cm, and the
ean Hausdorff distance was 0.99 cm. The mean volume

verlap between human and m-rep segmentations was 82–
3%, the mean surface separation was 0.18–0.19 cm, and the
ean Hausdorff distance was 1.14–1.25 cm. These results
how that the two human observers compared slightly better t
ith each other than with m-reps. As discussed in greater detail
n “Conclusions,” these results are to be expected.

Repeated measures analysis of variance was performed to
est each outcome (Mean, Q4, and Overlap). All tests were
onducted at the same step-down level (� 0.01). Tests were
erformed for Side � Pair interaction, main effect of Pair, and
ain effect of Side. Table 2 reports p values for these tests.
ost tests were insignificant. The exceptions were Mean and
verlap, where the main effect of Pair was significant, with

ignificant differences for AC/AB and BC/AB. Hence the
istance between the two human segmentations was different

ig. 7. Illustration of the lack of symmetry when computing the
inimum distance between two surfaces in this study. The minimum

istance to surface B from point 1 on surface A is defined by the line
onnecting points 1 and 2. However, the minimum distance to surface

from point 2 is defined by the line connecting points 2 and 3.

Table 1. Mean distance separation (Mean), Hausdorff or
maximum separation distance (Q4), and volume overlap

(Overlap) for human–human (AB), and human–m-reps (AC and
BC) segmentations; maximum and minimum values (Max, Min)

are also given for each metric

Side Pair
Mean (cm) Q4 (cm) Overlap (%)

Max, Min (cm) Max, Min (cm) Max, Min (%)*

eft AB 0.11 � 0.03 1.03 � 0.35 88.8 � 3.21
0.19, 0.07 1.56, 0.57 92.5, 81.3

eft AC 0.17 � 0.05 1.33 � 0.44 83.9 � 5.41
0.27, 0.10 2.19, 0.59 88.9, 78.7

eft BC 0.18 � 0.07 1.13 � 0.48 83.1 � 6.22
0.33, 0.11 1.75, 0.49 87.8, 78.2

ight AB 0.12 � 0.05 0.95 � 0.33 88.7 � 4.17
0.21, 0.07 1.64, 0.59 92.6, 80.3

ight AC 0.19 � 0.06 1.18 � 0.34 82.0 � 5.67
0.30, 0.09 1.70, 0.68 87.8, 75.3

ight BC 0.20 � 0.05 1.16 � 0.29 80.9 � 5.01
0.27, 0.09 1.67, 0.78 88.4, 76.8

oth AB 0.12 � 0.04 0.99 � 0.34 88.8 � 0.82
0.21, 0.07 1.64, 0.57 92.6, 80.3

oth AC 0.18 � 0.05 1.25 � 0.39 83.0 � 1.46
0.30, 0.09 2.19, 0.59 88.9, 75.3

oth BC 0.19 � 0.06 1.14 � 0.39 82.0 � 1.45
0.33, 0.09 1.75, 0.49 88.4, 76.8

* Choosing the union results in smaller overlaps compared with
hoosing one, or the average, of the compared volumes as the
eference. In this study the (max, min) ranges for overlap are (96,
0) and (96, 84) for human–human and human–m-reps, respec-

ively, when the average volume is used as the reference.
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rom the distance of the m-reps segmentation to either human
egmentation. Overall, mean � SD distances (cm) were {0.12

0.04, 0.18 � 0.05, 0.19 � 0.06} for {AB, AC, BC}.
imilarly, mean volume overlap (%) was {88.8 � 0.82, 83.0 �
.46, 82.0 � 1.45}.

CONCLUSIONS

Overall in this study the best m-rep kidney segmentations
ere at least as good as careful manual slice-by-slice segmen-

ations, and the worst performance was probably no worse than
umans in our clinical setting. Moreover, m-rep performance
as robust against the strong imaging artifacts present in the

arget images.
The mean surface separations between human and m-rep

egmentations were slightly larger than for human–human
egmentations but still in the subvoxel range. Volume overlap
nd maximum surface separation also were slightly better for
uman–human comparisons. These results are not surprising,
ecause several factors in this study favored human–human
omparison. The origins of disagreement can be grouped into
our general classes, only one of which is related to the par-
icular m-rep model used in this study. The areas of disagree-
ent are as follows: (1) Systematic differences between man-

al two-dimensional and automatic 3D segmentation. Manual
ontouring produces a slab for each slice. As seen in Fig. 8
lice-by-slice contouring created slabs that, when joined to-
ether, resulted in 3D kidneys with stair-steps, whereas the
-rep model in this study produced smooth surfaces. The

orrespondence of the stair-steps in the segmentations of both
umans and their total absence in the m-reps segmentations
avored human–human comparison. (2) Imaging artifacts, e.g.,
otion due to breathing. Motion artifacts cause cross-sections

f the same objects to be displaced in the transverse plane from
lice to slice, generating more and wider stair-steps in the 3D
urface created from stacked slabs. Objects also can be elon-
ated and foreshortened. Slice-by-slice contouring tends to
reserve imaging artifacts, whereas m-rep segmentation has a
moothing effect. (3) Image voxel dimensions. In regions of
igh contrast in ideal images the interobserver agreement for
ocalizing an edge at the voxel level is limited primarily by the
oxel dimensions. Poor contrast will degrade the level of
greement. Figure 6 illustrates that agreement can be quite
ood when voxel size is the main limiting factor. (4) The use
f a single-figure m-rep that was trained to produce a smooth
urface across the renal pelvis. As seen in Figs. 8 and 9,

Table 2. P values for statistical tests for interactions

Mean Q4 Overlap

ide � Pair interaction 0.4415 0.2423 0.4249
air main effect 0.0052 0.1063 0.0100
AC/AB 0.0074 0.0336 0.0100
BC/AB 0.0010 0.2064 0.0022
BC/AC 0.1869 0.2107 0.2899
mide main effect 0.2746 0.5924 0.2424
umans sometimes drew indentations at the renal pelvis. For
hose cases where both humans indented, the absence of in-
entations in m-reps segmentations resulted in worse metrics
or human–m-reps than for human–human comparisons.

ig. 9. Slice through the renal pelvis showing how humans can
iffer in the way they deal with structures in this region. One
uman (green) contoured straight across the pelvis, whereas the
ther (white) excluded some of the pelvic structures. Single-figure

ig. 8. Left and center: Surface renderings of the human segmen-
ations for the worst case demonstrating inherent stair-steps that
re exacerbated by motion artifacts. The center kidney demon-
trates extra slabs at the top and bottom that also can result from
otion artifacts. The segmentation on the left ignored the artifacts

n these slices. The renal pelvis is indented for both segmenta-
ions. Right: Wire-frame rendering of the m-rep segmentation for
he same case superimposed on the image data. The motion arti-
acts responsible for the stair-steps in the human segmentations are
learly visible in the image data. Note that m-reps resisted defor-
ations that resulted in large changes from slice to slice.
-reps (red) produce a flat surface across the pelvis.
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Even though m-reps compared favorably with humans in
his study, a number of improvements and extensions are
eing investigated (21). Improvements related to kidney
odels include developing intensity profiles that account

or absolute intensity as well as relative shape in the image

atch term; developing a method for considering a mix of r
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