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Abstract.This paper presents a Bayesian multi-scale three dimensional
deformable template approach based on a medial representation for the
segmentation and shape characterization of anatomical objects in med-
ical imagery. Prior information about the geometry and shape of the
anatomical objects under study is incorporated via the construction of
exemplary templates. The anatomical variability is accommodated in the
Bayesian framework by defining probabilistic transformations on these
templates. The modeling approach taken in this paper for building exem-
plary templates and associated transformations is based on a multi-scale
medial representation. The transformations defined in this framework
are parameterized directly in terms of natural shape operations, such as
thickening and bending, and their location. Quantitative validation re-
sults are presented on the automatic segmentation procedure developed
for the extraction of the kidney parenchyma-including the renal pelvis-in
subjects undergoing radiation treatment for cancer. We show that the
segmentation procedure developed in this paper is efficient and accurate
to within the voxel resolution of the imaging modality.

A Introduction

Modern anatomic imaging technologies are enabling extremely detailed study
of anatomy, while the development of functional imaging modalities are provid-
ing detailed in vivo associated information regarding the physiological function.
While modern imaging modalities provide exquisite imagery of the anatomy and
its function, automatic segmentation of these images and the precise quantita-
tive study of the biological variability exhibited in these images continues to pose
a challenge. In this paper we present a multi-scale medial framework based on
deformable templates[7],[5],[16] for the automatic extraction and analysis of the
shape of anatomical objects from the brain and abdomen, imaged respectively
via MRI and CT. The multi-scale deformable template approach is based on
the medial axis representation of objects first proposed by Blum [3] for study-
ing shape. The approach presented herein is an extension of the early work by
Pizer[13] and Firtsch[6] in 2D on deformable medial representation of objects.
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We adopt a Bayesian approach of incorporating prior knowledge of the anatom-
ical variations and the variation of the imaging modalities. Following the de-
formable templates paradigm, we incorporate prior information about the ge-
ometry and shape of the anatomical objects under study via the construction
of exemplary templates. The infinite anatomical variability is accommodated
in the Bayesian framework by defining probabilistic transformations on these
templates[7]. The segmentation problem in this paradigm is that of finding the
transformation S of the template, that maximizes the posterior,

P (S|data) ∝ P (data|S)P (S) ,

where P (S) is the prior probability function capturing prior knowledge of the
anatomy and its variability, and P (data|S) is the data likelihood function cap-
turing the image data-to-geometry relationship. For efficiency of implementation
we equivalently maximize the log-posterior given by

LogP (S|data) = LogP (data|S) + LogP (S|data) ,up to an additive constant.

The modeling approach taken in this paper for building exemplary templates
and associated transformations is based on a multi-scale medial representation.
The transformations defined in this framework are parameterized directly in
terms of natural shape operations, such as thickening and bending, and their
location.

This multi-scale approach has many stages of scale, at each of which the
geometric primitives are intuitive for that scale and have the property that their
spacing is comparable to the linear measure of the size of space (modeling aper-
ture) that they summarize. This leads to a spatial tolerance that successively
decreases with scale level. A Markov Random Field approach, described in de-
tail in [14] is used to defining the energetics of the log probabilities needed for
the posterior. The log probabilities at a given scale are not only conditioned on
a neighborhood at that scale, but conditioned on the result of the next larger
scale. The posterior at each scale can then be separately optimized successively
decreasing the scale.

The multi-scale nature of our approach allows for the investigation of these
properties at various scales from the coarse scale of entire body sections to the
fine scale on the order of the resolution of the imaging modality. The intuitiveness
derives from the ability to have many of the levels of scale describe medial
properties. In addition, the size properties derived from medial description allow
the creation of natural levels of scale each suited for shape description at that
scale level. The next two sections discuss the medial representation of objects.
Section C discusses the deformation of models to fit image data and the geometric
measures used in the log prior term measuring geometric typicality. Section D
discusses the log likelihood term measuring the match of a deformed model to a
target image, and Section E gives segmentation results using this method.
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B Medial Representation of Objects.

Many authors in image analysis, geometry, human vision, computer graphics,
and mechanical modeling have come to the understanding that the medial rela-
tionship between points on opposite sides of a figure is an important factor in
the objects shape description. Biederman [1], Marr [11], Burbeck [4], Leyton [9],
and others have produced psychophysical and neurophysiological evidence for
the importance of medial relationships (in 2D projection) in human vision. The
medial geometry has also been explored in 3D by Nackman [12], and Siddiqi [15],
and medial axis modeling techniques have been applied by many researchers, in-
cluding Bloomenthal [2], Igarashi [8] and Markosian [10]. Of these, Bloomenthal
skeletal-based soft-objects; Igarashi used a medial spine in 2D to generate 3D
surfaces from sketched outlines; and Markosian used implicit surfaces generated
by skeletal polyhedra.

Our representation, described in [Pizer 1999], expands the notion of medial
relations from that of a medial atom implying boundaries by including of a width-
proportional tolerance and by using a width-proportional sampling of the medial
manifold in place of a continuous representation. The advantages, relative to the
ideas of medial axis descended from Blum [1967], are in representational and
computational efficiency and in stability with respect to boundary perturbation.
Associating a tolerance with the boundary position provides opportunities for
stages of the representation with successively smaller tolerance. Representations
with large tolerance can ignore detail and focus on gross shape, and in these
large-tolerance stages, discrete sampling can be coarse, resulting in considerable
efficiency of manipulation and presentation. Smaller-tolerance stages can focus
on retirements of the larger-tolerance stages and thus more local aspects.

The medial representation used in this paper called m-rep, is based on a
hierarchical representation of linked figural models, defined at coarse scale by a
hierarchy of figures protrusions, indentations, neighboring figures, and included
figures which represent solid regions and their boundaries simultaneously. The
linked collection of figural components imply a fuzzy, i.e., probabilistically de-
scribed boundary position with a width-proportional tolerance. At small scale
these figural boundaries are made precise by displacing a dense sampling of the
m-rep implied boundary. A model for a single figure is made from a net, (a
mesh or a chain) of medial atoms; each atom describing not only a position and
width, but also a local figural frame giving figural directions, and an object an-
gle between opposing, corresponding positions (medial involutes) on the implied
boundary. A figure can be expressed as a sequence over scale of nets, implying
successively refined (smaller tolerance) versions of the figural boundary.

B.1 Single figure description via m-rep.

We now describe the representation of single figural forms. Our representation is
based on the notion of medial involutes of Blum [1967] and starts with a parame-
terization of a medial atomm that locally implies opposing figural boundaries as
illustrated in Fig. 1. The medial atom m by itself not only implies two opposing
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sections of boundary, but as well the solid region between them. Medial atoms on
the interior of the medial manifold are defined as a four tuple m = {x, r,F , θ},
consisting of:

1.x ∈ IR3, the skeletal position,
2.r ∈ IR+, the local width defined as the distance from the skeletal position of

two or more implied boundary positions,
3.F ∈ SO(3) the local frame parameterized by (n,b,b⊥), where n is the

normal to the medial manifold , b is the direction in the tangent plane of
the fastest narrowing of the implied boundary sections,

4.θ ∈ [0, π
2 ] the object angle determining the angulation of the implied sections

of boundary relative to b.

The two opposing boundary points implied by the medial atom are given by
y = x+ p and y = x+ s. The vectors p and s are given by

p = rR(b,n)(θ)b , s = rR(b,n)(−θ)b ,

where R(b,n)(θ) is a rotation by θ in the (b,n) plane.

Fig. 1. A medial atom defined by the 4-tuple {x, r,F, θ} with involutes P and S per-
pendicular to the implied surface.

For stability at the ends in image matching, medial atoms on the boundary
of the medial manifold also include an extra parameter η that captures the
elongation of the edge away from a spherical end cap. The end section of the
medially implied boundary is as a parametric curve form one involute to the
other passing through the point x + ηrb and orthogonal to b. The curve c(t)
parametrized by t ∈ [−1, 1] is defined by

c(t) = x+ rη(t)R(b,n)((1 − t)θ))p , where

η(t) = (cos(tπ) + 1)
(η − 1)

2
+ 1 ,
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with θ being the object angle.
In the above representation x gives the central location of the solid section

of figure that is being represented by the atom m. The scalar r gives the local
scale and size of the solid section of figure that is being represented by the atom.
The object angle θ and the direction b also define the gradient of the scalar field
r via

∇r = −b cos θ .

The scalar field r also provides a local ruler for the precise statistical analysis of
the object.

There are three basic types of medially defined figural segments with corre-
sponding medial manifolds M of dimension 0, 1, 2 respectively. Figural segments
with two dimensional medial manifolds represent slab-like segments, tube-like
segments, where the medial manifold is an one dimensional space curve, and
spherical segments, where the medial manifold consists of a single point. Shown
in Fig. 2 are examples of slab like and tubular figures. In this paper we will focus
on slab-like segments having 2-dimensional medial manifolds discretized into a
net of medial atoms. For easy of implementation we have been using a quadri-
lateral mesh of discretized medial atoms mk

i,j ∈ M , (i, j) ∈ [1, N ] × [1,M ] for
approximating the continuous medial manifold at particular scale k with toler-
ance and the level of discretization inversely proportional to scale with the final
scale having tolerance on the order of the resolution of the imaging modality. We
define a medial scale space by a sequence of successive refinement of medial nets
defined via offsets from a spline interpolation of medial atoms from the scale
above.

B.2 Spline Interpolation of medial atoms.

Given a quadrilateral mesh of medial atoms mi,j , (i, j) ∈ [1, · · · , N ]× [1, · · · ,M ]
we define a continuous medial surface via a Bézier interpolation of the discretely
sampled medial atoms. The medial position x(u, v), u ∈ [i, i + 1], v ∈ [j, j + 1] is
defined via a bicubic polynomial interpolation of the form

x(u, v) =
3∑

m,n=0

dm,nu
mvn

with dm,n are chosen to satisfy the known normal/tangency and continuity con-
ditions at the sample points xi,j .

Given the interpolation of the medial positions the radius function r(u, v)
is also interpolated as a bicubic scalar field on the above interpolated medial
manifold given r and ∇r at the mesh points points xi,j . Having interpolated r
and its gradient, the frame F and the object angle θ are defined via the relation
ship ∇r = −b cos θ
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Fig. 2. Top rows shows an example of a slab like figure with 2 dimensional medial man-
ifold. Shown in the bottom row is tubular figure with 1 dimensional medial manifold.

B.3 Figural coordinate system.

The prior (geometric typicality) measure requires geometrically consistent corre-
spondence between boundary points in the model and those in a deformed model.
The likelihood (deformed model to target image match) measure requires cor-
respondence between template intensities at positions in 3-space relative to the
model and target image intensities at positions in 3-space relative to the de-
formed model. Both of these correspondences are made via the medial geometry.

The continuous medial manifold of a figure, defined via the spline interpo-
lation describe above, is parameterized by (u, v), with u and v taking the atom
index numbers at the discreet mesh positions. A parameter t ∈ {−1, 1} desig-
nates the side of the medial manifold on which an implied boundary point lies.
As described in section B.1, t varies continually between −1 and 1 as the implied
boundary point moves around the crest of the object from one side of the medial
axis to another. For single figures boundary correspondences are defined via the
common parameterization (u, v, t).

Positions in the image in the neighborhood of the implied boundary are in-
dexed by (u, v, t, d̂), where (u, v, t) is the parameterization of the closest point on
the medially implied boundary and d̂ is the signed distance (interior = negative,
exterior = positive) from the boundary in multiples of the local radius r of the
medial point at (u, v).
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B.4 Connecting m-reps figures into objects.

As illustrated in Fig. 3, protrusion and indentation figures combine into objects
in a hierarchical fashion, with the same Boolean operators of union and difference
as with Constructive Solid Geometry models, but here recognizing the tolerance
of the figures. A figure may be separated from all other figures, or it may be
the parent of one or more attached sub-figures: protrusion and/or indentation.
A sub-figure on a slab or tube or sphere may be a slab or tube. The interior of
a protrusion sub-figure is combined with the parent by union of their interiors
with the modification that the boundaries may smoothly blend. An indentation
subfigure subtracts its interior from its parent, in the set theoretic sense, again
with smooth blending. As illustrated in Fig. 3, a slab protrusion or indentation
on a figure has a segment of its medial meshs end atoms that are at the open
end of the figure and on the implied boundary of the parent, where the subfigure
attaches to its parent. If the subfigure is a tube, it has a single open-end atom
where the tube is attached to its parent, and a closed end atom at the other end.
We call these the hinge atoms. The remaining end atoms form the closure of that
figure. We intersect the subfigures interpolated medial mesh with the implied
boundary of the parent figure. In what is presented herein we will concentrate
on single figure objects.

Fig. 3. Fig. showing the medial mesh of protrusion sub figure with hinge atoms and
the resulting blended implied surface.

B.5 Construction of m-rep figures.

Using the visualization and computer aided design techniques developed, we
have built numerous models of anatomical objects. In this paper we focus on the
automatic segmentation of the kidney as imaged in CT for radiation treatment
for cancer. Shown in Fig. 4 is the template m-rep model of the kidney built from
a CT of the abdomen.
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Fig. 4. Fig. showing the m-rep model of the template kidney. The left panel shown the
medial atoms and the implied surface. The right panel shows the model overlaid on
the associated CT imagery.

C Transformation of m-reps figures.

Having defined the construction of typical anatomical objects via m-rep figures,
anatomical variability is accommodated by defining a cascade of transformations
Sk, k = 0, · · · , N increasing in dimensionality. These transformations are applied
globally to the entire object as well as locally to individual atoms at various
scales. Each transformation is applied at its own level of locality to each of
the primitives appearing at that level. At each level of locality by the Markov
random field framework the primitive is related only to immediately neighboring
primitives at that level. Each level’s result provides both a initial value and a
prior for the primitives at the next smaller scale level. The transformation at
the last (smallest) scale level is finally a dense displacement field applied to
the boundary of the figure on the scale of the voxel resolution of the imaging
modality.

C.1 Object-level similarity transformation.

To begin with, a similarity transformation S0 = (α,O, t) ∈ [(IR+×SO(3))�IR3]
is defined on the scale of the entire object and is applied to the whole medial
manifold M. The similarity transformation S0 scales, translates and rotates
equally all the medial atoms of the object, that is

m1
i,j = S0 ◦mi,j = {αOxi,j + t, αr,O ◦ F , θ} .

Notice that the similarity transformation does not affect the object angle. As
the medial representation is invariant under the similarity transformation, this is
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equivalent to applying the similarity transformation S0 to the implied boundary
B of the medial mesh to yield the transformed boundary B1.

A prior is induced on the above defined transformation based on the dis-
placement of the implied boundary of the objects. Throughout, an independent
Gaussian prior on boundary displacement is used with variance proportional to
the local radius r. For the whole object similarity transformation S0 the log-prior
becomes

LogP (S0) =
[
−

∫
B

||y − S0 ◦ y||2
2(σr(y))2

dy
]

.

C.2 Atom level transformation.

Having accomplished the gross placement of the figure, attention is now focused
on the sub-sections of the figure defined by each of the medial atoms. At this
stage local similarity transformations as well as rotations of the local angulation,
S1

i,j = (α,O, t, β)i,j ∈ [(IR+ ×SO(3)) � IR3]× [−π
2 ,

π
2 ] are applied to the medial

atom, that is,

m2
i,j = S1

i,j ◦m1
i,j = (αi,jOi,jx1

i,j + ti,j , αi,jr
1
i,j ,Oi,j ◦ F1

i,j , θ
1
i,j + βi,j) . (1)

The resulting implied boundary is defined as B2. A prior on the local atom
transformations S1

i,j is also induced based on the displacement of the implied
boundary with an additional Markov random field prior on the translations,
guaranteeing the smoothness of the medial manifold. In keeping with the level
of locality Let B1

ij be the portion of the implied boundary affected by the atom
m1

i,j . The prior energy on the local transformation S1
i,j of the atomm1

i,j becomes

LogP (S1) =


−

∫
B1

i,j

||y − y′||2
(σr(y))2

dy −
∑
i,j

n,m=1∑
n,m=−1

||ti,j − ti+n,j+m||2
||x1

i,j − x1
i+n,j+m||


 ,

where y is the corresponding position on the figural boundary implied by the
transformed atom m2, and ti,j is the translation component of the local trans-
formation S1

i,j . Good association between points on the boundary y and the
deformed boundary y′ is made using the figural coordinate system describe in
section B.3. The point y′ is the point on the deformed model having the same
(u, v, t) coordinates as that of the original point y. The integral in the above
prior is implemented as a discrete sum over a set of boundary points by defin-
ing a sampling of the (u, v, t) coordinate space and calculating the associated
implied boundary before and after an atom deformation.

C.3 Dense boundary displacement field transformation.

At the final stage the implied boundary of the figure is displaced in the normal
direction using a dense displacement field defined on the implied boundary B2,

y′ ∈ B3 = y + n(y)d(y),y ∈ B2 ,
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where n(y) is the normal to the implied boundary at y ∈ B2.
As with the local atom transformations the prior is induced on the dense

displacement field using a Markov random field prior derived from energetics
associated with thin elastic membranes to guarantee smoothness. The log-prior
on the displacement field d(y) becomes

LogP (d(x)) =
[
−

∫
B2

|d(y)|2
(σr(y))2

−
∫
B2

|∇d(y)|2dy
]

(2)

The above above prior is implements via a discrete implementation as follows.
Let yi ∈ B2, i = 1, · · · , N be the set of discrete boundary points on the implied
boundary B2. Let N (yi) be the set of neighbors of the point yi. The discrete
approximation of equation 2 becomes

−
N∑

i=1

|d(yi)|2
(σr(yi)

−
N∑

i=1

∑
j∈N (yi)

|d(yj) − d(yi)|2
||yj − yi|| .

D Image Data Log-Likelihood

Having defined the transformation and the associated prior energetics, we now
define the data likelihood function needed for defining the posterior. We have
been defining the data likelihood functions, using the object centered coordinate
system developed in section B.3, by defining correlation functions between a
predefine template image Itemp and the data Idata in the neighborhood of the
boundary of the medially define object B. Leting δ be the size of the collar
around the object, in multiples of r the local radius, the data log likelihood
function becomes ∫ δ

−δ

∫
B
Itemp(y, d̂)Idata(y′, d̂)dydd̂ , (3)

where (y, d̂) ∈ IR3 is the point in the template image at distance rd̂ away from
the boundary point y, and (y′, d̂) is the point in the data image at distance rd̂
away from the boundary point y′ in the transformed object B′. This association
between points in the template image and the data image is made using the
object coordinate system described in section B.3. The image positions in the
neighborhood of the implied boundary are indexed by (u, v, t, d̂), where (u, v, t)
is the parameterization in the object centered coordinate system of the closest
point on the medially implied boundary B, and d̂ is the signed distance (interior
= negative, exterior = positive) from the boundary in multiples of the local
radius r of the medial point at (u, v). In implementing the correlation defined in
Eqn. 3 care must be taken in implementing the surface integral by a discrete voxel
summation. The template image needs to be normalized by the determinant of
the Jacobian associated with the implied model surface B. At model building
time intensities in the template image Itemp are associated with their positions’
(u, v, t, d̂) values. As the model deforms, a target image position is calculated
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for each template (u, v, t, d̂) value, using the deformed model, and the intensity
interpolated at that target image position is associated with the corresponding
template intensity.

We have have been using two basic types of templates: an analytical template
derived from the derivative of the Gaussian and an empirical template learned
from an example image from which the template medial model was built.

Using the data likelihood defined above and the prior defined in previous sec-
tion, the log posterior is defined as a weighted sum of the two terms with weights
chosen by the user. For optimizing the log-posterior with respect to the global
object similarity transformation and the local atom-by-atom transformation, we
have been using a genetic optimization algorithm. Genetic algorithms have the
advantages of not being susceptible to local minimum and not requiring the com-
putation of the derivative of the posterior with respective to the transformation
parameters. For optimizing the posterior with respect to the dense displacement
field d(bfy) we have been using a simple gradient decent algorithm.

E Results

We have been using the automatic segmentation procedure for extracting the
kidney parenchyma-including the renal pelvis-in subjects undergoing radiation
treatment for cancer. Results from a series of three data sets are presented.
Using a few seconds, the user rigidly place the template model in the subject
data set. This initialization stage of the algorithm is followed by the hierarchical
automatic segmentation which takes on the order of 5 minutes for convergence
depending on the data set. At the first scale level, a object similarity transforma-
tion is estimated accommodating gross size and orientation differences between
the template model kidney and the subject’s kidney.

Fig. 5 compares the results of the similarity transformation to the clinical
hand segmentation in the axial, coronal, and sagittal views through the kidney.
The yellow contour of the resulting implied boundary is overlaid, for comparison
with the clinical hand segmentation shown in red. Note that the clinical hand
segmentation did not include the renal pelvis, while our single figure model of
the kidney used in this study includes the renal pelvis. initial hand placement
of similarity

Fig. 5, shows the improvement in the segmentation as a result of the atom
deformation process, thus accommodating more local object shape changes.

The arrow in Fig. 6 highlights the improvement due to the final stage of the
deformation, as the dense displacement field accommodates the fine featured
variation in the shapes of the kidney.

For quantitative comparisons of the segmentations of the method with man-
ual segmentations, we have used two metrics from a geometric scoring pack-
age developed by Guido Gerig and Matthieu Jomier called VALMET : relative
overlap and mean surface distance. The relative overlap measure is defined as
the ratio of the intersection of the two segmentations divided by the union.
Although the relative overlap is commonly used in the literature for scoring
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Fig. 5. Axial (left), coronal (middle) and sagittal (right) slices through the subject
kidney CT data set. The contours show the results of the object similarity transforma-
tion and the atom deformation. Notice the improvements in the results at the places
marked.

Fig. 6. The improvement in the segmentation of the kidney after the dense displace-
ment field deformation. The contours shows the results of the atom transformation of
the dense displacement field deformation.

segmentations it is sensitive to the size of the object and not very effective
in characterizing shape differences between two segmentations. The symmetric,
mean surface distance Ds between the boundary of the two segmentations using
Euclidean distance transforms of the segmentations is defined as follows. Let
y1

i , i = 1, · · · , N ∈ B1 and y2
j , j = 1, · · · ,M ∈ B2 be the boundary points of two

segmenattions B1,B2; the mean surface distance then is

Ds(B1,B2) =
1
2


 1
N

N∑
i=1

min
j=1···M

||y1
i − y2

j || +
1
M

M∑
j=1

min
i=1···N

||y1
i − y2

j ||

 .

Shown in table 1 is the summary of the results from the study for the three
data sets. The results shown above are typical of the three data sets and are
form Data set 613. The segmentation improves at each stage of the algorithm
for all three data sets. The accuracy of the segmentation as measured via the
mean surface distance is on the order of the resolution of the data set and on
average within one pixel of the hand segmentation.



Multi-scale 3-D Deformable Model Segmentation... 513

Data Set (cm) Scale Level Relative Overlap Surface Distance (cm)

Similarity Transformation 0.85 0.26
613 Atom deformation 0.86 0.23

0.15× 0.15× 0.5 Field deformation 0.90 0.16

Similarity Transformation 0.88 0.22
608 Atom deformation 0.89 0.19

0.2× 0.2× 0.4 Field deformation 0.93 0.14

Similarity Transformation 0.77 0.65
1402 Atom deformation 0.86 0.38

0.15× 0.15× 0.3 Field deformation 0.90 0.38

Table 1. Table showing the relative overlaps and the mean surface distance between
the manual segmentations and the automatic segmentations at the different stages of
the hierarchical procedure for the three data sets processed.

F Discussion and Conclusion

It can be seen from the quantitative analysis of the segmentations that the accu-
racy of the automatic segmentation as measured via the average surface distance
is on the order of the resolution of the imaging modality. Although these results
show that our current methodology can segment structures in the abdomen such
as the kidney with high level of accuracy, improvement can be expected from
the change in the image template used in the data likelihood. All the results
shown in this paper were generated using a Gaussian derivative template for the
data-likelihood. We expect that the results would be substantially improved by
the use of our already implemented but not yet tested training image template
in place of the Gaussian derivative template that would allow a spatially varying
template capturing the different gray scale characteristics of the kidney bound-
aries. This model to image match would be further improved a statistical model
reflecting image intensity variations across a population of subjects.

We have also been working on extending this frame work to the deformation
of objects with multiple attached sub-figures and multiple objects with priors
induced on the transformations that reflect the knowledge of the associated
relative typical geometry.

G Acknowledgement

We thank Prof. Gerig and Matthieu Jomier for the use of their scoring tool for
the comparison of segmentation as well as for the many insightful discussions
and comments. We would like to also thank Dr. Zhi Chen for the generating
the table comparing the segmentations. We also thank Prof. Ed. Chaney for
providing us the data sets and invaluable insights. This work was supported
by NIH Grants P01 CA47982 R01 CA67183 This research was carried out on
computers donated by Intel.



514 Sarang Joshi et al.

References

1.Irving Biederman. Recognition-by-Components: A Theory of Human Image Under-
standing. Psychological Review, 94(2):115–147, 1987.

2.Jules Bloomenthal and Chek Lim. Skeletal methods of shape manipulation. In Proc.
Shape Modeling and Applications, pages 44–47. IEEE, 1999.

3.H. Blum. A transformation for extracting new descriptors of shape. In Models for
the Perception of Speech and Visual Form. MIT Press, 1967.

4.A. C. Burbeck, S M Pizer, B. S. Morse, D. Ariely, G. Zauberman, and J. Rolland.
Linking object boundaries at scale: a common mechanism for size and shape judg-
ments. In Computer Science Department technical report TR94-041, page 361:372,
Chapel Hill, 1996. University of North Carolina.

5.T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models - their
training and application. Computer Vision, Graphics, and Image Processing: Image
Understanding, 1(61):38–59, 1994.

6.D. Fritsch, S. Pizer, L. Yu, V. Johnson, and E. Chaney. Segmentation of Medical
Image Objects using Deformable Shape Loci. In International Conference on In-
formation Processing in Medical Imaging, pages 127–140, Berlin, Germany, 1997.
Springer-Verlag.

7.U. Grenander. General Pattern Theory. Oxford Univ. Press, 1994.
8.Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching inter-
face for 3d freeform design. Proceedings of SIGGRAPH 99, pages 409–416, August
1999.

9.M. Leyton. Symmetry, Causality, Mind. MIT Press, Boston, 1992. 620 pages.
10.Lee Markosian, Jonathan M. Cohen, Thomas Crulli, and John F. Hughes. Skin:

A constructive approach to modeling free-form shapes. Proceedings of SIGGRAPH
99, pages 393–400, August 1999.

11.David Marr and H. K. Nishihara. Representation and recognition of the spatial
organization of three-dimensional shapes. Proc. Roy. Soc. London Ser. B, 200:269–
294, 1978.

12.Lee R. Nackman. Three-Dimensional Shape Description Using the Symmetric Axis
Transform. PhD thesis, UNC Chapel Hill, 1982. under the direction of Stephen M.
Pizer.

13.S. Pizer, D. Fritsch, P. Yushkevich, V. Johnson, and E. Chaney. Segmentation,
registration, and measurement of shape variation via image object shape. IEEE
Transactions on Medical Imaging, 18:851–865, October 1999.

14.S.M. Pizer, T. Fletcher, Y. Fridman, D.S. Fritsch, A.G. Gash, J.M.
Glotzer, S. Joshi, A. Thall, G Tracton, P. Yushkevich, and E.L. Chaney.
Deformable M-Reps for 3D Medical Image Segmentation. In Review,
ftp://ftp.cs.unc.edu/pub/users/nicole/defmrep3d.final.pdf, 2000.

15.Kaleem Siddiqi, Sylvain Bouix, Allen Tannenbaum, and Steven W. Zucker. The
hamilton-jacobi skeleton. In Proc. Computer Vision, volume 2, pages 828–834.
IEEE, 1999.

16.Alan Yuille and Peter Hallinan. Active Vision, chapter Deformable Templates. MIT
Press, Cambridge, MA, 1992.


	header: Published in IPMI 2001, 2082: 64-77 &
IEEE TMI 21(5): 538-550


