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Abstract

We describe a novel continuous medial representation for object geometry and a
deformable templates method for fitting the representation to images. Our rep-
resentation simultaneously describes the boundary and medial loci of geometrical
objects, always maintaining Blum’s symmetric axis transform (SAT) relationship.
Cubic b-splines define the continuous medial locus and the associated thickness field,
which in turn generate the object boundary. We present geometrical properties of
the representation and derive a set of constraints on the b-spline parameters. The
2D representation encompasses branching medial loci; the 3D version can model ob-
jects with a single medial surface, and the extension to branching medial surfaces is
a subject of ongoing research. We present preliminary results of segmenting 2D and
3D medical images. The representation is ultimately intended for use in statistical
shape analysis.
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1 Introduction

Medial loci, or skeletons, have enjoyed wide use in computer vision and medical
image analysis because they provide important intuition about shape and
formation of biological and anatomical objects. Medial loci naturally divide
objects into a hierarchy of simple figures and describe the inherent symmetry
and local thickness of each figure.
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Fig. 1. Branching medial loci in in 2D and 3D. (a) In 2D, three branches generically
join at shared endpoints. Approaching the shared endpoint, the thickness (radius)
values associated with each branch converge to a common value. (b) In this 3D
example, two medial surfaces are connected along a seam γ. The seam forms a
crease in A and is part of the edge of B.

Medial loci of objects have traditionally been computed from discrete boundary-
based descriptions by skeletonization algorithms. Such boundary descriptions,
however, yield medial loci with a complex branching structure. For instance, a
skeleton constructed using Voronoi diagrams has roughly the same number of
branches as there are vertices in the discrete boundary description. Methods
that simplify and regularize skeletons can eliminate unstable branches and
yield object-relevant medial loci [1–4]. Nevertheless, the boundary-to-medial
transformation is inherently unstable; the resulting branching topology is sen-
sitive to slight boundary perturbations, especially at the regions known as
ligatures [5,6].

Whereas the above methods start with a boundary description and yield the
medial locus, synthetic medial representations, such as the one presented in
this paper, use the medial loci themselves as a model for object representation.
The model describes the medial branching topology and defines each branch
of the medial locus using a few parameters. The model defines a smooth pa-
rameterized thickness field over the entire medial locus. A two-dimensional
medial locus is a set of smooth curve segments joined at endpoints. A three-
dimensional medial locus is a set of surface patches connected along curves.
(See Fig. 1.)

The medial locus and the associated thickness field synthesize a stable object
boundary by inverting the skeletonization process. The generated boundary
is equivalent to the envelope of spheres (or disks) placed at each point in the
medial locus with the radius prescribed by the associated thickness value. The
model establishes a correspondence between each point on the medial locus
and a pair of points on the generated boundary. Synthetic medial representa-
tions enforce a fixed medial branching topology and provide a simultaneous

description of the medial locus and the object boundary.
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In this paper we present a continuous representation that uses cubic b-splines
to model both the medial manifolds and the associated thickness field. We
develop constraints on the parametric definition of the medial model that
guarantee that the generated boundary surface is a closed, connected, non-
singular, manifold with curvature continuity. The current state of the method
allows representation of 2D objects with branching medial topology and 3D
objects with a single medial surface. The extension to branching medial sur-
faces is the subject of ongoing research.

Our representation is essentially a continuous extension of m-reps, a discrete
medial representation developed by Pizer et al. [7]. Discrete m-reps describe
medial loci and boundaries of objects using sparse discrete samples called me-
dial atoms. Each medial atom encapsulates local surface and thickness prop-
erties of the medial locus and implies local surface properties of the object
boundary. M-reps have been shown to be effective for object representation,
modeling, and image segmentation using deformable templates because nat-
ural operations such as bending, widening and elongation are easily imple-
mented [8–10]. Styner automatically computed m-rep templates with fixed
branching topology that through deformation accurately fit populations of
hippocampi, amygdalae and other subcortical organs [11].

In this paper we show that the continuous medial representation can be ap-
plied to segment anatomical objects in medical images, following the same
deformable templates framework used for discrete m-reps in work of Joshi,
et al [8]. As an example, we automatically segment a vertebral image from a
CT slice using a 2D model with branching medial topology. In 3D, we deform
a template model of the hippocampus to fit manually segmented magnetic
resonance images of the brain.

We developed continuous m-reps with the ultimate goal of improving our
present methods in statistical shape analysis. The methods previously devel-
oped in our lab use discrete m-reps with a fixed branching topology to describe
a population of objects [12,13]. These methods estimate probability distribu-
tions of the statistical features derived from medial atoms. These distributions
are used to generate new instances of m-reps, to visualize the primary modes
of variability in the population in terms of bending or thickening of objects,
to perform classification on the basis of shape and to pinpoint locations in
objects where shape variability is most pronounced. Continuous m-reps aug-
ment shape analysis methods by allowing arbitrary sampling of medial loci.
The continuous medial representation makes it possible to elastically model
and optimize correspondences between features of different objects in the pop-
ulation.

The paper is organized as follows. In section 2, related research in boundary
and medial object representation is described. Section 3 develops the geometric

3



foundation for continuous medial modeling and defines the generative medial
b-spline model. Section 4 describes the procedure that computes the optimal
parameters of the model. Section 5 presents the preliminary results of fitting
the model to images. Section 6 describes the present limitations of the method,
and compares the b-spline medial representation with discrete m-reps.

2 Prior Work

This section summarizes the extensive prior work in areas of shape modeling
and medial geometry. We loosely group the references into subjects of local
boundary representations, global boundary representations, medial represen-
tations, and geometry of medial loci.

Local boundary representations, polygonal or higher order approximations of
the boundary surface, are the principal shape descriptors in computer graph-
ics, image analysis and shape characterization. These representations by them-
selves provide no a priori global information, such as the figural hierarchy of
an object, and thus do not provide an intuitive framework for shape analysis
and figure-based deformation. Nevertheless local primitives are used widely,
for instance for elastic deformable modeling of 3D objects of arbitrary topology
[14].

Global boundary shape descriptions have found use in image analysis via de-
formable models and in shape analysis. Staib and Duncan represent bound-
aries of three-dimensional objects as weighted sums of Fourier components
[15]. Székely et al. use a spherical harmonics decomposition to represent three-
dimensional objects of spherical topology [16]. Carr et al. use radial basis func-
tions to represent boundaries [17]. Styner et al. combines the spherical har-
monic SPHARM representation with discrete m-reps and computes statistics
on the combined representation, yielding a comprehensive statistical analysis
of shape [12].

Object description via skeletons, i.e. medial representation, has been used in-
creasingly in computer graphics and CAD. Bloomenthal and Sherstuck develop
implicit surfaces based on convolution over medial skeletons [18,19]. Markosian
et al. apply skinning of implicit fields around polyhedral skeletons [20]. Gascuel
et al. develop a system for animation and collision detection based on rigid ar-
ticulated skeletons fleshed by spline-based deformable boundary surfaces [21].
Storti et al. and Blanding et al. use a skeleton-based object representation for
CAD style applications: 3D geometric model synthesis, generation of bound-
ary surfaces at varying levels of detail, and morphing [22,23]. Igarashi’s Teddy
system uses the medial spines to drive intuitive shape modeling based on hand
sketching [24]. Chen uses multiscale medial models based on a sampled skele-
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ton for guiding volume rendering [25]. Thall et al. propose discrete m-reps as a
general geometric modeling primitive for 3D design in computer graphics and
CAD, using displaced subdivision surfaces for fine-scale boundary description
[10].

Use of medial representations for deformable modeling in computer vision was
pioneered by work of Tsao and Fu, where discrete skeletons computed by dis-
tance transform are stochastically manipulated and a discrete boundary is
regenerated [26]. Zhu and Yuille developed the comprehensive FORMS sys-
tem that automatically divides 2D objects into simple parts and represents
these parts medially, incorporating statistical shape information [27]. M-reps,
a multiscale medial description on which this paper is based, and their use
in medical image analysis have been discussed in section 1. Our method dif-
fers from the ones above because we enforce Blum’s symmetric axis transform
(SAT) relationship between a continuous deformable medial model and the
boundary generated by it [5].

Differential geometric properties of medial axis transforms, boundary genera-
tion from continuous skeletons, and associated validity constraints have been
studied extensively in the literature. In particular, Nackman [28], Vermeer
[29], and Gelston [30] explored relationships between the 3D SAT and the
curvature of its implied boundary. Hoffman & Vermeer [31], and Teixiera [32]
described validity conditions that continuous medial surfaces must satisfy in
order to exist and to imply non-intersecting boundaries. Giblin and Kimia
studied local differential geometry of various kinds of points forming 3D sym-
metry sets [33]. Damon studied the geometry of offset surfaces generated by a
multi-valued vector field defined on a set of connected manifolds; the results
presented in the following section represent a special case of Damon’s theory
[34].

3 Method

This section presents the details of the medial b-spline representation. Section
3.1 describes the differential geometry of continuous medial manifolds. Sec-
tion 3.2 presents the constraints that must be satisfied by a continuous medial
model in order for the resulting boundary to form a closed non-singular mani-
fold. In section 3.3 we implement the continuous medial representation, subject
to the above constraints, using cubic b-splines.

The geometric notions presented in the first two subsections constitute a spe-
cial case of the results recently developed by Damon. In [34] Damon studies a
class of manifolds formed by offsetting a branching medial locus by a multi-
valued vector field. Damon describes the differential geometry of the offset
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manifold in terms of the shape operator of the vector field and gives a set
of necessary and sufficient constraints that both the medial surface and the
vector field must satisfy in order to produce a continuous boundary without
singularities.

3.1 Medial Geometry

In this work we describe a continuous medial representation based on the
medial loci described by Blum as the symmetric axis transform (SAT)[5]. The
SAT is constructed as a locus of centers of maximal disks inscribed into a
geometric object. The local thickness of the object is described by the radii of
the disks.

A synthetic continuous medial representation (cm-rep) defines the medial lo-
cus of an object as a set of connected parameterized manifolds called medial

manifolds. A thickness value is associated with each point of each medial man-
ifold.

Medial manifolds in 2D are smooth curve segments connected to each other at
endpoints. Medial curve segments connect when three of them come together
at a shared endpoint, as demonstrated in Fig. 1a. The thickness value is equal
at the shared endpoint for all three branches. A joining of more than three
branches at a point is non-generic.

In general, a 3D medial locus is a set of connected medial surfaces and space
curves. Tubular objects whose medial loci are curves are non-generic and are
not dealt with in this paper. Each medial surface is bounded by a closed curve
that we call the edge. In particular, the part of an edge that is not part of any
other medial surface is called the free edge.

Medial surfaces connect along shared curves that we call seams. Seams either
form a part of the edge of a medial surface or form a crease (a discontinuity in
the surface normal) on the medial surface. Medial surfaces are smooth except
at seams. Fig. 1b, shows the seam γ that is a part of the edge of A and
a crease on B. Geometric aspects pertaining to 3D cm-reps with connected
medial surfaces are discussed below but the spline-based implementation is
limited to models with a single smooth medial surface.

Formally, let O be some geometric object with a closed continuous boundary.
The cm-rep of O is an approximation of its medial axis. The cm-rep of O is
considered valid if it forms an exact medial axis of a geometric object that
has the same topology as O, and whose boundary is closed, continuous in
curvature, and non-singular. This boundary is called the implied boundary of
a valid cm-rep. The accuracy with which a cm-rep describes O is measured in
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Table 1
Medial notation.

Symbol Description

m Medial surface

r Radial scalar field

u, v Parametrization of (m, r)

b
t Boundary counterparts of (m, r)

t Indexes the two parts (−1, 1) of the implied boundary.

U
t Unit normal to the boundary, also the direction from a point

on m to its boundary counterpart.

N Unit normal to the medial surface.

(a) (b)

Fig. 2. Elements of 3D medial geometry. (a) The medial surface m and its tangent
plane at a point; the non-orthogonal frame (mu,mv,N), and vector ∇r, the gradient
of the thickness scalar field. (b) Implied boundary surfaces b

1,b−1 and the vectors
U

1,U−1 that point from the medial surface to the boundary and are normal to the
boundary.

terms of differences between O and the object formed by the implied boundary
of the cm-rep.

In n-dimensional space, the medial locus is described by a set of control pa-
rameters that define C2 functions (m, r) : D → R

n × R
+ on a closed domain

D ⊂ R
n−1. The medial manifold is defined by the spacial component m, and

r defines the thickness field on m.

The boundary generated by a cm-rep is constructed by inverting the SAT.
Spheres (or disks) of radius r(u, v) are placed at each location m(u, v) on the
medial manifold. The generated boundary is the envelope of such a family of
spheres or disks. In 3D, the points x ∈ R

3 that belong to this two-parameter

7



family of spheres are defined by the implicit equation

f(x, u, v) = |x − m(u, v)|2 − r(u, v)2 = 0 . (1)

At the points on the envelope f must satisfy

f = 0 , fu = 0 , fv = 0 . (2)

This system of equations yields a definition of the boundary that assigns a
pair of boundary positions to each (u, v). Each sphere in the family generi-
cally touches the envelope at two points on opposite sides of the medial axis
(with the exception special points where the two sides of the boundary come
together, which will be discussed later). The points of tangency are called the
boundary counterparts of a point on the medial axis. The two boundary coun-
terparts are indexed by t ∈ {−1, 1}, are denoted as bt(u, v), and are expressed
as:

bt =m + rUt , (3)

Ut =−∇r + t
√

1 − ‖∇r‖2N , (4)

where N is the unit normal on the medial surface and Ut is the unit normal
on the boundary surface. The vector ∇r is the gradient of the thickness scalar
field on the medial surface:

∇r =
[

mu mv

]

I−1

m







ru

rv





 , (5)

where Im is the metric tensor on the medial surface.

The projections of both boundary counterparts onto the medial tangent plane
lie in the negative ∇r direction. The distance from each counterpart to the

medial tangent plane is r
√

1 − ‖∇r‖2; hence the boundary counterparts of m

are defined only if

‖∇r‖ ≤ 1 . (6)

This becomes the first constraint on the radial field.

The vector Ut in the direction from a medial point to its boundary counterpart
is normal to the implied boundary. This ensures that the medial surface is the
SAT of its implied boundary. This property is used to express the curvature
tensor of the implied boundary in terms of second derivatives of (m, r).
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The second derivative tensor of the implied boundary surface is

IIbt =







bt
uu · Ut bt

uv · Ut

bt
vu · Ut bt

vv · Ut





 = −







bt
u · Ut

u bt
v · Ut

u

bt
u · Ut

v bt
v · Ut

v





 . (7)

The metric tensor of the implied boundary is

Ibt =







bt
u · bt

u bt
u · bt

v

bt
v · bt

u bt
v · bt

v





 . (8)

The principal curvatures and principal directions of the implied boundary,
which are the eigenvalues and eigenvectors of IIbtI−1

bt , are expressed in terms of
first derivatives of bt and Ut, and following (3), in terms of second derivatives
of m and r.

At a point m on the medial surface where ‖∇r‖ = 1 the component of Ut in
the direction normal to m is 0, following (4). The two boundary counterparts
collapse to a common point on the tangent plane of the medial surface. The
square root in (4) forces the derivative of Ut to asymptote at such points, and
the curvature tensor on the surface can not be computed in terms of second
derivatives of m and r.

The definition of the implied boundary in 2D is analogous to 3D. Equations
(3), (4) do not change, and the vector ∇r is given by

∇r =
dr

ds
T =

r′√
x′2 + y′2

T , (9)

where s is the arclength of the medial curve, T is the unit tangent vector on
the medial curve, and the primes are derivatives taken with respect to the
parameter u.

3.2 Constraints on Medial Manifolds

In this section we describe two categories of constraints that the functions
(m, r) must satisfy. The first category ensures that the cm-rep generates a
closed connected boundary. The second category ensures that the boundary is
non-singular. We concentrate on 3D constraints and later point out how they
are simplified in the 2D case.
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(a) (b) (c)

Fig. 3. Examples of 3D cm-reps. (a) A medial surface. (b) Same medial surface and
its implied boundary half b

1. (c) Same medial surface with both boundary halves
b

1,b−1 that form a closed surface.

Each medial surface comprising a cm-rep generates two boundary halves, b1

and b−1. We formulate local constraints that force the boundary halves to
meet, forming a closed surface. These constraints differ at free edges, smooth
interior points, seams and at the ends of seams. The spheres placed at these
different classes of points have distinct orders of contact with the implied
boundary, and have different geometric properties [33].

At free edges the boundary halves implied by the same medial surface connect.
Recall from section 3.1 that the boundary counterparts of a point on a medial
surface coincide when ‖∇r‖ = 1. Thus this condition must hold at points on
the free edge. Fig. 4a shows an example of a medial surface that violates the
free edge constraint.

At smooth points interior to a medial surface the two boundary counterparts
are disjoint; otherwise the implied boundary does not form a closed manifold.
Following (6), the constraint at these points is the strict inequality ‖∇r‖ < 1.

At a seam point three smooth subsurfaces mi, i ∈ {1, 2, 3} come together at
an angle to each other. For example, in Fig. 1b the opposite sides of the crease
in A and the surface B form the three smooth subsurfaces. The six boundary
halves implied by the three subsurfaces connect in such a way that b1

i meets
b−1

i⊕1 smoothly. The addition operation ⊕ on the index i is cyclic on the set
{1, 2, 3}. By (3), the six boundary counterparts meet if

U1

i = U−1

i⊕1 , (10)

since the r value is the same for all three subsurfaces at a seam point. Solving
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(a) (b)

Fig. 4. Examples of boundary illegalities. (a) An example of a medial surface with
an implied boundary that is not closed. (b) A swallowtail singularity on the implied
boundary.

(4), (10) for Ni yields the following constraint on seam points:

Ni =
∇ri⊕2 −∇ri⊕1
√

1 − ‖∇ri‖2

. (11)

At seam endpoints one of the angles between the three joining subsurfaces
becomes π and the constraint (11) disappears. Applicable free edge constraints
must still be satisfied.

The above constraints ensure that the implied boundary a is closed and con-
nected surface but do not guarantee that it is non-singular. Fig. 4b shows an
implied boundary forming a swallowtail singularity, which commonly occurs
when the medial surface is left unconstrained. Singularities and invalid regions
are detected using the Jacobian of the mapping in (3), given by

J t = t
bt

u × bt
v · Ut

mu × mv · N
, for t = −1, 1. (12)

At the singularities J t = 0 and there exists a region where J t < 0. We ensure
that J t > 0 at each point on the medial surface, thus eliminating singularities
and points with reverse boundary orientation.

When the generated boundary is convex or hyperbolic at a point, the inscribed
sphere must have smaller radius than the radii of curvature corresponding to
the negative principal curvatures. Otherwise, the inscribed sphere would cross
the implied boundary. Hence the constraint

r < − 1

κt
min

(13)

must be satisfied by a valid cm-rep.
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In two dimensions the above set of constraints reduces to a set of simple
requirements. At free endpoints |dr/ds| = 1, while |dr/ds| < 1 is enforced on
the interior of medial curves. At shared endpoints where three medial curves
meet at an angle to each other, the following constraint holds:

dri

dsi

= Ti⊕1 · Ti⊕2 , (14)

where the three tangent vectors are taken pointing into the shared endpoint.
The Jacobian constraint from (12) simplifies to

bt
u · T > 0 , (15)

and the radius of curvature constraint from (13) does not change.

3.3 Generative Model

Cubic b-splines are used to model the medial surface and the thickness scalar
field because they provide local control and C2 continuity. The formulation
of a smooth medial manifold as a b-spline is similar in 2D and 3D. We begin
with the 3D case, which is presently limited to a single smooth medial surface.

A smooth medial surface (m(u, v), r(u, v)) is defined in terms of control points
as follows:

m(u, v) =
d1
∑

i=0

d2
∑

j=0

N3

i (u)N 3

j (v)m̄ij ,

r(u, v) =
d1
∑

i=0

d2
∑

j=0

N3

i (u)N 3

j (v)r̄ij (16)

where (m̄ij, r̄ij) ∈ R
3 ×R is a (d1 + 1) by (d2 + 1) array of control points that

include both positional and thickness components. Ni are third order b-spline
basis functions [35].

Medial b-splines must satisfy the legality constraints defined in section 3.2.
The constraints ensuring that the generated boundary is closed are enforced
differently in 2D and 3D.

B-spline surfaces are defined on a quadrilateral mesh and thus have sharp
corners. It is not practical (or even possible) to enforce the edge condition
‖∇r‖ = 1 on the edge of such a rectangular surface, as it would limit the
range of objects that could be represented.
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(a) (b)

Fig. 5. A manually constructed 3D b-spline medial of the hippocampus. (a) The
medial surface and the control point polygon. (b) The implied boundary.

Rather than enforcing the edge constraint along some predetermined curve on
the b-spline surface, we restrict the medial surface to a subset that satisfies
‖∇r‖ ≤ 1. The level curve ‖∇r‖ = 1 defines the edge of the medial surface. A
b-spline surface must contain a single such level curve in its entirety in order
to generate a boundary with spherical topology. By setting the r̄ij to large
negative values at the perimeter control points, and by keeping r̄ij positive
at the interior, we ensure that a level curve ‖∇r‖ = 1 lies on the b-spline
surface. The large difference in r̄ij between adjacent control points causes the
values of ru and rv to become large, in turn causing ∇r to become large, as a
consequence of (5).

The level curve that forms the edge of a medial branch is computed by a
numerical root finder in the process of sampling the spline. Whenever two
consecutive samples have opposite signs of ‖∇r‖ − 1, Newton’s method is
applied along the vector connecting the two samples in parameter space. Fig.
3a is an example of a b-spline surface trimmed by the edge curve.

B-splines are an especially elegant representation for 2D cm-reps. Not only is
it possible to represent medial structures with multiple connected branches,
but also to incorporate all of the constraints on ∇r directly into the b-spline
model. These constraints can be expressed as simple relationships between
adjacent control points.

The knot sequences used to construct 2D b-splines have four repeating zero
values at the beginning and four repeating unity values at the end. As a result,
the b-spline behaves like a Bezier curve at the end points: it interpolates the
terminal control points and the first derivatives of (m, r) at curve ends are
linear combinations of the terminal and the next-to-terminal control points,
and shown in Fig. 6a.

At free endpoints, the constraint |dr/ds| = 1 is expressed in terms of the
terminal control point (m̄0, r̄0) and the next control point (m̄1, r̄1):

r̄1 = r̄0 + ‖m̄0 − m̄1‖ . (17)

13



m0
m1

m1

m3

m2

m0

(a) (b)

Fig. 6. Simple constraints on neighboring control points are used to ensure that
the implied boundary is closed. (a) At free endpoints, the radius at the next-to-last
control point is constrained. (b) At shared endpoints the control point m̄0 is also
shared and the radius value at the three neighboring control points is constrained.

At the points where three branches meet, the terminal control point of each
branch is shared, as seen in Fig. 6b. The connectivity constraints from (14) are
expressed in terms of the shared control point (m̄0, r̄0) and the next-to-last
control points (m̄i, r̄i), i ∈ {1, 2, 3} of each branch:

r̄i = r̄0 + ‖m̄0 − m̄i‖
(m̄0 − m̄i⊕1) · (m̄0 − m̄i⊕2)

‖m̄0 − m̄i⊕1‖‖m̄0 − m̄i⊕2‖
. (18)

Hence, a closed and connected generated boundary is formed by expressing
the next-to-terminal control values r̄i in terms of near control points.

4 Parameter Estimation for Image Segmentation

Continuous medial models are used in image analysis applications following
the deformable models framework. A template cm-rep is deformed to optimally
fit the image data in the presence of a geometric prior term.

Template models are constructed manually by moving control points and ad-
justing their r value. In 2D, new branches are added by dividing an existing
branch into two parts, and joining the two new branches with a third branch
at a single control point. The user interface provides feedback when one of
the constraints defined above is violated (although constraints on ∇r are en-
forced by the construction of the model, the non-singularity constraints must
be checked after each modification of the model). The method often succeeds
even if initialized with a template model that violates the non-singularity con-
straints. An example of a manually built 3D template model is shown in Fig.
5, and the accompanying movie manual.mov demonstrates model editing in
3D.
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Template models are deformed to fit an image in an iterative process that min-
imizes an energy term in presence of constraints. The energy term consists of
an image match component and a prior component. The image match com-
ponent depends on the application. For gray scale image segmentation we use
convolution of the image with the Gaussian derivative kernel. The aperture of
the kernel is proportional to the local thickness of the object.

When fitting a model to a binary segmentation in 3D, the image match term
is the mean square distance to the boundary of the binary object [36]. The
volume overlap measure can be used instead, e.g. when fitting coarse models
with few control points to highly detailed binary objects.

Regardless of the type of the image match function used, the image match
energy component is integrated over the surface of the implied boundary.
Integration is performed by sampling the medial spline at a sufficiently fine
level of detail. Presently, the spline is sampled uniformly in parameter space.
In 3D, the intersections of the trimming edge curve with the sampled grid
are added to the set of regular samples collected on the interior of the medial
surface.

The prior energy term favors models with low curvature. It imposes a penalty
of the form

(|m̄i+1 − m̄i| − |m̄i − m̄i−1|)2 (19)

on the neighboring control points. The penalty causes the control polygon to
be relatively smooth. B-splines possess a minimum curvature property [37]
which relates the smoothness of the control polygon to the smoothness of the
spline.

The singularity constraints (12) are implemented as heavily weighted penalty
functions and are integrated over the sampling grid. The constraints are com-
puted numerically on the order of the sampling grid. Only the first derivatives
of (m, r) are computed during the deformation process. Discrete sampling
makes it possible for small local violations of the constraints to occur. The
issues of sampling are addressed in the discussion section.

Energy minimization is performed using the µ + λ evolution strategy [38] in
two stages. In the similarity transform stage the template is scaled, rotated
and translated to best match the image. During the deformation stage, small
groups of adjacent control points are selected in random order and their values
are optimized. Each group is optimized for several hundred iterations of the
evolutionary algorithm, and several passes over the groups are made, until
deformations cease to be significant.
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We chose a global non-deterministic optimization method because the image-
driven energy function has many local optima. While there exists no math-
ematical bound on the number of iterations needed for the optimization to
converge, the empirical bound in 3D is on the order of 1000 iterations per
group of four control points. Convergence time is discussed in section 5. The
algorithmic complexity is linear in the number of control points because a
change to a group of control points only requires the reevaluation of the en-
ergy function over a local portion of the object. The complexity is linear in
the number of sample points as well.

5 Preliminary Results

We demonstrate the effectiveness of cm-reps by using them for object rep-
resentation and automatic image segmentation. In 2D, we deform a model
of a vertebra to fit a slice of a CT image. In 3D, we deform a model of a
hippocampus to fit a manually segmented MRI of the human brain.

In 2D, we segment a lumbar vertebra in an axial slice of the Visible Human
abdominal CT subset [39], which is shown in Fig. 7a. Fig. 7b shows a manually
constructed initial model of the vertebra with 10 connected branch curves. No-
tice that this model intentionally contains illegalities, shown as blue segments
of the boundary. The result of automatic segmentation is shown in Fig. 7c. The
optimization process corrected the illegalities and fitted the image boundaries
closely. Fig. 7d shows a detail from fitted model, where in the top left corner
the limitation the of the non-singularity constraint 15 on the Jacobian can be
seen. The curvature constraint 13 was not enforced during this segmentation.

In 3D, we deform a template model of the hippocampus to fit a binary seg-
mentation of the left and right hippocampi in a magnetic resonance image
that is a part of a schizophrenia study. We construct a template model of the
right hippocampus by manually adjusting control points. We use as a reference
the mean right hippocampal image obtained from the statistical shape model
computed by Styner et al. using the SPHARM description of all the right
hippocampi in the schizophrenia study [12]. We obtain the template model of
the left hippocampus by reflection across the midsagittal plane. The template
model of the right hippocampus is shown in Fig. 5.

We perform the similarity transform stage of the optimization using volume
overlap with the binary segmentation as the likelihood term. We then compute
the distance transform of the binary image and blur it using a 1-voxel Gaussian
kernel. We perform the deformation stage of the optimization using the mean
squared distance likelihood term. The optimization of a model with an order of
4000 sample points typically converges after 10-15 minutes on a 900 MHz Intel
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(a) (b)

(c) (d)

Fig. 7. Automatic segmentation of a vertebra in an abdominal CT image. (a) A slice
from the CT image. (b) A manually constructed model with illegalities. The yellow
x-shaped marks denote the positions of control points. (c) A result of deforming the
model to optimally fit the image. (d) A magnified detail of the model.

Table 2
Mean square distance from left and right hippocampal models to the binary seg-

mentation.

Left Model Right Model

Template initialization 216.00 122.59

After similarity transform 4.34 4.55

After deformation 1.71 1.49

machine. The resulting models are shown in Fig. 8. Table 2 shows the mean
square distances, in units of voxels, from the boundaries of the hippocampal
models to the binary segmentations. Both the right and left hippocampus
were fitted accurately. The accompanying movie deform.mov demonstrates
3D segmentation.
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(a) (b)

(c) (d)

Fig. 8. Automatically fitted models of the left and right hippocampi. (a) Left hip-
pocampus: medial surface. (b) Right hippocampus: medial surface. (c) Left hip-
pocampus: implied boundary. (d) Right hippocampus: implied boundary.

6 Discussion and Conclusions

The preliminary results show that cm-reps are a promising method for geo-
metric modeling, segmentation and shape representation. In this section we
describe the ongoing research (extension to 3D medial branching topology,
improved sampling strategy), and compare the method with discrete m-reps.

We use cm-reps to represent 2D objects with a branching medial topology
and to represent 3D objects with a single medial surface. The extension of
the method to cover 3D branching topology remains. The challenge lies in
efficiently representing creases formed by seams in medial surfaces and in en-
forcing constraints along the creases implicitly. B-spline surfaces defined on
a quadrilateral mesh can not represent seams efficiently because creases on
these surfaces are formed by knot repetition. A crease extends across the en-
tire surface and its image in the parameter space of the b-spline is parallel to
the coordinate axes. Recent extensions to the b-spline paradigm [40,41] allow
meshes of arbitrary topology to be used and promise to represent creases more
efficiently. In 2D we express the branching constraint (14) in terms of rela-
tionships between nearby control points. In 3D, the possibility of expressing
the non-linear seam curve constraint (11) in terms of control points remains
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an open question.

In this paper continuous m-reps are used to describe objects that have codi-
mension 1 medial axes. Objects such as tubes with circular cross-sections in 3D
and circles in 2D have medial axes of higher codimension. While objects with
exact rotational symmetry are non-generic, some common biological struc-
tures, such as blood vessels in 3D, are almost perfectly tubular. Continuous
m-reps fitted to such objects are sensitive to slight boundary perturbations
and imaging noise. Curve-based medial representations, such as those used
by Aylward and Bullitt [42], provide a more stable description for tubular
objects. We are currently investigating a combined medial description that
would choose between surface-based and curve-based medial representations
as dictated by image data.

The present implementation uses a uniform grid in b-spline parameter space
to sample the cm-rep. Such sampling produces a non-uniform boundary grid,
especially near edges of branches, where the medial-to-boundary mapping
asymptotes. An adaptive sampling scheme based on distances along the bound-
ary would improve the robustness of segmentation and constraint enforcement.

Since the non-singularity constraints are checked only at the samples, small
creases on the boundary are not always detected. We are investigating methods
that would allow analytic verification of these constraints on the entire b-spline
surface. Alternatively, a search for the maxima of the constraint function,
although costly, would detect singularities independently of the sampling.

We now relate continuous m-reps to their discrete cousins. The two represen-
tations differ in the strictness of conformation to medial geometry. Continuous
m-reps maintain a strict SAT relationship between the boundary and the me-
dial locus. Discrete m-reps allow interpolation of both the boundary and the
medial locus but only enforce the SAT relationship at the medial atoms. Dif-
ferences in stability between the two methods remain to be analyzed.

The two methods differ in the way they handle objects with branching me-
dial topology. Continuous m-reps approximate the behavior of medial loci at
branching points. Discrete m-reps do not attempt to simulate the way that
medial branches seam and objects with multiple figures are represented by
blending the boundaries of single figure m-reps. The blending makes is easy
to model and deform complex 3D objects because a figure can be moved rel-
ative to another without recomputing the representation. Constructive solid
geometry is possible with discrete m-reps.

Both representations provide an object-intrinsic metric on the space inside
and around the object. This metric allows distance measures to take into
account the local thickness of the object. For example, the aperture of the
image intensity filter used in grayscale segmentation is proportional to the
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local thickness of the object. The intrinsic metric can be used to establish an
object-centric coordinate system, which provides a framework for fine-scale
boundary perturbations within tolerances prescribed by the local thickness
[8].

Recent advances in deformable segmentation, registration and shape analysis
based on discrete m-reps can readily be extended to cm-reps. Applications
that require arbitrary sampling of medial loci can benefit from the continuous
representation. For instance, boundary sampling may be adjusted adaptively
during segmentation, improving robustness and efficiency. Statistical shape
analysis can benefit from cm-reps because correspondences between objects
can be represented as a continuous mapping.

In summary, cm-reps are a promising new representation for object modeling,
automatic segmentation and shape analysis. Geometric properties of cm-reps
are simple and attractive and the legality constraints fit will into the b-spline
framework. The preliminary segmentation results are positive and encourag-
ing. The challenges that remain include the extension to cover 3D objects with
branching medial topology and application to statistical image analysis.
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