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Abstract. The Gaussian distribution is the basis for many methods used in the
statistical analysis of shape. One such method is principal component analysis,
which has proven to be a powerful technique for describing the geometric vari-
ability of a population of objects. The Gaussian framework is well understood
when the data being studied are elements of a Euclidean vector space. This is
the case for geometric objects that are described by landmarks or dense collec-
tions of boundary points. We have been using medial representations, or m-reps,
for modelling the geometry of anatomical objects. The medial parameters are
not elements of a Euclidean space, and thus standard PCA is not applicable. In
our previous work we have shown that the m-rep model parameters are instead
elements of a Lie group. In this paper we develop the notion of a Gaussian dis-
tribution on this Lie group. We then derive the maximum likelihood estimates
of the mean and the covariance of this distribution. Analogous to principal com-
ponent analysis of covariance in Euclidean spaces, we define principal geodesic
analysis on Lie groups for the study of anatomical variability in medially-defined
objects. Results of applying this framework on a population of hippocampi in a
schizophrenia study are presented.

1 Introduction

Shape analysis is emerging as an important area of image processing and computer
vision. Model-based approaches [1, 2, 3] are popular due to their ability to robustly
represent objects found in images. Principal component analysis (PCA) [4] is a preva-
lent technique for describing model variability. However, PCA is only applicable when
model parameters are elements of a Euclidean vector space.

The focus of our research has been the application of shape analysis for medical
image processing to improve both the accuracy of medical diagnosis as well as the
understanding of processes behind growth and disease [5]. In our previous work [6] we
have developed methodology based on medial descriptions called m-reps to quantify
shape variability and explain it in intuitive terms such as local thickness, bending and
widening.

In this paper we show that m-rep models are elements of a Lie group. We develop
Gaussian distributions on this Lie group and derive the maximum likelihood estimates
(MLEs) of the mean and covariance. Using these distributions, we introduce principal
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geodesic analysis (PGA), the extension of PCA to Lie groups. We apply this frame-
work to the statistical analysis of shape using medial representations. As the medial
representation is fundamental to our analysis, we describe it briefly.

Fig. 1.Medial atom with a cross-section of the boundary surface it implies (left). An m-rep model
of a hippocampus and its boundary surface (right).

1.1 M-Rep Overview

The medial representation used is based on the medial axis of Blum [7]. In this frame-
work, a 3D geometric object is represented as a set of connected continuous medial
manifolds, which are formed by the centers of all spheres that are interior to the object
and tangent to the object’s boundary at two or more points. In this paper we focus on
3D objects that can be represented by a single medial figure.

We sample the medial manifoldM over a spatially regular lattice. Each sample
point also includes first derivative information of the medial position and radius. The
elements of this lattice are calledmedial atoms. A medial atom (Fig. 1) is defined as
a 4-tuplem = {x, r,F, θ}, consisting of:x ∈ R3, the center of the inscribed sphere,
r ∈ R+, the local width defined as the radius of the sphere,F ∈ SO(3) an orthonormal
local frame parameterized by(b,b⊥,n), wheren is the normal to the medial manifold,
b is the direction in the tangent plane of the fastest narrowing of the implied boundary
sections, andθ ∈ [0, π) the object angle determining the angulation of the implied
sections of boundary relative tob. The medial atom implies two opposing boundary
points,y0,y1, with respective boundary normals,n0,n1, which are given by

n0 = cos(θ)b− sin(θ)n, n1 = cos(θ)b + sin(θ)n,

y0 = x + rn0, y1 = x + rn1. (1)

For three dimensional slab-like figures (Fig. 1) the lattice of medial atoms is a
quadrilateral meshmij , (i, j) ∈ [1, m]× [1, n]. The sampling density of medial atoms
in a lattice is inversely proportional to the radius of the medial description. Given an m-
rep figure, we fit a smooth boundary surface to the model. We use a subdivision surface
method [8] that interpolates the boundary positions and normals implied by each atom.



3

1.2 Lie Groups

Here we present a brief overview of Lie groups. For a detailed treatment see [9]. A Lie
groupG is a differentiable manifold that also forms an algebraic group, where the two
group operations,

µ : (x, y) 7→ xy : G×G → G Multiplication,

ι : x 7→ x−1 : G → G Inverse,

are differentiable mappings.
Let e denote the identity element of a Lie groupG. The tangent space ate, TeG,

forms a Lie algebra, which we will denote byg. The exponential map,exp : g →
G, provides a method for mapping vectors in the tangent spaceTeG into G. Given a
vectorv ∈ g, the pointexp(v) ∈ G is obtained by flowing to time1 along the unique
geodesic emanating frome with initial velocity vectorv. The exponential map is a
diffeomorphism of a neighborhood of0 in g with a neighborhood ofe in G. The inverse
of the exponential map is called the log map. The geodesic distance between two points
g, h ∈ G is given by|| log(g−1h)||.

1.3 Discrete M-Rep as a Point on a Lie Group

We now show that a set of medial atoms defining an m-rep object can be represented
as a point on a Lie group. A medial atom’s position is an element ofR3, which is a
standard Lie group under vector addition. The radius parameter is an element of the
multiplicative Lie group of positive reals. The medial atom’s frame is a 3D rotation,
and the object angle is a 2D rotation. BothSO(2) andSO(3) are Lie groups under
the composition of rotations. Thus, the set of all medial atoms forms a groupM =
R3 × R+ × SO(3) × SO(2), which we call themedial group. SinceM is the direct
product of four Lie groups, it also is a Lie group.

Now consider the set of m-rep models that consist of am×n grid of medial atoms.
These models form the spaceMmn. Since this is simply the direct product ofmn copies
of M , it is a Lie group. Now, given the medial descriptions of a population of objects,
we may consider each geometric model as a point on the Lie groupMmn.

1.4 Matrix Groups

The most common examples of Lie groups, and those which have the greatest appli-
cation to computer vision, are the matrix groups [10]. These are all subgroups of the
general linear groupGL(n,R), the group of nonsingularn× n real matrices. The Lie
algebra associated withGL(n,R) is L(Rn,Rn), the set of alln× n real matrices. The
exponential map of a matrixX ∈ L(Rn,Rn) is the standard matrix exponent defined
by the infinite series

exp(X) =
∞∑

k=0

1
k!

Xk. (2)

It is well-known that the rotation groupsSO(2) andSO(3) are matrix subgroups
of GL(2,R) andGL(3,R), respectively. The group of 3D rigid motions,SE(3), has
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also been well studied [11]. Related work includes the statistical analysis of directional
data [12] and the study of shape spaces as complex projective spaces [13].

The 2D rotation group,SO(2), has corresponding Lie algebraso(2), the set of2×2
skew-symmetric matrices. Likewise, the Lie algebra for the 3D rotation group,SO(3),
is the set of3× 3 skew-symmetric matrices,so(3). We will use the notation

Aθ =
(

0 −θ
θ 0

)
, Av =




0 −v1 v2

v1 0 −v3

−v2 v3 0


 ,

for elements ofso(2) andso(3), respectively, whereθ ∈ [0, 2π), andv = (v1, v2, v3) ∈
R3. Here,θ represents the angle of rotation in the plane. For 3D rotations the normalized
vectorv̄ = v

||v|| is an axis of rotation, and the angle of rotation about that axis is||v||.
The exponential map forso(2) takes the formexp(Aθ) = Rθ, whereRθ is the

matrix for a 2D rotation byθ. The exponential map forso(3) is given by Rodrigues’
formula [14]

exp(Av) =





I3, θ = 0,

I3 +
sin θ

θ
Av +

1− cos θ

θ2
Av

2, θ ∈ (0, π),
(3)

whereθ =
√

1
2
tr(Av

TAv) = ||v|| in [0, π).

Also, the logarithm for a matrixR ∈ SO(3) is the matrix inso(3) given by

log(R) =





0, θ = 0,
θ

2 sin θ
(R−RT ), |θ| ∈ (0, π),

(4)

whereθ satisfiestr(R) = 2 cos θ + 1.

1.5 The Exponential and Log Maps for M-reps

Now we are ready to define the exponential and log maps for the medial groupM . The
Lie algebra ofM is the product spacem = R3×R×so(3)×so(2). The exponential map
forR3 is the identity map, and the exponential map forR is the familiar real exponential
function. Combined with the exponential maps for the rotation groups given above, the
exponential map for the medial groupM is

exp : m → M

: (x, ρ,Av,Aθ) 7→ (x, eρ, exp(Av), exp(Aθ)),

where we have abused notation by reusingexp, but it is clear which exponential map
we mean by the context. The corresponding log map is

log : M → m

: (x, r,F,Rθ) 7→ (x, log(r), log(F), log(Rθ)).
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2 Gaussian Distributions on Lie Groups

In this section we develop Gaussian distributions onMn, the Lie group of m-rep figures
with n atoms. We begin by developing Gaussian distributions on each of the factors in
the product spaceM = R3×R+×SO(3)×SO(2). We define Gaussian distributions on
Lie groups following Grenander [15]. A Gaussian distribution on a Lie group with mean
at the identity element is a solution to the heat equation defined in the local coordinates
of the Lie group:

∂f

∂t
= ∆f = div(gradf)

= gij(
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
),

wheregij are the components of the inverse of the Riemannian metric, andΓk
ij are the

Christoffel symbols [16]. Indeed, the Gaussian distribution inRn, given by the density

p(x) =
1√

(2π)n|Σ| exp
(
− (x− µ)T Σ−1(x− µ)

2

)
, (5)

is the solution of the heat equation inRn. The casen = 3 gives the Gaussian distribution
for medial atom positions.

2.1 Gaussian Distributions onR+

For the Lie group of positive reals under multiplication, local coordinates are given
by the logarithm. The solution to the heat equation onR+ is given by the lognormal
density:

p(x) =
1√

2πσx
exp

(
− (log x− log µ)2

2σ2

)
. (6)

Given samplesx1, . . . , xN ∈ R+ that are independently distributed by the lognormal
distribution, the maximum likelihood estimates for the mean and variance are

µ̂ =
( N∏

i=1

xi

) 1
N

, σ̂2 =
1
N

N∑

i=1

(log xi − log µ̂)2.

Notice thatµ̂, given by the geometric average, is the point that minimizes the sum-of-
squared geodesic distances inR+, i.e., it minimizes

∑n
i=1 log(µ−1xi)2.

2.2 Gaussian Distributions onSO(2)

Consider the parametrization ofSO(2) by the rotation angleθ ∈ [0, 2π). Notice that
SO(2) is isomorphic to the unit circleS1 via the mappingθ 7→ eiθ. The Gaussian
distribution onSO(2) with meanµ and standard deviationσ is given by

p(θ) =
1√
2πσ

∞∑

k=−∞
exp

(
− (θ − µ− 2πk)2

2σ2

)
, (7)
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Fig. 2. Solution to the heat equation, cyclic on[−π, π] (left). Wrapped Gaussian over the unit
circle withσ = 1, 0.5, and 0.25 (right).

which solves the heat equation with cyclic boundary conditions on[−π, π]. This is
sometimes known as the “wrapped Gaussian” on the circle (Fig. 2.2).

We now derive the maximum likelihood estimate for the mean and covariance, given
samplesθi ∈ [0, 2π), i = 1, . . . , N that are independently distributed according to (7).
To begin we assume thatσ = 1, and we find the maximum likelihood estimate of the
mean, which is given by

µ̂ = arg max
µ∈[0,2π)

N∏

i=1

1√
2π

∞∑

k=−∞
exp

(
− (θi − µ− 2πk)2

2

)
. (8)

Notice that since the quadratic exponential is an even function, its derivative is odd, and

∂

∂µ
exp

(
− (θi − µ− 2πk)2

2

)
= − ∂

∂µ
exp

(
− (θi − µ + 2πk)2

2

)

for a fixed integerk. Thus the derivative of the summation in (8) reduces to just the
k = 0 term, and the maximization problem becomes

µ̂ = arg max
µ∈[0,2π)

N∏

i=1

1√
2π

exp
(
− (θi − µ)2

2

)
. (9)

This is just the equation for the maximum likelihood estimate of the mean for the Gaus-
sian distribution. Therefore, we havêµ = 1

N

∑N
i=1 θi. This equation can lead to ambi-

guities (see [12]), due to the multiple possible representations for the anglesθi, e.g. we
may takeθi ∈ [0, 2π) or θi ∈ [−π, π). However, medial atom object angles always lie
within [0, π), and thus this ambiguity does not arise (see [17]).

For deriving the maximum likelihood estimate of variance, consider the log-likelihood

l(σ; µ̂, θ1, . . . , θN ) =
N∑

i=1

log
( 1√

2πσ

)
+ log

[ ∞∑

k=−∞
exp

(
− (θi − µ̂− 2πk)2

2σ2

)]
.

Differentiation with respect toσ gives

∂l

∂σ
= −N

σ
+

1
σ3

N∑

i=1

(θi − µ̂)2 +
1
σ3

N∑

i=1

[∑∞
k=−∞(2πk)2 exp

(− (θi−µ̂−2πk)2

2σ2

)
∑∞

k=−∞ exp
(− (θi−µ̂−2πk)2

2σ2

)
]
.
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The third term above, although it converges, does not yield a closed-form solution.
However, according to Mardia [12], the wrapped Gaussian density (7) is well approx-
imated by just thek = 0 term of the summation whenσ2 ≤ 2π. This is certainly the
case for medial atom object angles, which are tightly distributed. Thus we keep only
thek = 0 term in the above summation, implying that

∂l

∂σ
≈ −N

σ
+

1
σ3

N∑

i=1

(θi − µ̂)2.

Setting the above equation to zero and solving forσ, we get the approximated MLE of
the variance as

σ̂2 =
1
N

N∑

i=1

(θi − µ̂)2. (10)

2.3 The Wrapped Gaussian Distribution onSO(3)

Analogous toSO(2) we use the log map to define a wrapped Gaussian distribution on
SO(3) with meanµ. We note that this density is not a solution of the heat equation
on SO(3). Let u(x) = Φ(log(µ−1x)) ∈ R3, whereΦ : so(3) → R3, Φ(Av) = v,
is the canonical isomorphism. Letū(x) = u(x)

|u(x)| . Following (7) the wrapped Gaussian
density onSO(3) becomes

p(x) =
1√

(2π)3|Σ|
∞∑

k=−∞
exp

(
− 1

2
(u(x)− 2πkū(x))T Σ−1(u(x)− 2πkū(x))

)
.

(11)
Here µ ∈ SO(3) is the mean rotation, and the covariance structure is defined as a
quadratic form on the Lie algebraso(3), represented as the3× 3 covariance matrixΣ.

Given samplesx1, . . . , xN ∈ SO(3) independently distributed according to the
density (11), we derive the maximum likelihood estimate for the mean and covariance.
Focusing on the MLE of the mean, we may assume, without loss of generality, that the
covariance is identity. The joint density is given by the product density

p(µ;x1, . . . , xN ) =
N∏

i=1

1√
(2π)3

∞∑

k=−∞
exp

(
− 1

2
||u(xi)− 2πkū(xi)||2

)
. (12)

Notice that geodesics ofSO(3) are isomorphic toSO(2), and the density (11)
restricted to a geodesic reduces to the wrapped Gaussian onSO(2). Now we can use the
same argument from the previous section to show that the derivatives in the summation
cancel out. Therefore, maximizingp(µ;x1, . . . , xN ) is equivalent to maximizing

N∏

i=1

1√
(2π)3

exp
(
− 1

2
||u(xi)||2

)
. (13)

Now, taking the log of the above, the MLE of the mean becomes

µ̂ = arg min
µ∈SO(3)

N∑

i=1

||Φ(log(µ−1xi))||2. (14)
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Notice that||Φ(log(µ−1xi))|| is the Riemannian distance fromµ toxi. Hence, the MLE
of the mean is also the point that minimizes the sum-of-squared geodesic distances to
the samples. This is also referred to as the intrinsic mean onSO(3) [14]. An iterative
algorithm for computing the intrinsic mean is given in [17].

As in the case forSO(2), we assume that the variance is sufficiently small, that is,
λ2 ≤ 2π, whereλ is an eigenvalue ofΣ. Using the same argument as in the previous
section, the approximated maximum likelihood estimate of the covariance is

Σ̂ =
1
N

N∑

i=1

Φ(log(µ̂−1xi))Φ(log(µ̂−1xi))T . (15)

2.4 Gaussian Distributions on the Medial Group

We now combine the distributions developed on the factorsR3,R+, SO(3), andSO(2)
to define a Gaussian distribution on the Lie groupM . As M is a direct product of these
Lie groups, the Gaussian distribution onM is the product distribution given by

p(x) =
1√

(2π)8|Σ|
∞∑

k=−∞
exp

(
−1

2
(u(x)−2πkρ(ū(x)))T Σ−1(u(x)−2πkρ(ū(x)))

)
.

Hereu(x) = log(µ−1x) ∈ m is represented as an8-vector. The covarianceΣ is a
quadratic form on the Lie algebram, represented as an8×8 matrix. As only theSO(3)
andSO(2) distributions are cyclic, the operatorρ : m → m, with ρ((x, log r,Av,Aθ)) =
(0, 0,Av,Aθ), causes wrapping to occur only in the rotation components.

Having defined the Gaussian distribution on a single medial atom, the Gaussian
distribution of a figure havingn medial atoms is then-fold product distribution onMn,
defined by

p(x) =
1√

(2π)8n|Σ|
∞∑

k=−∞
exp

(
−1

2
(u(x)−2πkρ(ū(x)))T Σ−1(u(x)−2πkρ(ū(x)))

)
.

Now the vectorsu(x) = log(µ−1x) ∈ mn are 8n-dimensional, i.e., they are the
concatenation ofn vectors inm, representingn medial atoms. The covarianceΣ is
a quadratic form onmn, represented as an8n× 8n matrix, and the operatorρ projects
onto each of then copies of the rotation groups.

The maximum likelihood estimates for the combined product distribution follow
from our development of the maximum likelihood estimates for the individual factors.
Recall that the MLE for the mean for each factor is the point that minimizes the sum-
of-squared geodesic distances to the sample points. Therefore, the MLE of the mean
for samples in the product space is also the minimizer of sum-of-squared geodesic dis-
tances. The MLE of the covariance, with the discussed approximations in the rotation
dimensions, (10), (15), is the sample covariance matrix in the Lie algebramn. Using an
extension of the algorithm in [17] for the intrinsic mean onSO(3), the intrinsic mean
of a collection of m-rep figures withn atoms,M1, . . . ,MN ∈ Mn, is computed by
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Algorithm: M-rep Mean
Input:M1, . . . ,MN ∈ Mn

Output:µ ∈ Mn, the mean m-rep
µ = M1

Do
∆Mi = µ−1Mi

∆µ = exp( 1
N

∑N
i=1 log(∆Mi))

µ = µ∆µ
While || log(∆µ)|| > ε.

3 Principal Geodesic Analysis

Principal component analysis inRn is a powerful technique for analyzing population
variation. Principal components of Gaussian data inRn are defined as the projection
onto the linear subspace spanned by the eigenvectors of the covariance matrix. If we
consider a general manifold, the counterpart of a line is a geodesic curve, that is, a
curve which minimizes length between two points. In the Lie groupMn geodesics can
be computed via the exponential map. Given a tangent vectorv in the Lie algebramn,
the geodesic starting at the identity, with initial velocityv, is given byγ : R → Mn,
whereγ(t) = exp(tv). Similarly, the curvex ·γ(t) = x · exp(tv) is a geodesic starting
at the pointx ∈ Mn.

Since the covariance matrixΣ is a quadratic form onmn, its eigenvectors are vec-
tors in the Lie algebramn. These eigenvectors correspond via the exponential map to
geodesics onMn, calledprincipal geodesics. The principal geodesic analysis (PGA) on
a population of m-rep figures,Mi, . . . ,MN ∈ Mn, is computed by an eigenanalysis
of the MLE of the covariance developed above. Thus we have

Algorithm: M-rep PGA
Input: M-rep models,M1, . . . ,MN ∈ Mn

Output: Principal directions,u(k) ∈ mn

Variances,λk ∈ R
µ = mean of{Mi}
xi = log(µ−1Mi)
S = 1

N

∑N
i=1 xixT

i

{u(k), λk} = eigenvectors/eigenvalues ofS.

Analogous to linear PCA models, we may choose a subset of the principal directions
u(k) ∈ mn that is sufficient to describe the variability of the m-rep shape space. New
m-rep models may be generated within this subspace of typical objects. Given a set of
coefficients{α1, . . . , αl}, we generate a new m-rep model by

M = µ exp
( l∑

k=1

αku(k)
)
,

whereαk is chosen to be within[−3
√

λk, 3
√

λk].
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4 M-rep Alignment

When applying the above theory for computing means and covariances of real anatom-
ical objects, it is necessary to first globally align the shapes to a common position, ori-
entation, and scale. For objects described by boundary points, the standard method for
alignment is the Procrustes method [18]. Procrustes alignment minimizes the sum-of-
squared distances between corresponding points. We now develop an analogous align-
ment procedure based on minimizing sum-of-squared geodesic distances on Lie groups.

Let S = (s,R,w) denote a similarity transformation inR3 consisting of a scaling
by s ∈ R+, a rotation byR ∈ SO(3), and a translation byw ∈ R3. We define the
action ofS on a medial atomm = (x, r,F, θ) by

S ·m = S · (x, r,F, θ) = (sR · x + w, sr,RF, θ). (16)

Now the action ofS on an m-rep objectM = {mi : i = 1, . . . , n} is simply the
application ofS to each ofM’s medial atoms:

S ·M = {S ·mi : i = 1, . . . , n}. (17)

It is easy to check from (1) that this action ofS on M also transforms the implied
boundary points ofM by the similarity transformationS.

Consider a collectionM1, . . . ,MN ∈ Mn of m-rep objects to be aligned, each
consisting ofn medial atoms. We writemij = (xij , rij ,Fij , θij) to denote thejth
medial atom in theith m-rep object. Notice that the m-rep parameters, which are posi-
tions, rotations, and scalings, are in different units. Before we apply PGA to the m-reps,
it is necessary to make the various parameters commensurate. This is done in the Lie
algebra by scaling the log rotations and log radii by the average radius value of the cor-
responding medial atoms. The squared-distance metric between two m-rep modelsMi

andMj becomes

d(Mi,Mj)2 =
n∑

k=1

(|xjk−xik|2 + r̄2
k(log rjk− log rik)2 + r̄2

k| log(F−1
ik Fjk)|2), (18)

wherer̄k is the radius of thekth atom in the mean m-rep. Notice in (16) that the object
angleθ is unchanged by a similarity transformation. Thus, the object angles do not
appear in the distance metric (18).

The m-rep alignment algorithm finds the set of similarity transformsS1, . . . ,SN

that minimize the total sum-of-squared distances between the m-rep figures:

d(S1, . . . ,SN ;M1, . . . ,MN ) =
N∑

i=1

i∑

j=1

d(Si ·Mi,Sj ·Mj)2. (19)

As in generalized Procrustes analysis inR3, minimization of (19) proceeds in stages:
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Algorithm: M-rep Alignment
1. Translations.First, the translational part of eachSi in (19) is minimized once and for
all by centering each m-rep model. That is, each model is translated so that the average
of it’s medial atoms’ positions is the origin.
2. Rotations and Scaling.The ith model,Mi, is aligned to the mean of the remaining
models, denotedµi. The alignment is accomplished by a gradient descent algorithm on
SO(3)× R+ to minimized(µi,Si ·Mi)2. This is done for each of theN models.
3. Iterate.Step 2 is repeated until the metric (19) cannot be further minimized.

5 Results

In this section we present the results of applying our PGA method to a population of
86 m-rep models of the hippocampus from a schizophrenia study. The m-rep models
were automatically generated by the method described in [19], which chooses the me-
dial topology and sampling that is sufficient to represent the population of objects. The
models were fit to expert segmentations of the hippocampi from MRI data. The sam-
pling on each m-rep was3× 8, making each model a point on the Lie groupM24.

First, the m-rep figures were aligned by the algorithm in§4. The overlayed medial
atom centers of the resulting aligned m-reps are shown in Fig. 3. Next, the intrinsic
mean m-rep hippocampus was computed (Fig. 3). Finally, PGA was performed on the
m-rep figures. The first three modes of variation are shown in Fig. 3.

Fig. 3. The surface of the mean hippocampus m-rep (top left). The 86 aligned hippocampus m-
reps, shown as overlayed medial atom centers (bottom left). The first three PGA modes of varia-
tion for the hippocampus m-reps (right). From left to right are the PGA deformations for -3, -1.5,
1.5, and 3 times

√
λi.

6 Conclusions

We present a new approach to describing shape variability called principal geodesic
analysis. This approach is based on the maximum likelihood estimates of mean and co-
variance for Gaussian distributions on Lie groups. We expect that the methods presented
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in this paper will have application beyond m-reps. Lie group PGA is a promising tech-
nique for describing the variability of models that include nonlinear information, such
as rotations and magnifications.
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