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Abstract. We present a methodology for estimating the probability of
multi-object anatomic complexes that reflects both the individual ob-
jects’ variability and the variability of the inter-relationships between
objects. The method is based on m-reps and the idea of augmenting me-
dial atoms from one object’s m-rep to the set of atoms of an object being
described. We describe the training of these probabilities, and we present
an example of calculating the statistics of the bladder, prostate, rectum
complex in the male pelvis. Via examples from the real world and from
Monte-Carlo simulation, we show that this means of representing multi-
object statistics yields samples that are nearly geometrically proper and
means and principal modes of variations that are intuitively reasonable.

1 Introduction

Since multiple objects form a given anatomic region, there has been a desire
to characterize probabilistically populations of multi-object anatomic geometry.
The approaches tried so far consist of representing the objects and doing global
statistics on these representations, as derived from some dozens of training cases.
Among the representations to which this approach has been applied are point
distribution models [2], diffeomorphisms from atlases [?], distance functions or
their levels sets [6], and our own m-reps [1]. We suggest that such global statistics
pay inadequate attention to the objects themselves and most especially to the
inter-relations among objects. We provide in this paper a method for generat-
ing probabilities directly on objects and their relationships. We show examples
describing the variability of the bladder, prostate, and rectum complex in the
male pelvis within a patient across a series of treatment days.

In other work of our laboratory [1] we have argued that for producing efficient
models of anatomic geometry m-reps have advantages of representing object
interiors and the local twisting, bending, displacements, and magnifications that
regions of object interiors undergo. We have also argued that statistics on these
nonlinear transformations need to be done using geodesic distance on the curved
manifold of a symmetric space [3]. We adopt this representation and form of
statistics in this paper. Also, in this paper we restrict the discussion to objects



Fig. 1. Medial atom with a section of implied boundary surface (left). An m-rep
3-object complex for the bladder, the prostate, and the rectum of a patient in
different view in a box (right).

each of which can be represented by a single sampled sheet of medial atoms (Fig.
1), i.e., ”single-figure objects”.

We begin from the assumption that we are given a single-figure m-rep model
for multiple objects, for many training cases, and we assume further that the
object complexes have already been aligned across the cases and that the medial
atoms correspond across the cases.

We limit ourselves here to dealing with the information at the object level
of locality. Thus, we assume that any truly global variation of the complex has
been removed from each object, via the residue technique described in [4]. In
addition, we do not treat here variations that are more local than at the object
scale, despite the fact that our multiscale, coarse-to-fine approach described in
[4] provides for additional analysis via the object cross-sections represented by
medial atoms.

The subject of sections 2-6 is how to express and compute the probabilities
of the objects and of the inter-object geometry. In section 2 we overview the ap-
proach and then in succession treat its three major components, namely section
3: atom augmentation to simultaneously capture objects and their relations to
other objects, section 4: propagation of the inter-object relations to remaining
objects and object parts, and section 5: inter-object residues to describe the vari-
ation remaining after the propagation of effects from other objects. In section 6
we explain how to train probabilities for objects by successive PGA’s on object
residues.

We say that a geometric model for a complex of non-interpenetrating ob-
jects is proper if a) the topology of the objects is retained, b) each object in
the model does not have singularities or folds of its boundary or interior, and
c) the non-interpenetration of objects is retained. Many previous methods for
estimating inter-object probability distributions have produced samples some of



which are decidedly improper. In section 7 we test our method by illustrating
that models sampled from our probability distributions on intra-patient bladder,
prostate, and rectum deformations are nearly proper and that the means and
principal modes of variation of these distributions are intuitively reasonable. We
also briefly discuss application of these ideas to segmentation by posterior opti-
mization. Section 8 discusses further opportunities for evaluation, and extensions
and alternatives to the proposed methods.

2 Overview of the approach

We assume that in each case we have n objects, with m-reps {Mk}n
k=1 where

Mk can be taken as an ordered set of medial atoms. We remind the reader that
each interior medial atom requires an 8-tuple to represent, describing a hub and
two equal-length spokes (Fig. 1), and that each grid-edge medial atom requires
a 9-tuple to represent, describing a hub, two equal-length spokes, and a third
spoke formed from their bisector, which may be of a different length. In our
present approach we assume that the objects will be provided in an order of
decreasing stability, i.e., whose posterior probability, based on both geometric
variability and intensity variability and edge sharpness, are in decreasing levels
of tightness. In this work we will provide object statistics in this order, treating
each object once. The details of dealing with these objects’ statistics in sequence
are described in section 6. In section 8 we discuss the extension to a form of
a Markov process in which the method of iterative conditional modes is used,
such that the objects are dealt with multiple times and if an object has another
object as its neighbor, then the latter also has the former as a neighbor.

Fig. 2. A discrete m-rep for the bladder (M1), the prostate (M2), the rectum
(M3) 3-object complex of a patient. The augmented atoms in the prostate form-
ing A1 are shown with their hub enlarged (left). The prostate (M2), the rectum
(M3) of the same patient the enlarged atoms in the rectum form A2 (right).



The main new idea of this paper (Fig. 2) is that while estimating the statis-
tics of a particular object Mk we deal with that object’s inter-relation with other
atoms by augmenting highly correlated atoms Ak in the remaining objects to
Mk to produce representations Uk = Mk∪Ak whose statistics we study via prin-
cipal geodesic analysis (PGA)[3]. PGA produces a mean and principal geodesic
directions. This method of augmentation is discussed further in section 3.

The other aspect of our new idea is to propagate augmenting atoms’ move-
ment in the statistics of one augmented object to the remainder of the objects to
be processed. The idea is that if an object changes position, pose, size, or shape,
its neighboring objects will change sympathetically. In particular (Fig. 3), let all
of the atoms in these other objects whose statistics are yet to be determined be
Rk. The changes in Ak will be reflected in sympathetic changes in Rk \ Ak

1

before the statistics on Rk \ Ak are calculated. The details of this propagation
are discussed in section 4.

Fig. 3. Assuming we have produced statistics for the augmented bladder U1,
which has augmenting atoms A1 in the prostate (M2), we illustrate the sympa-
thetic change of R1 \A1 caused by A1.

3 Objects inter-relation by augmentation

Because we have evidence that atoms in one object that are near another object
are most highly correlated with that other object, we describe the inter-relation
of a multi-object via these nearby atoms. In the male-pelvis example of Fig.
2, we expect that medial atoms in bladder M1 be more highly correlated with
medial atoms nearby in prostate A1 than those in the rest of the prostate or
in the rectum R1 \ A1. However, these atoms in the rest of the prostate and in
the rectum atoms change their positions sympathetically as the medial mesh of
the bladder enlarges. By augmenting the nearby prostate atoms forming A1 to

1 Recall that the notation A \B means the set difference A minus B.



those atoms in bladder to produce the representation of the augmented bladder
U1, we can study the effect of the deformation of the bladder on the augmenting
atoms and then study the relation of changes in the augmenting atoms A1 to
that of rest of the prostate and the rectum, R1 \A1. We use the latter results in
a stage we call prediction, which is explained next.

4 Prediction of movements from augmentation by using
the shape space of the remaining objects

In prediction we reflect a change in Mk in the statistics of Rk by predicting how
Rk\Ak bends, twists or warps from the change of Mk through augmenting atoms
Ak. In doing so, we take account of the shape space of the remainder objects Rk

as suggested in [5], but using PGA in our a nonlinear symmetric space rather
than the principal component analysis used in [5].

Recall that PGA involves first finding the mean µ of m-reps {Mi ∈ M}N
i=1,

whereM is the symmetric space of an m-rep Mi and N is the number of training
cases; projecting {Mi}N

i=1 to the tangent space TµM at µ by the log map2

(logµ : M→ TµM); and then doing PCA in the tangent space, which yields a
set of principal directions {vl}h

l=1 in TµM. Taking the exponential map 3 (expµ :
TµM → M) of {vl}h

l=1 gives a set of principal geodesics in M, which in turn
generates a submanifold H of M. H is the shape space in which different modes
of variations restricted to H of {Mi}N

i=1 are described via principal geodesics.
The projection of Mi onto the shape spaceH, ProjH(Mi)4, describes the unique
variation within H nearest in geodesic distance to Mi.

Now consider the augmented m-rep object Uk = (Mk ∪Ak) and Rk (Ak ⊂
Rk). Let µr and Hr be the mean and the shape space generated by principal
geodesics in the symmetric space Mr of Rk, which we can obtain by performing
PGA on training cases of Rk. If we know how Uk deforms, i.e., how Mk and
Ak change together, ProjHr

(Ak) predicts how the remaining object Rk changes
sympathetically through Ak in the shape space Hr:

ProjHr
(Ak) = expµr

(
hr∑
l=1

〈logµr
(Ak), vl〉 · vl

)
, (1)

where {vl}hr

l=1 are principal directions in the tangent space of µr corresponding
to the principal geodesics in Hr and the dimension of logµr

(Ak) is adjusted to
match with that of vl by adding zeros to logµr

(Ak) for parameters corresponding
to Rk \Ak. Then the prediction for the remainder Rk can be defined as

Pred(Rk; Ak) := ProjHr (Ak) . (2)

Notice that Pred(Rk; Ak) is also an m-rep.
2 Refer to [3] for detailed explanation of log map.
3 Refer to [3] for detailed explanation of exponential map.
4 More precisely, the projection operator ProjH : M → H is approximated by

ProjH(M) = expµ

(∑h

l=1
〈logµ(M), vl〉 · vl

)
. For detailed explanation, refer to [3].



5 Residues of objects in order

If we describe the changes in Uk and the sympathetic changes in Rk \ Ak, all
that is left to describe statistically is the remaining changes in Rk after the
sympathetic changes have been removed. If the objects are treated in order
and each object has augmenting atoms only in the next object, this will mean
that n probability distributions will need to be trained, namely, for U1, for U2

after the sympathetic changes from U1 have been removed, for U3 after the
sympathetic changes from U1 and U2 have been removed, ... , for Un after the
sympathetic changes from U1, U2 . . . , and Un−1 have been removed. The removal
of sympathetic changes is accomplished via the residue idea described in [4]. Next
we explain how such residues are applied between a predicted remainder N 0 and
the actual value M of that remainder.

5.1 Difference of medial atoms

A medial atom m = (x, r, u,v) is defined as an element of the symmetric space
G = R3 × R+ × S2 × S2 where the position x ∈ R3, the spoke length r ∈ R+,
and two unit spoke directions u,v ∈ S2 (S2 is a unit sphere). If an m-rep has d
medial atoms, the m-rep parameter space becomes M = Gd. Let Rw represent
the rotation along the geodesics in S2 that moves a point w ∈ S2 to the north
pole p = (0, 0, 1) ∈ S2. For given any two medial atoms m1,m2 ∈ G where
mi = (xi, ri, ui,vi), i = 1, 2, the difference between them can be described as
follows:

	 : G×G −→ G
m1 	m2 := (x1 − x2,

r1
r2

, Ru2(u1) Rv2(v1)) .
(3)

m1 	m2 is the difference between m1,m2 relative to m2 coordinates. Like m1

and m2, m1 	m2 ∈ G.
Corresponding to the difference operator 	, the addition operator ⊕ can be

defined as:

⊕ : G×G −→ G
m⊕∆m := (x1 + x2, r ·∆r, R−1

u (∆u), R−1
v (∆v)) (4)

for given m = (x, r, u,v) and the difference ∆m = (∆x, ∆r, ∆u,∆v). This
operation is neither commutative nor associative. As an m-rep object is a collec-
tion of medial atoms, these operations can be individually applied to each atom
of the object.

5.2 Residues in object stage

Our probabilistic analysis proceeds object by object in order. After some object
has been described probabilistically and its sympathetic effect has been applied
to its remainder, there is a further change in the remaining objects to be de-
scribed. We call that further change the residue of the remainder objects with
respect to the probability distribution on the first. More precisely, let M ∈ M



be an m-rep or an m-rep residue of one object fitting a particular training case
where M is a symmetric space of M and let p(N) be a probability distribution
on N ∈M describing part of the variation of M. Notice that if D(p) represents
the domain of p, then D(p) is a submanifold of M. Relative to the probability
distribution p, N0, the closest m-rep to M in D(p), is

N0 = arg min
N∈D(p)

d(M,N), (5)

where d(M,N) is the geodesic distance on M. Then the residue ∆M of M with
respect to p can be defined as

∆M := M	N0 . (6)

In the method we are describing, we use the prediction Pred(M;A) from a set
of augmented atoms A in M to M’s previous object (of which movements have
an effect on M) as an approximation to N0 because the prediction is made on
the shape space of M and the augmentation can give a good estimation to the
overall effect of M’s previous object. We expect the prediction Pred(M;A) to
be close to N0. Thus we compute ∆M := M	 Pred(M;A).

6 Training the probabilities for objects

Training the probabilities for the object is done via successive PGA’s on the
object residues. Let Or

i = {Mr
jk}k∈J be the ith training case of a multi-object

m-rep residue for i ∈ I, where I = {1, . . . , N}, J = {1, . . . , n} are index sets for
N training cases and n objects. As mentioned in Sec. 1, Or

i is a multi-object m-
rep residue from which any truly global variations are removed from {Mik}k∈J .

The residue {Or
i }i∈I are treated in the order of objects Mk from k = 1

to n. First we apply PGA on {Ur
i1}i∈I , the residue of the first object, to get

the mean µ1 and a set of principal variances and associated principal geodesics
{expµ1(v1

l )}n1
l=1, where v1

l ∈ Tµ1M1. This mean, principal variances, and princi-
pal geodesics provide our estimate of the probability distribution of Ur

1 . Let H1

be a submanifold of M1 where M1 is the symmetric space for Ur
1 . The projec-

tion of Ur
i1 of ith case onto the geodesic submanifold H1, ProjH1(Ur

i1), describes
the variation unique to Ui1 in H1. Now we need to update the residue {Rr

i1}i∈J

to reflect the sympathetic effect from Mr
1 on Rr

1 by Ar
1. That is done by the

prediction Pred(Rr
i1; Ar

i1) as described in Sec. 4.
So the residue for the next object (the second object) that we use to apply

PGA is no longer {Or
i }i∈I . The updated residue of the remainder to the first

object becomes
Rr1

i1 = Rr
i1 	 Pred(Ri1; Ai1) i ∈ I . (7)

Once we have the new updated residue U
r(k−1)
ik ⊂ R

r(k−1)
ik for the kth object,

k = 2, . . . , n, we repeat the same steps 1) applying PGA on U
r(k−1)
ik and 2)

updating the residue of the remainder, which produces a set of means {µk}k∈J

and sets of principal geodesics {{expµk(vk
l )}nk

l=1}k∈J on object residues.



7 Geometrically proper objects in probability
distributions in the male pelvis

Samples being geometrically improper has been a problem for other methods
such as PCA on distance functions or on dense PDMs. Examples of what we
mean by geometrically improper is wrong topology, interpenetration of separated
objects, folding, and singularities such as unwanted corners and cusps. There are
two reasons why we would expect that our methods would avoid geometrically
improper samples from their probability distributions.

1) M-reps are founded on the idea that using primitive transformations in-
cluding local twisting and bending of object interiors will yield an economical
representation of the single and multi-object transformations of anatomy be-
tween individuals or within an individual over time. When using such rotational
transformations in the representation methods and in particular in the methods
of description of object inter-relations via augmentation and prediction, nonlin-
ear PGA is necessary to produce sample object complexes that are geometrically
proper.

2) The regular grids of medial atoms that we generate from training binary
images of objects [8] are designed to have large geodesic distance to improper
entities on the manifold M. Thus we might hope that objects within [−2,+2]
standard deviations will also be proper. Analysis of our objects using a criterion
based on the radial shape operator of [7] could be used to avoid improper models,
but this criterion has not been applied in the work described in this paper.

The most basic test of our probability distributions is to visually judge
whether those generated samples are proper and whether the principal geodesic
directions derived from real patient data explain variations we see in the training
samples.

Because our training set is just a particular sample subset of a population of
m-reps, we wish to know how our method would fare on other training sample
subsets. We can accomplish this by generating new random samples from our
probability distributions and test whether training from these samples produces
a probability distribution whose samples are proper.

We generate the new samples by assuming that each tangent plane principal
component from the original training follows the standard normal distribution
once we scale the principal directions by the square root of corresponding eigen-
values in the tangent space. Thus, for each object residue we randomly sample
each principal component following the standard normal distribution to gener-
ate random points on each tangent space about the mean {µk}k∈J . By taking
exponential maps of those points, we generate m-reps and residues that can be
combined by ⊕ to produce new training sample m-reps. PGA on such a new sam-
pled training set yields a new mean and set of principal directions and variances,
whose samples we can judge as to how proper they are.

We applied our new method to obtain the probability distributions from two
training sets, each of which are obtained from bone-aligned male-pelvis CT im-
ages of a real patient over several days. A single-figure m-rep was fit to each
organ: 4x6 grids of medial atoms for the bladder, 3x4 grids for the prostate,



Fig. 4. Left: tangent spaces at object residue means from real patient data.
Middle: m-rep parameter space. Right: object residue means from generated
training data. Click the figure to see the movies of 100 sampled m-reps from
patient 1 data and from patient 2 data. In the movie the point of view changes
from time to time.

and 3x7 grids for the rectum. The total number of medial atoms is 57, so the
dimension of the m-rep parameter space is 456. Our software to fit the single
figure m-reps to binary image of each organ provides reasonable correspondence
of medial atoms across cases by penalizing irregularity and rewarding correspon-
dence to one case [8]. Inter-penetrations among m-reps of the three objects were
prevented in the fitting [8] of each training case. We have 12 cases (m-reps) of
one patient (patient 1) and 17 cases of another patient (patient 2).

Figure. 5 displays the first modes of variation of patient 1 and 2 at PGA co-
efficients -3, -1.5, 1.5, 3 standard deviations of bladder with prediction, prostate
with prediction and rectum in Fig. 5 from the top row to the bottom row.

In these movies, as well as the ones seen in fig. 4, we see the following be-
haviors:

– The m-reps produced as samples or chosen along principal geodesics yield
very limited inter-object penetration, as desired since none of the training
samples have inter-object penetration.

– The surfaces of the m-rep sample implied objects are smooth, with few excep-
tions. Folding is not observed, and the introduction of sharp ridges happens
seldom, only at crest positions which are sharp in some of the training cases.

– The principal geodesics seem to correspond to anatomically observed changes.
For example, we see strong growth in the bladder corresponding to filling
and strong bulging of the rectum corresponding to the introduction of bowel
gas. In contrast, the prostate residue shows only modest shape changes, a
behavior expected from the fact that the prostate is typically quite hard.

http://www.cs.unc.edu/~jeong/IMPI05/100SamplesPat1and2.avi


Fig. 5. Illustration of first modes of variation of patient 2 in the box on the left
and that of patient 1 in the box on the right. Click the figure to see the first
modes of variations of first patient 2 and then patient 1.

It is in this sense that we say that our statistical method provides samples
that are “ nearly geometrically proper and means and principal modes of varia-
tions that are intuitively reasonable.”

In addition to the evaluation of m-rep probabilities just described, we can also
judge the probabilities by their usefulness as a prior in segmentation by posterior
optimization of m-reps of the bladder, prostate, rectum complex in new target
images of the same patient on different days. The details of this segmentation
approach are given in [4], [10], and the results on a few cases, agreeing well with
human segmentations, have been reported in [11].

8 Discussion and Conclusion

We presented new ideas in estimating the probability distribution of multi-object
anatomic objects via augmentation and prediction with principal geodesic anal-
ysis suggested in [3]. We can apply our approach to get statistics of multi-figure
objects of m-reps: taking hinge atoms as augmented atoms and predicting the
sympathetic change of a subfigure from the change of its host figure. [9] explains
the multi-figure structure of m-rep objects and its application to anatomical ob-
jects. In this paper, we have limited the residue to the object level of locality.
But we can compute finer residues at the medial atom level of locality and do
further analysis as described in [4].

Other evaluations of the sample probability distributions generated using
Monte Carlo approaches to generate new sample training sets are in progress.
These involve measuring the bias and reliability of the resulting probability dis-
tributions.

http://www.cs.unc.edu/~jeong/IMPI05/VariationsPat1and2.avi


There are some issues that we need to address in our approach: the order
of objects in applying PGA to object residues, the choice of augmented atoms,
and the neighbor relation between objects. Firstly, while in this paper we assume
that objects with less variation are handled first and objects with more variation
are handled later, we have not truly measured the amounts of variation to make
this judgment. It remains for us to find a means of doing that.

Alternatively, we can avoid ordering the objects by considering the mutual
neighbor relation in augmentation. This extension from the present approach
is suggested by real situations such as male-pelvis example that we used: not
only can the bladder induce a change in the prostate and rectum but also the
change of a prostate can induce sympathetic change in the bladder and rectum,
etc. This suggests a Markov random field model on neighboring objects, and
thus an Iterative Conditional Modes algorithm alternating among the which is
the primary object being deformed and which are the remainder undergoing
sympathetic changes.

Secondly, we choose the augmented atoms based on the distance between
atoms in one object and the other because we have preliminary evidence done by
[4] that those nearby atoms are highly correlated. Another test needed is whether
the remaining atoms are independent of the primary object when conditioned
on the augmenting atoms.

Finally, a possible measure to explain the inter-object relation is to use canon-
ical correlation. A canonical correlation is the correlation of two sets of canonical
variables, one set representing independent variables and the other set depen-
dent variables. The purpose of canonical correlation is to explain the relation
of the two sets of variables. For each canonical variable, we can also assess how
strongly it is related to measured variables in its own set, or the set for the other
canonical variable. We speculate that we can incorporate this canonical corre-
lation on the curved manifold space of m-reps as an alternative to the method
described in this paper.
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