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Abstract. The geometric conformation of an object complex is usually
described by certain geometric features, which are most intuitive and
provide locality if each is chosen to be at a restricted range of scale.
A complete representation of a geometric entity, such as an object, in-
cludes descriptions at multiple scale levels. We have been developing a
multi-scale framework for describing 3D geometric entities based on me-
dial representations. At each scale level, an entity is represented by a
collection of geometric primitives that describes a residue from the infor-
mation provided at larger scales. The local geometric variations within a
scale level are reflected by the difference in configurations of individual
primitives. The primitives can be identified as elements of appropriate
transformation groups. To characterize the common geometry of a pop-
ulation of object complexes as well as the variation of instances among
the population, we build Markov random field (MRF) models based on
both inter-scale and intra-scale residues, which are described in terms of
the metrics on primitive transformations. In this paper, we present how
to describe residues and design MRF models on two scale levels, namely
boundary displacement and object sections. This approach can be ap-
plied to various applications in medical image analysis, such as image
segmentation and object discrimination into classes.

1 Introduction

Analysis of the geometric conformation of object complexes plays an important
role in many medical imaging applications. For instance, geometric information
can be incorporated as priors to guide image segmentation. By imposing geomet-
ric constraints, one obtains more reliable interpretation of images, as opposed to
making decisions based solely on image intensity [1]. As another example, object
discrimination usually involves characterizing and comparing classes that differ
in their geometric conformation, e.g., their volume or their shape [2].

A complete representation of geometric entities should be able to describe
them at multiple scale levels, so that geometric features with various degrees of
locality, i.e., locally relevant size and distance, can be extracted. In our study of
geometric entities such as objects and boundaries, locality must be taken with
respect to the components of which an entity is formed: the relevant sizes and
distances for an object complex are determined by various objects in it, while



those for an object must be determined by the natural sections making up the
object, and so on. At each scale level, each feature summarizes the geometric
information contained in certain spatial domain of size relevant to that scale.
The differences in description between scale levels reflect different levels of detail.
Also, the relevant distance within a scale level induces a notion of neighbors, i.e.,
nearby geometric entities at that scale: nearby objects, nearby object sections,
etc. Neighbors at a larger scale level are typically more distant than neighbors at
a smaller scale level. This neighbor relation, together with the spatial extent of
features and levels of detail in description, realize the notion of locality. Based on
this view, we use object-based scale levels and describe residues between scales
as in the wavelet approaches [3, 4]. Thus we describe changes in geometry across
scales rather than geometric features prominent at multiple scales. This yields
a hierarchical, multi-scale description of geometric entities, in which an entity
at one scale level is seen relative both to the next larger level and relative to
its neighbors at that level. As we will show, using this approach one can design
shape models that are rich in geometric information yet relatively easy to work
with, and hence achieve efficiency both in training the models and in applying
them to shape analysis tasks such as segmentation.

We can effect such a viewpoint by seeing object complexes or objects as
members of a population of examples in the real world with fixed topology. The
reason is that essentially, shape is an attribute of a class of entities. Take the
shape of liver as an example. Globally all livers have the same general geometric
conformation; yet on finer scales the geometry varies significantly from one to
another. In deciding the topology of the medial representation , we need to take
into account the common structure as well as the variations among different in-
stances, so that both of these pieces of information can be effectively described.
The fixed topology enables one to establish fixed correspondences between geo-
metric primitives across the population. As a result, what differs among members
of the population is the quantitative, geometric parameters and not qualitative
properties of structure or topology.

We have been developing a methodology for describing 3D entities using
medial representations combined with boundary displacements, which together
form a representation called m-reps [1, 5]. In this framework, a geometric entity
is represented at discrete scales and locations. At each scale it is described by a
set of geometric primitives and their relative transformations. Determining the
fixed topology from a population is achieved using the method described in [6].

A population of entities with similar geometric conformation can be effec-
tively described by probabilistic models. For instance, principal component anal-
ysis [7, 8] and spherical harmonic descriptors [9] of 3D objects have been studied
extensively. In these models, a probability measure is put on the space of all
possible deformations from a common template. The parameters of the measure
are estimated and learned from a training data set. In our framework, the re-
lationships between adjacent scale levels and among intra-scale neighbors make
Markov random fields (MRF) the natural probabilistic models. We define MRF
m-reps models so that they incorporate both inter-scale and intra-scale residue



information, which are expressed in terms of the appropriate metrics induced
by the geometric primitives. With this approach, a reasonably small number of
parameters are sufficient in describing the model at each scale level, so accurate
parameter estimation can be achieved with limited numbers of training cases. In
this paper, we describe MRF models on two scale levels, namely the boundary
displacement level and the object section level.

In what follows, we briefly describe m-reps in section 2. Details of the MRF
models are presented in section 3. Section 4 shows some results on estimating
MRF models for hippocampi. We finish with some discussion in section 5.

2 Multi-scale Shape Representation by M-reps

Medial-based representations [10, 11] provide a method of explicitly describing
geometric deformations such as elongation, bending, and widening. To obtain
stable medial and boundary structures, it is important to build them in a multi-
scale fashion, including a boundary displacement component. In our framework,
called m-reps, at all but the boundary scale level, an object is described by a set of
continuous medial manifolds, which is sampled to yield discrete representations.
Each sample point is called a medial atom, which describes a through section of
an object (see Fig. 1(a)). It is a 4-tuple m = (x,R, r, θ) consisting of

– a translation x ∈ R3, specifying the position of the medial point; we can
consider this translation in units of the medial width r (defined below);

– a rotation R ∈ SO(3), describing a local orthonormal frame (n,b,b⊥), where
n is the normal to the medial manifold, b is along the direction of the fastest
narrowing of the implied boundary sections, and b⊥ = n× b;

– a magnification scalar r ∈ R+, the local width, defined as the distance from
the medial point to the implied boundary points;

– a 2D rotation angle θ ∈ SO(2), called the object angle, which determines
the angulation of the implied boundary sections relative to b.

As such, each medial atom can be identified as an element of the product group
G = R3 × SO(3)×R+ × SO(2). The two implied boundary points are specified
as yi = x+rni, i = 0, 1, where n0 and n1 are the two respective surface normals
given by n0,1 = cos(θ)b± sin(θ)n.

An m-rep figure is a quadrilateral mesh of medial atoms, with spacing de-
termined through the analysis of the training population [6]. It describes a slab-
like object or object part. The 4-adjacency in the mesh determines the atom
neighbor relationship. A smooth boundary surface of a figure is generated by
a subdivision surface algorithm [12] that approximates the boundary positions
and normals implied by each atom. Objects are generally represented by a linked
figural model, together with boundary displacements. A main figure describes
the main section of an object; various subfigures, each of which described by a
single medial sheet, represent different branches, protrusions or indentations. Fi-
nally, an object complex is described by the configurations of individual objects.
The inter-figure and inter-object relations can be effectively described by m-reps,



(a) (b)

Fig. 1: M-reps. (a) A medial atom with a cross-section of the boundary surface it
implies; (b) A liver-kidney complex, including two single-figure kidney objects and a
liver object with a main figure (light) and a subfigure (dark). Each figure is represented
as a quadrilateral mesh of medial atoms.

since solid 3D regions and their boundaries are represented simultaneously. Fig.
1(b) illustrates an example of this hierarchy of representations.

In this multi-scale framework, residual geometric information between scale
levels is specified by the appropriate residue transformations of the correspond-
ing geometric primitives. Within a scale each primitive has neighbors of the same
type. See Table 1 for a brief summary. A successively refined boundary represen-
tation can be derived as one goes from coarse to fine scale levels. At the finest
level, each boundary point moves from its medially implied position along the
medially implied normal direction to “fine tune” the description.

Scale level Primitive
Inter-scale residue

transformation
Intra-scale
neighbors

Object complex Object complex pose Similarity —

Object Object pose
Similarity, relative to
object complex level

Adjacent objects

Figure
Main figure and
subfigure poses

Main figure and subfigure
transformations, relative to

object level
Adjacent figures

Medial atom Atom configuration
Atom transformation,
relative to figure level

Adjacent
medial atoms

Boundary
Boundary vertex

position
Displacement from

medially implied position
Adjacent

boundary vertices

Table 1: The scale levels of m-reps, with primitives, inter-scale residue transformations,
and neighbor relations at each scale.

The m-rep framework allows geometric features at different positions and
scale levels to be explicitly described. Furthermore, the medial structure, de-
termined by a training population, provides a multi-scale intrinsic coordinate
system [13] that is extremely well suited for statistical analysis of shapes, be-
cause correspondence among a population can be established systematically.



3 Markov Random Field M-reps Models

Given that any model has a fixed topology, we determine a probability distribu-
tion on the space of random variables characterizing the geometry of primitives.
The total number of such random variables is usually very high. The Markov
random field approach [14, 15] handles this by characterizing global geometric
information through local interactions among various geometric primitives.

An MRF model characterizes a collection of random variables, the rela-
tionship among which is described by a simply connected dependency graph
G = (V, E). Each vertex v ∈ V corresponds to a random variable Xv in the
model. The neighborhood of v, denoted by N (v), contains those vertices that
are connected to v via an edge in E. The completely connected subgraphs of G
(including singletons) are called the cliques of G. A model P is said to be an
MRF with respect to G if its conditional probabilities satisfy

Prob
(
Xv

∣∣ all other random variables
)

= Prob
(
Xv

∣∣{Xu : u ∈ N (v)}).
Also, P is said to be a Gibbs distribution with respect to G if the joint probability
density of {Xv} has the form

pΘ({Xv : v ∈ V }) = 1
Z(Θ) exp{−∑

C∈C AC(XC ; Θ)},
where C is the set of cliques of G, XC = {Xv : v ∈ C}, Θ is a set of parame-
ters, Z(Θ) is a normalizing constant (depending on Θ). Each AC ≥ 0 is called
a potential and depends only on those random variables whose indices are in C.
The Hammersley-Clifford Theorem [14, 15] establishes the equivalence between
MRF’s and Gibbs distributions with respect to the same dependency graph G.
This allows one to specify an MRF by specifying the potentials in the corre-
sponding Gibbs form. The main advantage of the MRF approach is that the
probability density to be estimated is specified by a relatively small number of
parameters, which can then be learned from a training data set.

In m-reps, there are natural neighbor relations between and within scale lev-
els. Suppose the scale levels are indexed by 1, 2, . . . , l, scale 1 being the coarsest.
Let zk = {zk

j } denote the collection of geometric primitives at level k. Each
primitive zk

j has a value implied by the previous level, which is called the parent
primitive of zk

j and denoted by P(zk
j ). For example, at the figure level, each figure

implies the medial atom primitives that make it up, with position, orientations,
etc. relative to the figural geometry as in the mean of the training population.
Let ∆zk

j denote the inter-scale residual giving the difference between zk
j and

P(zk
j ), where differences are taken with respect to the group operations defining

the primitive, e.g., translation, rotation, magnification, and object angulation
for a medial atom. At level k, we describe residual geometric information from
level k − 1 by ∆zk = {∆zk

j }, with a Markov assumption

Prob
(
zk|{z1, . . . , zk−1}) = Prob(zk|zk−1) = Pk(∆zk), for k > 1.

In doing so, we are describing the inter-scale-level relationship via the residues
and assuming that residues at one scale are independent of those at other scales.



The residue probability distributions {Pk(∆zk)} are defined as MRF mod-
els, with respect to the canonical neighborhood structure induced by the spatial
relationship among primitives. For example, at the medial atom level, the canon-
ical neighborhood structure is the 4-adjacency graph induced by the quad-mesh
structure, as shown in Fig. 2(a), since we sample the medial manifold by a
quadrilateral array of atoms. The cliques of this dependency graph are single
vertices and pairs of vertices that are connected by an edge in the quad-mesh
(refer to Fig. 2(b)). If another sampling mesh, e.g. triangular mesh, is used, then
appropriate canonical neighborhood structure can be induced similarly.

(i, j) (i, j+1)

(i-1, j)

(i, j+1)

(i+1, j)

(a) (b)

Fig. 2: The 4-neighbor structure for quad-mesh. (a) A typical node has 4 neighbors.
(b) The cliques of the quad-mesh.

By the Hammersley-Clifford Theorem, the density of the MRF model Pk can
be written in Gibbs form

pk({∆zk}) ∝ exp{−∑
C∈ C AC(∆zk

C)}, (1)

where C is the set of cliques, and ∆zk
C = {∆zk

j : j ∈ C}. Our approach to
designing these models is to identify the residue primitives ∆zk

j as elements of
appropriate transformation groups, and to define the potentials AC in terms of
the metrics on these groups. In the rest of the section, we discuss these issues on
the boundary level and the object section level within the m-reps framework.

3.1 MRF Models for Boundary Displacement

For an m-rep figure, the medially implied surface is represented by a dense set
of boundary points, which are the geometric primitives at the boundary level.
They are parameterized by an object-intrinsic coordinate system induced by the
medial manifold. Associated with each medially implied boundary point y are
a radius r(y), which is the distance between y and the corresponding medial
point, and a surface normal vector n(y) at y.

At the boundary level, each medially implied boundary point y moves along
n(y), yielding a finer scale description. To maintain magnification invariance,
we measure displacement in multiples of object width, i.e., if the amount of
movement of the y is d(y), then we define the displacement of y to be the
unitless variable w(y) = d(y)/r(y), which is a member of the one-dimensional
additive group R. The displacement field w = {wj} on {yj} provides the residual
geometric information at this scale level.



Currently we use a quad-mesh to sample the boundary, thus the canonical
neighborhood structure is the 4-adjacency structure in Fig. 2. With respect to
this graph, we define the boundary level model as a zero-mean Gaussian MRF
model on the displacement field with density

pq(w) =
1

Z(q1, q2)
exp

{
− q1

2

∑

i

siw
2
i −

q2

2

∑

<i,j>

bij(wi − wj)2
}

, (2)

where < i, j > denotes that points i and j are neighbors, q1, q2 > 0 are param-
eters, and Z(q1, q2) is a normalizing constant. We choose {si, bij} so that the
exponent above is a discrete approximation of the energy function

− q1
2

∫
S

d2(y)
r2(y)dy − q2

2

∫
S ‖∇d(y)‖2dy.

The model (2) incorporates both inter-scale and intra-scale residues at the
boundary level. Notice that the conditional density for a particular wi is

pq

(
wi|{wj , j 6= i}) ∝ exp

{
− q1

2
siw

2
i −

q2

∑
<i,j> bij

2
(
wi−

∑

<i,j>

bij∑
<i,j> bij

wj

)2
}

This can be interpreted as putting penalties on the amount of wi as well as on
the difference between the displacement of point i and a weighted average of
those of the neighboring points.

Different sections of the boundary can be modelled by the same MRF model
(2) with different parameter values, which reflect the variation of boundary dis-
placement field in various sections.

The parameters q1 and q2 in (2) can be estimated by the maximum likeli-
hood method. Given M independent training objects with displacement fields
ŵ1, ŵ2, . . . , ŵM , and assuming ŵi is a sample from the distribution with density
p
(i)
q , we seek the parameter values q1, q2 such that the likelihood function

L(q1, q2) =
∑M

i=1 log
(
p
(i)
q (ŵi)

)

is maximized. We can show that the Hessian matrix ∇2L is negative semi-
definite. Therefore, the maximum of L occurs at (q∗1 , q∗2) such that the gradient
∇L(q∗1 , q∗2) = 0. This equation is solved numerically.

3.2 MRF Models for Object Sections

Object sections are described at the atom scale level, where the primitives are the
medial atoms {Ai}. The parent primitives {P(Ai)} are the medial atoms describ-
ing the object at the previous larger scale, the figural scale. The residue geometric
information is described by the differences between {Ai} and {P(Ai)}. As dis-
cussed in section 2, a medial atom Ai is characterized by a 4-tuple (xi,Ri, ri, θi).
Suppose P(Ai) = (x̃i, R̃i, r̃i, θ̃i). We define the atom residue to be

∆Ai =
(
(xi − x̃i)/r̃i, R̃−1

i Ri, ri/r̃i, θi − θ̃i

)
= (∆xi,∆Ri,∆ri,∆θi).



It is an element of the group G = R3 × SO(3) × R+ × SO(2). Let dR(·, ·)
and d2(·, ·) be the Riemannian distance on SO(3) and SO(2), respectively, with
the corresponding norms denoted by ‖ · ‖R and ‖ · ‖2. The distance dG, with
corresponding norm denoted by ‖ · ‖G, is defined to be

dG(∆Ai,∆Aj) =√
‖∆xi −∆xj‖2 + d 2

R(∆Ri,∆Rj) + | ln(∆ri/∆rj)|2 + d2
2(∆θi,∆θj). (3)

We assume the MRF model for atom residues with respect to the canonical
4-neighbor structure has a density of the Gibbs form

p
({∆Ai}

) ∝ exp
{
−∑

i

σi

2
‖∆Ai‖2G −

∑
<i,j>

τij

2
d 2

G

(
∆Ai,∆Aj

)}
, (4)

where < i, j > denotes that atom i and atom j are neighbors, {σi, τij} are
positive parameters. This density is with respect to the invariant measure on G.
The conditional distribution of ∆Ai given the rest of the residues has density

p(∆Ai|∆A{j 6=i}) ∝ exp
{
− σi

2
‖∆Ai‖2G −

∑
<i,j>

τij

2
d 2

G

(
∆Ai,∆Aj

)}
.

Intuitively, the first term in the exponent penalizes the difference between Ai and
its parent P(Ai), whereas the second term penalizes ∆Ai from being different to
a weighted average of residues of the neighboring atoms, given the configurations
of {∆Aj : j 6= i}. Clearly, the model incorporates information on both inter-scale
and intra-scale residues at the atom level.

Given a training data set, the parameters {σi, τij} of the probability model
(4) can be estimated using the maximum likelihood method. Since the space G
of atom residues is not Euclidean, even though the potentials are quadratic, the
distribution is not Gaussian. The maximum likelihood estimates of the parame-
ters in this case are obtained by Markov Chain Monte Carlo methods. However,
this is a computationally expensive procedure.

Here we present an alternative model whose parameters are easier to esti-
mate. Notice that the Riemannian distance between two 3D rotations ∆R1 and
∆R2 is given by ‖Log(∆R−1

1 ∆R2)‖F /
√

2, where ‖ · ‖F is the Frobenius matrix
norm, and for R ∈ SO(3),

Log(R) =





0, if φ = 0;
φ

2 sin φ
(R−RT ), if φ 6= 0.

Here φ satisfies tr(R) = 1 + 2 cos φ and |φ| < π. When ∆R1,∆R2 are close
to identity, as in the case for atom residues, their Riemannian distance can be
approximated by ‖Log(∆R2) − Log(∆R1)‖F . Similarly, the distance between
∆θ1 and ∆θ2 in SO(2) is |∆θ1 −∆θ2| when they are both close to 0. Define an
invertible map L by

L : ∆A =
(
∆x, ∆R,∆r,∆θ

)
∈ G 7→ ∆L =

(
∆x, Log(∆R), ln(∆r),∆θ

)
∈ g.



For ∆A1,∆A2 close to the identity of G, the distance dG defined in (3) can be
approximated by the distance dg on the linear space g:

d2
G(∆A1,∆A2) ≈ d2

g(∆L1,∆L2)

= ‖∆x1 −∆x2‖2 +
1
2
‖Log(∆R1)− Log(∆R2)‖2F

+ | ln(∆r1)− ln(∆r2)|2 + |∆θ1 −∆θ2|2.

Now instead of the model (4), we define a probability distribution on {∆L}
with density

p
({∆Li}

)
=

1
Z

exp
{
−∑

i

σi

2
‖∆Li‖2g −

∑
<i,j>

τij

2
d2

g

(
∆Li,∆Lj

)}
, (5)

where ‖·‖g is the norm corresponding to dg. (5) induces a probability distribution
on G via L−1, which takes each ∆L back to ∆A.

The model (5) is essentially a zero-mean Gaussian model on the linear space
g. Again, the parameters {σi, τij} can be estimated from a training data set
by the maximum likelihood principle, but in this case we may avoid MCMC
methods and estimate the parameters directly.

It should be pointed out that two of the components of ∆L, namely Log(∆R)
and ∆θ, lie in bounded domains, so the Gaussian distribution in (5) is not exactly
the desired distribution. However, it is a close approximation, because typically
the values of those components are very close to the origin, and the Gaussian
measures of the complements of the bounded domains are negligible.

In models (4) and (5), the variations of atom residues are essentially measured
by their norms. There is no distinction between individual components, i.e.,
translation, rotation, etc. In case when distinctions have to be made, we need to
modify either the definition of the norm or the specification of the models by,
for example, putting appropriate weights on the components.

The idea of approximating the group G by a linear space g can be formalized
with Lie group theory. In fact, G is a Lie group, g is the corresponding Lie
algebra, and the mapping L−1 is the exponential map. The details are beyond
the scope of this paper, but can be found in [16] and the references therein. Also,
Gaussian distributions on the Lie group G are discussed more formally in [17].

4 Experiment on Hippocampi

In this section we present some results on learning the MRF models (2) and (5)
for hippocampi. The training data set contains 86 binary segmented images for
left hippocampi. A common hippocampus model, represented as a single m-rep
figure by a 8×3 array of medial atoms, is deformed into each image. Fig. 3 shows
a few sample models. The indexing of the atoms are such that the 1-st row is at
the tail of a hippocampus, and the 8-th row is at the head.

In each case, a global transformation is applied to the common model first,
then each individual atom undergoes a further deformation to fit the image. The



Fig. 3: Sample hippocampi. The leftmost one shows the medial mesh. In the picture
the top part of each hippocampus is the “head”, and the bottom part is the “tail”.

atom residues are the differences in atom configurations between the two stages.
They are used to obtain the ML estimates for the parameters {σi, τij} in the
MRF model (5). Fig. 4 shows both the sample and the estimated variances of the
atom residues. We can see that the tail has the most variation, and the middle
section has the least.

(a) Sample variances (b) Estimated variances

Fig. 4: Atom residue variation for hippocampi. Each grid point corresponds to a medial
atom. The tail has the highest variance.

At the boundary scale, the medially implied boundary points of each object
are displaced, yielding a displacement field. Each medial atom describes two
opposite parts of the boundary surface (see Fig. 1(a)). In this way we divide the
surface of a hippocampus into 48 sections, 24 on each side of the medial manifold.
We assume each section is described by the MRF model (2) with appropriate
parameters q1, q2, which are estimated based on the displacement fields. Fig. 5
shows both the sample and the estimated variance of displacements on one side
of the hippocampus surface. The head part has the most variance in this case.

5 Discussion

Characterizing the geometric conformation of an object complex requires de-
scribing the geometry at multiple scale levels, so that geometric features with
various degrees of locality can be described in a systematic way. We have been



(a) Sample variances (b) Estimated variances

Fig. 5: Boundary displacement variation for one side of hippocampi by sections. Each
grid point represents a section. The head has more variation.

developing a multi-scale shape analysis methodology based on medial represen-
tations. In this framework, a successive refinement of geometric representation
is obtained by describing residual shape information across scales. The com-
plete representation can be recovered from these residues. In doing so features
at different scales and positions can be explicitly described.

We have discussed how to build multi-scale probabilistic shape models based
on both inter-scale and intra-scale residues. These residues are incorporated into
Markov random fields, whose neighborhood structures provide a mechanism for
describing geometric features at different scale levels and positions. We also
showed how MRF models can be designed to describe residual geometric infor-
mation on both the boundary level and medial atom level. The basic idea is
to identify the geometric primitives as elements of appropriate transformation
groups, and to specify the potentials of the MRF models in terms of the metrics
on these groups. These models can be tuned based on the statistics of training
data, thus the same type of model can be used to describe different classes of
geometric entities. The advantage of this approach is that it describes the rather
complicated geometric information effectively by a relatively small number of
parameters, so training and applying these models can be done efficiently.

Our basic assumption is that the complete configuration of geometric entities
can be effectively captured by residues and described by MRF models with sim-
ple, local neighbor structures. Empirical evidence shows that this is a reasonable
assumption in a variety of situations, although whether this is the case in general
remains to be seen. Of course, one can always design MRF’s with more com-
plicated and global neighborhood structures, but learning and applying these
models become more difficult accordingly.

We are going to extend the same idea to modelling other scale levels, so
that complete multi-scale probabilistic shape models can be obtained. Using
maximum posterior approaches, the resulting probability distributions can be
applied as priors to segmentation or as class probabilities to discrimination of
objects by their geometry.
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