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ABSTRACT
We present a novel histogram method for statistically charac-
terizing the appearance of deformable models. In deformable
model segmentation, appearance models measure the likeli-
hood of an object given a target image. To determine this
likelihood we compute pixel intensity quantile histograms of
object-relative image regions from a weighted 3D image vol-
ume near the object boundary. We use a Gaussian model
to statistically characterize the variation of histograms under-
stood in Euclidean space via the Mallows distance. The prob-
ability of gas and bone tissue intensities are separately mod-
eled to leverage a priori information on their expected distri-
butions. The method is illustrated and evaluated in a segmen-
tation study on CT images of the human left kidney. Results
show improvement over a profile based appearance model and
that the global maximum of the MAP estimate gives clinically
acceptable segmentations in almost all of the cases studied.

1. INTRODUCTION

The segmentation of 3D deformable objects in medical im-
ages is an important and challenging task. Segmentation meth-
ods that statistically learn a prior on object shape and a likeli-
hood of an object given an image have several desirable qual-
ities. In this paper, we define an image likelihood measure
using quantile histograms of pixel intensities as our basic im-
age measurement and we describe a new method to statisti-
cally learn their likelihood. We acquire better generalizability
by separately modeling the variation of gas and bone tissue
intensities.

One category of appearance models is based on the cor-
relation of pixel intensities acquired along profiles normal to
the object boundary [1, 2] or from entire object-relative im-
age regions [3]. These methods can be used in conjunction
with image filters to summarize information at larger spatial
scales and to measure image structures such as texture or gra-
dients [3]. Local methods, however, have difficulty capturing
the inter-relations among pixel intensities in a region.

Region based methods better capture pixel interrelations
by aggregating pixel intensities over global image regions such
as object interior or exterior, in one of two ways. In the first,
region statistics, such as mean and variance, are either learned
during training or functions of them are defined to be mini-
mized [4, 5]. Although the variation of region statistics can be

learned during training, the statistics themselves capture lim-
ited information. In the second, each region is represented by
a histogram, and a distance to a learned reference histogram
is defined [6]. Histograms provide a rich estimate of a re-
gion’s intensity distribution but previous work only specifies
a reference histogram, and not its expected variation.

In this paper, we statistically model histogram variation
using a non-parametric histogram representation based on a
set of quantiles [7, 8]. This representation allows a distribu-
tion to be understood as a point in a Euclidean space via the
Mallows distance [9, 10]. Linear operations such as mean
and interpolation produce plausible distributions allowing the
use of standard statistical tools to model histogram variation.
Furthermore, no intensity distribution assumptions are made,
making this a flexible tool for many segmentation tasks. Ini-
tial image segmentation results using this representation are
given in [7]. This paper validates these findings on a large
inter-patient kidney data set and describes two enhancements.

First, the contribution of each pixel is Gaussian weighted
according to its distance to the boundary. This is important
due to the often thin layer of fatty tissue surrounding the kid-
ney. Second, the model is modified to take advantage of a pri-
ori information regarding the expected probability of gas and
bone tissue intensities. Inside the kidney we use the proba-
bility learned during training. Outside the kidney, we artifi-
cially increase the variance of their expected probability for
better generalizability. Our appearance model uses two ob-
ject regions, inside and outside the kidney. We simplify the
probability of the image given the model to be the product of
independent, model-relative, image region probabilities.

In section 2 we introduce our quantile methodology and
construct a statistically learned histogram likelihood. In sec-
tion 3 we summarize our framework, give segmentation re-
sults, and explore ideal results of our appearance model.

2. STATISTICAL MODELING OF HISTOGRAMS

We fully train a non-parametric, histogram based appearance
model. To do this, we represent intensity distributions as
points in Euclidean space in such a way that linear operations
such as interpolation and mean produce natural distributions.
Principal component analysis (PCA) is then used to compute
a histogram’s likelihood.

In section 2.1 we construct our histogram representation
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Fig. 1. Histograms and statistics from interior and exterior kidney regions in 39 CT images without gas and bone intensities.

and describe its properties. In section 2.2 we define the like-
lihood of a histogram and the resulting appearance model.

2.1. Quantile histograms as points in Euclidean space

A histogram representation can be understood as a Euclidean
vector by considering the similarity measure defined between
two histograms that corresponds to Euclidean distance. We
use the Mallows distance [9], which was shown by Levina to
be equivalent to the Earth Mover’s distance [10].

The Mallows distance can be thought of as measuring
the work required to change one distribution into another,
by moving probability mass. The position, as well as fre-
quency, of probability mass is therefore taken into account
yielding two major benefits. First, over-binning a histogram,
or even using its empirical distribution, has no additional con-
sequences other than measuring any noise present in the dis-
tribution estimate. Second, this distance measure to some ex-
tent mimics human understanding [10].

The Mallows distance between continuous one-dimensional
distributions q and r, with cumulative distribution functions Q
and R, respectively, is defined as

Mp(q, r) =
(∫ 1

0

|Q−1(t)−R−1(t)|pdt

)1/p

.

For discrete one-dimensional distributions, consider two
distributions x and y represented by n quantiles, each stor-
ing the average of 1/n of the distribution. Considering these
values in sorted order, x and y can be represented as vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) with x1 ≤ . . . ≤ xn

and y1 ≤ . . . ≤ yn. The Mallows distance between x and y is
then defined as the (scaled) Lp vector norm between x and y

Mp(x, y) =

(
1
n

n∑
i=1

‖xi − yi‖p

)1/p

.

Therefore, histograms are understood as points in an n-
dimensional Euclidean space in which distance corresponds
to the M2 metric. Furthermore, location and scale changes to
any histogram are linear. Several families of common con-
tinuous distributions are parameterized by location and scale
parameters, including the Gaussian, uniform, and exponen-
tial distributions. Thus, histograms of each of these families
of distributions exist in a two-dimensional subspace linear
in their parameters. The Euclidean average of a set of his-
tograms, or the linear interpolation of two histograms, from
one of these families of distributions results in a histogram
contained within the family. For example, the M2 distance
between Gaussian distributions N(µ1, σ

2
1) and N(µ2, σ

2
2) is√

(µ1 − µ2)2 + (σ1 − σ2)2. Therefore, linear statistics effi-
ciently capture variation similar to location and scale change
in any set of histograms. A weakness, however, for histograms
composed of a mixture of multiple underlying distributions, is
that changing the mixture amount is a nonlinear operation.

2.2. Histogram likelihood and the final appearance model

Our appearance model defines two model-relative image re-
gions, the object interior and exterior. The contribution of
each voxel is Gaussian weighted by its distance to the surface.
This allows narrow regions to be defined that have larger cap-
ture ranges and smoother objective functions during segmen-
tation than equivalent non-weighted regions. In each region,
gas and bone intensities are separated using a threshold. The
Mallows distance is sensitive to the variation in these inten-
sities due to their extreme values compared to fat and tissue
intensities. Figure 1 shows the remaining intensity distribu-
tions for a set of kidneys.

For each region, we estimate a histogram’s likelihood by
constructing a multi-variate Gaussian model. Using PCA, we
compute a low dimensional subspace, typically of dimension
two or three out of 200. We then measure the expected dis-



0 5 10 15 20 25 30 35 40
0.75

0.8

0.85

0.9

0.95

1

V
ol

um
e 

O
ve

rla
p 

(In
t/A

ve
)

Cases Sorted by Volume Overlap

Training (95.4%)
Obj. Function Max (93.7%)
Seg. w/ Gas−Bone (91.1%)
Seg. wo/ Gas−Bone (90.2%)
Profiles (88.3)
Landmark Init. (89.0%)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

A
ve

. S
ur

fa
ce

 D
is

ta
nc

e 
(m

m
)

Cases Sorted by Average Surface Distance

Landmark Init. (2.20)
Profiles (2.22)
Seg. wo/ Gas−Bone (1.96)
Seg. w/ Gas−Bone (1.78)
Obj. Function Max (1.27)
Training (0.95)

Fig. 2. Kidney segmentation results on 39 cases. The legends give each method’s average performance.

tance to this subspace by summing the remaining eigenvalues
since during segmentation we expect image regions not typi-
cal of the training regions. We also build univariate Gaussian
models for the probability of gas and bone tissue intensities.
We compute the log probability of each, which is proportional
to a sum of Mahalanobis terms. For the histogram Gaussian
models, the Mahalanobis distance corresponds to the M2 met-
ric modified to account for the variability in the training data.
Figure 1 shows ±1.0 standard deviation along the first two
principal directions of variation of each region, which capture
94.8% and 97.4% of the variation, respectively.

Training histograms are formed by taking our shape model
fit to a manually delineated binary image and computing each
voxel’s weight in each region. To define a more accurate op-
timum for segmentation, voxels are not included where the
shape model disagrees with the binary image. However, the
expected variation of the actual training segmentations has
not been modeled and this can result in segmentations biased
towards either the object interior or exterior. Therefore, we
normalize each covariance estimate so that the average Ma-
halanobis distance of the training histograms is its expected
value, which is equal to the dimension of the Gaussian model.

3. RESULTS

In this section we give segmentation results on the human left
kidney. Our data set consists of 39 CT images at an in-plane
resolution of 512× 512 with voxel dimensions of 0.98mm×
0.98mm and an inter-slice distance between 3mm and 5mm.
In section 3.1 we discuss our shape model and segmentation
framework. In section 3.2 we present segmentation results.

3.1. The segmentation framework

We use an m-rep model to describe the shape of the kidney
[11]. The object representation is a sheet of medial atoms,
where each atom consists of a hub and two equal-length spokes.
The representation implies a boundary that passes orthogo-
nally through the spoke ends. Medial atoms are sampled in

a discrete grid and properties, such as spoke length and ori-
entation, are interpolated between grid vertices. The model
defines a coordinate system which dictates surface normals
and a correspondence between deformations of the same m-
rep model and the 3D volume in the object boundary region.

We perform semi-automatic segmentation by starting with
a mean model initialized in a target image using a similarity
transform computed from six landmarks. Segmentation pro-
ceeds by a conjugate gradient optimization of the posterior of
the geometric parameters given the image data.

3.2. Segmentation results

We are concerned with the quality of the image likelihood op-
timum defined by our appearance model and its usability in
semi-automatic segmentation. We segment each image using
a leave-one-out strategy, 200 quantiles per region, a scale fac-
tor of 100 on the variance of the outside gas and bone tissue
intensities, and two (three) principle directions for the inside
(outside) histograms. Voxel weights are determined using a
Gaussian with a standard deviation of 3mm.

We compare our segmentations to manual segmentations
and those of a profile based method described in [2]. The re-
sults are put into context by showing our shape model’s ability
to represent the manual segmentations during training. Fig-
ure 2 shows that our appearance model without gas and bone
information improves upon the initialization and outperforms
the profile based method. Including gas and bone information
improves results and leads to segmentations deemed clinically
acceptable in about 30 of the 39 cases. The results fail, how-
ever, to approach training accuracy.

To determine if this was caused by our appearance model
defining a poor global maximum, we segmented each image
starting at the shape model computed during training. In 35 of
the 39 cases this optimization found a larger local maximum
of the objective function. Figure 2 graphs the segmentation
results with the larger objective function value for each im-
age. Assuming the results are representative of the true max-
imum of the objective function, they show the high quality
segmentations defined by our appearance model. 35 of these



(a) 3 of the 4 cases deemed clinically unacceptable. (b) 3 of the 35 remaining typical segmentations.

Fig. 3. Segmentation results when examining the approximate maximum of the objective function. Each column is a single
patient viewed in an axial and coronal slice. The solid contour is the resulting segmentation and the dotted contour in (a) is the
training segmentation. Note the contrast enhanced bowel in the first column and the imaging artifacts in the second column.

segmentations were found to be clinically acceptable. Figure
3 shows three clinically unacceptable and three typical seg-
mentations. The first poor segmentation in figure 3 was due
to contrast in the bowel, atypical in our set. The second CT
image contains reconstruction artifacts.

4. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we defined a novel appearance model for de-
formable object segmentation that statistically trains a non-
parametric histogram estimate. The proposed model outper-
forms a profile based appearance model on a given kidney
segmentation task. Even more promising are the segmenta-
tion results given by the approximate maximum of the objec-
tive function defined by our appearance model. 35 out of 39
of these segmentations are clinically acceptable, with two of
the failures caused by imaging artifacts. Thus, the appearance
model is able to describe the expected image region intensity
distributions and their variation.

Our next step is to examine additional multi-scale and
non-deterministic optimization techniques to more often reach
the global maximum of the objective function. We will then
validate these findings on a comprehensive intra-patient study
of the pelvic region. We also plan on considering several lo-
cal, model-relative image regions, on modeling intensity dis-
tributions as mixtures, and on describing distributions of ad-
ditional features, such as texture filter responses.
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