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Abstract. Multi-figure m-reps allow us to represent and analyze a com-
plex anatomical object by its parts, by relations among its parts, and by
the object itself as a whole entity. This representation also enables us to
gather either global or hierarchical statistics from a population of such
objects. We propose a framework to train the statistics of multi-figure
anatomical objects from real patient data. This training requires fitting
multi-figure m-reps to binary characteristic images of training objects.
To evaluate the fitting approach, we propose a Monte Carlo method sam-
pling the trained statistics. It shows that our methods generate geomet-
rically proper models that are close to the set of Monte Carlo generated
target models and thus can be expected to yield similar statistics to that
used for the Monte Carlo generation.

1 Introduction

The shape statistics of simple objects with one part have been widely studied.
Methods using various representations have been proposed and shown to be
effective [1, 2]. However, many anatomical objects have multiple named parts,
e.g., the prostate (fig. 1-a) has two seminal vesicles attached to it and the liver
(fig. 1-b) has left and right lobes. Due to the inherent complexity of objects made
from multiple parts, previous statistical descriptions of such objects concentrated
on their global structure [1, 3] or on the extremely local behavior of geometric
primitives, such as points, without reference to the parts’ inter-relations [4, 5].

M-reps [6] have been successfully used to represent anatomical objects and
complexes of objects [7–9]. An m-rep consists of one or more medial sheets, with
the part corresponding to each sheet called a figure. Previous work on m-reps
has been restricted to single figure objects. Computing statistics of such m-reps
via principal geodesic analysis (PGA) [2, 14] has proved useful.

Medial description is also well suited to represent an object with parts [7,
10], e.g., an object with a protrusion subfigure, i.e., additive figure to the host
(fig. 1-c), or an indentation subfigure, i.e., subtractive figure from the host (fig.
1-d). We use multi-figure m-reps to represent objects with multiple parts.

In the m-rep of a multi-figure object, each object part is geometrically rep-
resented by a single figure m-rep, and the figures of the object are connected by
the hinge geometry briefly reviewed in section 2.2. As with the single figure case,
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Fig. 1. a) A prostate with two seminal vesicle protrusions. b) A liver represented by
the union of the left and right lobes. c) An object with protrusion. d) A kidney with
the renal pelvis as an indentation subfigure. Object a has three single-figure parts while
objects b-d have two such parts.

the multi-figure m-rep describes an object at successively smaller scales following
a coarse-to-fine hierarchy, for which the two top levels are 1) the object and 2)
each individual figure and relations among the figures. In the top level the object
is simply the union of its parts, enabling efficient analysis of the complex object
as a whole. In addition, we can talk about individual part properties, such as
shapes and volumes. Statistically, variation of the object within a population
can be also measured in a multi-scale fashion. For example, we can investigate
the variation of livers as well as of left liver lobes only.

In the process of training object statistics, we assume that each training
object is given by a single binary characteristic image. We need to extract the
m-rep for each object and then do PGA on the set of resulting m-reps. An
efficient and reliable m-rep extraction method based on deformable model fitting
is described in section 3.

The multi-figure m-rep captures the natural hierarchy within a complex ob-
ject. This form of representation also allows statistical analysis following the
same hierarchy. While this approach can begin with global statistics on the
union of the object parts, we describe a statistical description of the parts and
their inter-relations via a hierarchical approach based on the residue. In section
4 we first sketch the global approach and then the residue approach. Both ap-
proaches are applied to the extracted multi-figure m-reps and the results are
shown in section 5.1.

To evaluate the method of fitting m-reps to binary images, we propose a
Monte Carlo technique and a means of data analysis based on geodesic differences
between sample m-reps and the m-reps extracted from corresponding binary
images. This data analysis method and its results are described in section 5.3.

We discuss incorporating the statistics into the training process to improve
the quality of the extracted m-reps and conclude the paper in section 6.

2 Representing multi-figure objects

In the multi-figure representation, each part of the object is represented by a
single figure m-rep, which is briefly reviewed in the next subsection.



Fig. 2. Left: a single figure m-rep for a kidney and the object boundary implied by it.
Middle: an internal medial atom. Right: an end atom. The local implied boundary is
incident to and orthogonal to the spoke ends.

2.1 Single figure m-rep

An m-rep is an extension of the Blum medial locus [11]; in the extension the
medial locus forms the primitive description. The simplest geometric object is
represented by a single continuous medial sheet with boundary. A discrete m-rep
is formed by sampling the medial sheet over a spatially regular lattice to form a
mesh of medial atoms (fig. 2-left), where each atom consists of a position on the
medial sheet, and two equal length spokes. An internal medial atom is defined
as a 4-tuple {x, r, s0, s1}, consisting of the hub position x ∈ R3, the spoke length
r ∈ R+, and the two spoke directions as two unit vectors s0, s1 ∈ S2 (fig. 2-
middle). The medial atoms on the edge of the medial sheet correspond to crests
of the object boundary. Such an end atom adds a bisector spoke of length ηr
with a corresponding crest sharpness parameter η ∈ R+ (fig. 2-right). In section
3.1 we briefly review the mathematical background behind our representation.

Given an m-rep figure, a smooth object surface is generated to interpolate
the boundary positions and normals implied by the atom spokes; presently a
subdivision method [12] is used to generate the object boundary. If u, v para-
metrizes the medial sheet, the implied boundary is parametrized by (u, v, φ) ,
where φ designates the side of the figure from the top (φ = +π

2 ) to the bottom
(φ = −π

2 ) and changes continuously across crests (φ ∈ [−π
2 ,+π

2 ]) (fig. 2-right).
The single figure m-rep scheme has been extended to handle the complex

of non-overlapping, single figure objects. Next we briefly review extending the
representation to multi-figure m-rep objects.

2.2 The multi-figure m-rep object with hinge geometry

As detailed in [10], a multi-figure object is represented by a directed acyclic
graph (DAG) of figures, each represented by a single figure m-rep. Subfigures
can be recursively attached to their hosts to form any desired object DAG. This
allows representation of arbitrarily complex objects, although most anatomical
objects are adequately represented by a tree of two or three levels. The host
and subfigure are determined according to anatomic naming and the tightness
of posterior probabilities of the figures. In this paper we restrict our examples
to objects with a single host figure and a single subfigure, e.g., the liver with
the right lobe as the host and the left lobe as the subfigure. In the rest of this
subsection we review how two figures are connected by the hinge geometry. Via



the hinge the deformation of a host figure is propagated to its subfigure. A
subfigure also has its own deformation which does not affect its host. A smooth
surface boundary is then generated for the entire object by a method called
blending.

Fig. 3. Left: the host figure/subfigure arrangement, with the subfigure (six medial
atoms appearing) on top, the host figure (four medial atoms showing) below, and the
blend region shown darker. Right: different shapes of the blend region.

Hinge geometry The subfigure is attached to its host by a 1D curve of hinge
atoms, which, when sampled, form an end row or column of the subfigure atom
mesh. Each hinge atom rides on the medially implied boundary of the host,
with known figural coordinates of the host figure. The hinge geometry is an ex-
tension of the Blum medial locus that avoids the instability against boundary
noise of the low-volume portion of branches. The host/subfigure arrangement
is demonstrated in (fig. 3-left). The single hinge geometry allows both additive
and subtractive subfigures (fig. 1-a-d).

With the two types of subfigure transformations below, we are able to rep-
resent and describe multi-figure objects with variable inter-figure relations.
Host figure implied subfigure transformation As the host figure deforms,
the hinge atoms at the fixed (u, v, φ) in the host figure’s coordinates change
their locations and orientations. Since each subfigure atom can be represented
as transformations of its neighboring atoms, the deformation of the host figure
is propagated to the subfigure starting from the hinge atoms.

Hinge-relative subfigure transformations The subfigure can also translate,
rotate, hinge, scale, and elongate on the host figure boundary while the host stays
put. These basic hinge-relative transformations all take place in the host’s figural
coordinates and are at the subfigure scale levels. They form a key component of
the coarse-to-fine hierarchy.

2.3 Blending

Blending, a well-studied field within computer graphics, is necessary if a smooth
surface is to be generated from a host figure and its intersecting subfigure. To
blend a subfigure with its host, an interpolating subdivision method is used to
generate the implied boundary of each single figure. Each host figure and its



attached subfigure meet and merge into each other. Designated sections from
both figures are removed and replaced by a smooth region called the blend (fig.
3-left). The blend between the two figures is parameterized by (w, v, φ) , where
v and φ are the same as those in the subfigure coordinates and w ranges from
+1, at the subfigure, to −1, at the host. Two parameters delimiting the top and
the bottom of the blend control the shape of the blend region (fig. 3-right).

3 Fitting multi-figure m-reps to binary images

The extraction of an m-rep from a binary characteristic image for statistical
training is done by fitting a deformable m-rep template M0 into the binary image.
A large-scale-to-small optimization process over transformations associated with
each respective stage is applied to the m-rep template. We define the objective
function and then detail the transformations associated with each fitting stage
in the following subsections. Firstly we review some mathematical background
of the m-rep geometry; more details can be found in [2].

3.1 Background theory review

As the primitive in an m-rep, each internal(end) medial atom can be understood
as a point on the manifold Mint(1) (Mend(1)) = R3×R+×S2×S2(×R+). Let
M(1) denote the manifold for a medial atom without specifying whether it is an
internal or end atom. Thus an m-rep of n medial atoms can be seen as a point
on the manifold M(n) = [M(1)]n.

The space M(n) is a particular type of manifold known as a Riemannian
symmetric space, which simplifies the calculation of geodesics and distances. Let
dis(y, z) : M(n)×M(n) → R+∪{0} denote the geodesic distance, i.e., the locally
shortest distance on the manifold M(n), between two points y, z ∈M(n). There
are a pair of maps Expy and Logy that map between M(n) and the tangent
space TyM(n) at y, and are inverse of each other. TyM(n) can be identified
with R8n+next with next as the number of end atoms in y and z.

– Logy(z) maps the point z to the tangent space TyM(n) at y. The geodesic
distance between y and z is preserved and calculated via the Log map.

dis(y, z) = ‖Logy(z)‖ (1)

– Expy(v) maps the tangent vector v ∈ TyM(n) to the point on M(n) along
the geodesic curve γv(t). The distance is preserved as dis(y, Expy(v)) = ‖v‖.

Given dis, we can calculate the Fréchet mean M of N points (m-reps) {Mi|Mi ∈
M(n), i = 1, 2, ..., N} by minimizing the average squared geodesic distance:

M = Mean(Mi) = arg min
M∈M(n)

1
N

N∑
i=1

‖LogM (Mi)‖2 (2)

In the residue approach described in section 4.2, we need to calculate the
difference between m-reps via the difference between their corresponding atoms.
Let a1, a2 ∈M(1) be two corresponding atoms. Then their difference is



a1 	 a2 = g−1
a2

◦ a1 ∈M(1), (3)

where g−1
a2

∈ G(1) is the composition of hub translation, spoke magnifi-
cation(s), and spoke rotations determining an atom transformation and, G(1)
denotes the Lie-group of such transformations.

Assume an m-rep template ∈M(n) has n medial atoms {ai}. G(n) = [G(1)]n

acts smoothly on M(n) as the transformation between m-reps. The difference
between two m-reps M1,M2 ∈M(n) from the same template is defined as

M1 	M2 =
n∏

j=1

(a1j 	 a2j) ∈M(n) (4)

3.2 Objective function

The objective function measuring the mismatch between the m-rep and binary
image [15] is a sum of three terms: an m-rep-to-binary boundary distance, a term
penalizing irregularity of the m-rep atoms, and a term for achieving correspon-
dence across the m-reps in a training population.

Binary image match A distance map image D(x) : R3 → R+ ∪ {0} is calcu-
lated for each given binary image Ib by an extension of the Danielsson distance
mapping [13] to 3D. The binary image match term is then calculated by the in-
tegral of the distance map on the m-rep implied object surface B, except that at
the boundary locations where the surface normal differs from the distance gra-
dient by more than a certain threshold, D(x) is replaced by the distance along
the surface normal to the nearest binary object boundary location. L(M,D)
measures how well M fits into the distance map image D.

L(M,D) = α · 1
area(B(M))

∫
B(M)

D2(x)d2A (5)

Regularity penalty This term penalizes non-uniform spacing and changes
in spoke length and orientation of the medial atom. It leads to proper object
geometry and correspondence across the training cases.

Reg(M) = β ·
n∑

i=1

‖Logai
(Mean(N(ai))‖2 (6)

For each medial atom ai, the regularity is calculated as the squared geodesic
distance between ai and the Fréchet mean (eqn. 2) of its neighboring atoms
N(ai). The penalties are then accumulated for all the medial atoms of the object.

Correspondence to a reference m-rep The reference penalty depends on the
geodesic distance between the current M and the reference m-rep M0, which the
fitting starts with in our present implementation. This term explicitly penalizes
weak correspondence across m-reps.

Ref(M) = (1− α− β) · ‖LogM0
(M)‖2 (7)



In equations (5)-(7), α, β > 0, and α + β ∈ [0, 1]. The complete objective
function is the combination of the three terms:

Obj(M,D) = L(M,D) + Reg(M) + Ref(M) (8)

A two-figure m-rep is used as the example in the following subsections. Assume
a two-figure m-rep template M0 has host figure F1 and subfigure F2, and each
figure Fi ⊂ M0 has atoms {ai

j |i = 1, 2, j = 1, 2, ..., ni}.

3.3 Extraction framework

The objective function is then optimized over the following sequence of trans-
formations, successively finer in scale, applied to the m-rep template.

– Initial alignment of M0 by T1 ∈ R3×R+×SO(3), calculated by the template
M0 and the distance map image D;

– object stage: Tobj ∈ R3 × R+ × SO(3), on the entire object;
– host figure: the host F1 is the target and the subfigure is deformed by an

implied transformation Thost implied ∈ R3 × R+ × SO(3);
• figural stage: Thost fig ∈ R3 × R+ × SO(3), on the host figure;
• atom stage: Thost atom ∈ G(n1), on the host figure atoms a1

1,2,...,n1
;

– subfigure stage: the subfigure F2 is the target in this stage;
• figural stage: Tsub fig ∈ R3 × R+ × SO(3), on the subfigure. At the end

of this stage, the hinge atoms are projected onto the host figure surface;
• atom stage: Tsub atom ∈ G(n2), on the subfigure atoms a2

1,2,...,n2
.

input:
a two-figure m-rep template M0 with host figure F1 and subfigure F2;
a distance map images Di: calculated from the given binary images. Ibi.

output:
extracted two-figure m-reps Mi from the images Di.

framework:

for each Di {
1. Calculate T1 by the 1st and 2nd moments of M0 and Di, M1 = T1 ◦M0;
2. T2 = arg minTobj

(Obj(Tobj ◦M1, Di)), M2 = T2 ◦M1;
3. T3 = arg minThost fig

(Obj(Thost fig ◦ F1 ⊂ M2, Di)), M3 = T3 ◦M2;
4. T4 = arg minThost atom

(Obj(Thost atom ◦ F1 ⊂ M3, Di)), M4 = T4 ◦M3;
5. T ′4 = Thost implied, M ′

4 = T ′4 ◦ F2 ∈ M4;
6. T5 = arg minTsub fig

(Obj(Tsub fig ◦ F2 ⊂ M ′
4, Di)), M5 = T5 ◦M ′

4

7. M ′
5 = hinge atoms in F2 ⊂ M5 are projected to the surface of F1 ⊂ M5;

8. T6 = arg minTsub atom
(Obj(Tsub atom ◦ F2 ⊂ M ′

5, Di)), Mi = T6 ◦M ′
5;

}

This framework can be extended to arbitrary levels of hierarchy. However in
this paper, our data and experiments focus on objects with two-figures. Next we
describe the statistical analysis on the extracted multi-figure m-reps.



4 Statistics of multi-figure objects

As reviewed in section 3.1, an m-rep consisting of n atoms is a point on the
manifold M(n). The principal geodesic analysis has been proposed to do statis-
tical analysis for single figure object in such a space [2]. Briefly, given N m-reps
{Mi|Mi ∈ M(n)}, the Fréchet mean M is first calculated using (2). Let ui =
LogM (Mi), then the covariance matrix is given by Σ = 1

N

∑N
i=1 uiu

T
i . The PGA

is computed as {p
k
, λk | pk

∈ TMM(n) are the principal geodesic directions, λk ∈
R are the variances} = {eigenvectors/eigenvalues of Σ}.

4.1 Global statistics

Assume that a multi-figure object O has N figures as {Fi, i = 1, 2, ..., N} and
each figure Fi has ni medial atoms. Treat O as the union of all its figures and
let nO be the total number of atoms in O. The global statistics of such objects
are computed by the mean object O and the PGA in M(nO).

4.2 Hierarchical statistics based on residue

For multi-figure m-rep statistics we follow the hierarchical statistical framework
for multi-objects detailed in [14]. In the case of two-figure object O consisting
of figures F1 and F2 with n1, n2 atoms, respectively, the host and subfigure are
like the single figure objects in the complexes of multi-objects, and the hinge
atoms act as the augmenting atoms that relate the host figure’s changes to the
sympathetic subfigure changes. Let nO = n1 + n2. Three definitions are needed
to sketch how two-figure object statistics are represented and computed.

– Residue: difference between two m-reps by the operation 	 (eqn. 3,4);
– Augmentation: U1 = F1∪A1 denotes the union of host figure atoms and the

hinge atoms A1 in the subfigure F2;
– Projection: an m-rep M can be projected into the PGA subspace by πH(M) ≈

ExpM

∑k
i=1〈pi

,LogM (M)〉p
i
.

There are three parts PGAg, PGAh, and PGAs in the hierarchical statistics
for a two-figure object.

1. PGAg: statistics on the nO atoms making up the entire object. This captures
the global shape variation of the object. This variation is removed from both
the host figure atoms and the subfigure atoms before steps 2 and 3;

2. PGAh: statistics on the residue of the union U1 of the host figure atoms and
the hinge atoms in the subfigure. This describes the remaining variation of
U1 after the projection to the global variation PGAg has been removed;

3. PGAs: statistics on the residue of subfigure F2 after the residual changes in
the host figure are propagated to the subfigure and have then been removed.
The variation in the host figure is computed by projection to PGAh, and
the propagation is computed via the hinge atoms.

We applied both the global and the hierarchical statistical analysis to the
extracted m-reps of livers. The results are shown in the next section.



5 Results and evaluation

5.1 The data and results

We use 15 expert segmented binary images of livers. A two-figure m-rep template
is fit into the images by the framework described in section 3. There are 3 × 7
and 3 × 4 sampled atoms in the host figure and subfigure, respectively. Three
atoms in the subfigure are used as the hinge atoms. The total of 33 liver atoms
lie in a manifold of 290-dimensions. The extracted m-reps M1,2,...,15 are used for
the shape statistics. Fig. 4-left shows the cumulative variances in the principal
modes of the global statistics; 4-right shows the variations of the livers in the
host and subfigure residue statistics as parts of the hierarchical statistics.

Fig. 4. Left: accumulated sum of the variances from the global stats PGAg: the first
7 modes capture over 95% of the total variability. Right: the residue shape variation
after the global variation is removed: each column shows the liver −2 standard devia-
tions from the residue mean along the respective eigenmode, the residue mean, and the
liver +2 standard deviations from the mean. The left column shows the first principal
mode of the host residue stats PGAh; the other two columns show the first two modes
of the subfigure residue stats: PGAs describes the remaining shape variation of the
subfigure after the global and host-implied variation have been removed.

5.2 Generate new m-reps using the Monte Carlo method

In order to evaluate the extraction method, we need binary images for which
we know the true m-reps. A sampling scheme based on a Monte Carlo method,
described next, is used to generate sample m-reps from the trained statistics.
Sample binary images used as target images are then created as the interior of
the sampled m-reps.

Assume the PGA statistics on the extracted training m-reps (with n atoms)
are the mean m-rep M , the first NPGA principal variances {λ1,2,...,NP GA

}, and the
corresponding first NPGA normalized principal geodesic directions {p

1,2,...,NP GA
},

which is a subset of all the principal directions and sufficient to describe the vari-
ability of the m-rep shape space. New m-reps are generated by using the PGA
as the population distribution p(M) and sampling from it via the Monte Carlo
method.

1. Generate a Gaussian vector α = (α1,2,...,NP GA
), with each αi sampled from

the standard normal distribution N (0, 1);
2. Apply α as the components on the principal directions for a tangent vector

v =
∑NP GA

i=1 αi

√
λi · pi

in the tangent space TM (M(n)) at the mean M ;



3. The exponential map is used to map v to the m-rep manifold as a sampled
m-rep M = ExpM (v).

5.3 Evaluation

The diagram in fig. 5 details this evaluation using the Monte Carlo sample
generation described in the previous section 5.2.

Fig. 5. Diagram flow to evaluate the extraction process given an initial population
distribution p(M)

50 liver m-reps (fig. 6-left) were generated using the Monte Carlo sampling
method. The evaluation results are shown in fig. 6-middle as a histogram of
the mismatch (geodesic distance) between the extracted m-reps and their cor-
responding m-reps as the truth, which the target images are created from. The
average geodesic distance across all the livers is 0.054, in the units of the aver-
age boundary displacement implied by all the atoms together. And the averaged
m-rep-to-binary distance is 0.674 image voxel for all the 50 m-reps.

Fig. 6. Left: 4 of the 50 sampled m-reps used in the evaluation. Middle: evaluation
results of the extraction framework shown as a histogram of geodesic distances between
the extracted m-reps M ′

i and the m-reps Mi as the truth. Right: in the first ten passes
of the multi-pass extraction using the shape statistics, the fitting quality improves
while the average distance from the m-rep implied surface points to the closest contour
points in the binary image decreases. The distance is in the unit of image voxel.



6 Discussion and conclusion

Our examples suggest that extracted m-reps are good enough to be useful in
applications requiring statistical analysis, such as segmentation by the poste-
rior optimization of m-reps or the characterization of the geometric differences
between object populations.

We have observed that by the incorporation of the PGA statistics into a
multi-pass training, the fitting quality can be improved. The first pass uses the
same method described in section 3.3 to extract the m-reps. A following new pass
uses the shape statistics trained on the extracted m-reps from the previous pass
as the shape prior. Assume the PGA from a previous pass is given by {M, λj , pj

}.
In a new pass, m-reps are extracted from the same images by the optimization
over the coefficients of the principal directions in the following objective function,
combining the object-to-image mismatch and the squared Mahalanobis distance
as the present log shape prior.

arg min
(α1,α2,...,αNpgc )

L(Mi = ExpM (
NP GA∑
j=1

αj

√
λj · pj

), Di) +
NP GA∑
j=1

α2
j

λj
(9)

Results (fig. 6-right) indicate that the first several passes of the fitting with
statistics improve the quality of the extracted m-reps. Y axis in fig. 6-right is
the average image match distance (defined in section 3.2) over all the 15 images.
The decreasing distance in the first 10 passes indicates the improvement of the
extraction. However, the convergence of this process is still under research.

We have shown a framework to extract the medial descriptions represented
by multi-figure m-reps from binary characteristic images of multi-figure objects,
especially the objects with two-figures as demonstrated in the result section 5.1.
A Monte Carlo method has been designed to evaluate the extraction process.
We have also shown how to do either global or hierarchical statistical analysis
on multi-figure objects. We are evaluating our method when applied to the ob-
jects represented by a tree of more than one subfigures (fig. 1-a), as well as the
objects also with indentation subfigure(s) (fig. 1-d). The bias and reliability of
the statistical framework and the convergence of the multi-pass fitting are also
subjects of research.
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