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a b s t r a c t 

Classifying medically imaged objects, e.g., into diseased and normal classes, has been one of the impor- 

tant goals in medical imaging. We propose a novel classification scheme that uses a skeletal representa- 

tion to provide rich non-Euclidean geometric object properties. Our statistical method combines distance 

weighted discrimination (DWD) with a carefully chosen Euclideanization which takes full advantage of 

the geometry of the manifold on which these non-Euclidean geometric object properties (GOPs) live. Our 

method is evaluated via the task of classifying 3D hippocampi between schizophrenics and healthy con- 

trols. We address three central questions. 1) Does adding shape features increase discriminative power 

over the more standard classification based only on global volume? 2) If so, does our skeletal repre- 

sentation provide greater discriminative power than a conventional boundary point distribution model 

(PDM)? 3) Especially, is Euclideanization of non-Euclidean shape properties important in achieving high 

discriminative power? Measuring the capability of a method in terms of area under the receiver operator 

characteristic (ROC) curve, we show that our proposed method achieves strongly better classification than 

both the classification method based on global volume alone and the s-rep-based classification method 

without proper Euclideanization of non-Euclidean GOPs. We show classification using Euclideanized s- 

reps is also superior to classification using PDMs, whether the PDMs are first Euclideanized or not. We 

also show improved performance with Euclideanized boundary PDMs over non-linear boundary PDMs. 

This demonstrates the benefit that proper Euclideanization of non-Euclidean GOPs brings not only to s- 

rep-based classification but also to PDM-based classification. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Binary classification of objects of interest based on medical

maging has been a common objective (e.g., Kurtek et al., 2011;

orczowski et al., 2010; Zhaoet al., 2014 ). Researchers often wish

o classify whether a subject has a disease or not based on geo-

etric features of an anatomical structure from a medical image.

eyond simply providing a rule for classification is the desire to

ain deeper scientific insights into phenomena underlying the dis-

ase. 

These geometric features are often provided by shape repre-

entations and should be analyzed by statistical methods suit-

ble for shapes. One of the most popular forms of shape

epresentation is the Point Distribution Model ( PDM ) (e.g.,
� This paper was recommended for publication by Dr. James Duncan. 
∗ Corresponding author. Tel.: +1 9198020255. 

E-mail address: jphong@cs.unc.edu (J. Hong). 
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ootes et al., 1995; Styner et al., 2006; Davies et al., 2003 ).

 boundary PDM is a tuple of boundary points on an object, with

oints corresponding across the training cases. Frequently, stud-

es using PDMs capture shape variations through the statistical

ethod of Principal Component Analysis ( PCA ) ( Cootes et al., 1992;

995 ), and classification is done using Linear Discriminant Analysis

 LDA ) or the Support Vector Machine ( SVM ) ( Davies et al., 2003 ). 

In this paper we investigate the possible improvements in

lassification that can arise from two modifications in the above

ethod. The first is to statistically analyze the object representa-

ion data in the realization that, per ( Kendall, 1984 ), even PDMs

an be understood as lying on a curved manifold. We apply the

ethod called Principal Nested Spheres (PNS) ( Jung et al., 2012 ) for

his purpose. 

The second modification we consider is to augment the discrete

ositional features in a PDM by boundary directional features and

bject width features at discrete points. We show that this results

n a more complicated curved manifold that can be statistically

http://dx.doi.org/10.1016/j.media.2016.01.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.01.007&domain=pdf
mailto:jphong@cs.unc.edu
http://dx.doi.org/10.1016/j.media.2016.01.007
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analyzed by PNS. We recognize that there are other object rep-

resentations and associated means of analysis that could be com-

pared, but we leave those to future work. 

The object representation we investigate that has geometric ob-

ject properties ( GOPs ) that consist of not only positions but also di-

rections and widths is the skeletal representation called the s-rep.

We and others ( Styner et al., 2004; Yushkevich and Zhang, 2013;

Bouix et al., 2005 ) have found skeletal representations particularly

effective for shape analysis. The discrete s-rep is a skeletal rep-

resentation designed to combine tightness of fitting to the object

segmentation with simplicity and stability of branching topology.

The s-rep’s directions lie on abstract spheres. 

The method of analysis we propose is distance weighted discrim-

ination ( DWD ) ( Marron et al., 2007 ) on GOPs that are Euclideanized

using PNS . We demonstrate that, both with PDMs and with s-reps,

this statistical method produces more effective classification than

those making less use of the geometry of the manifold in which

the representation lies. 

We apply our method to the problem of classifying 3D hip-

pocampi as schizophrenic or healthy based on their GOPs. We

have evaluated our method on a dataset that consists of 221

schizophrenic cases and 56 healthy control cases ( McClure et al.,

2013 ). In this application, we measured performances of meth-

ods by calculating area under the ROC curve (AUC) . The results

show that our proposed method on s-reps is superior, with non-

overlapping confidence intervals, to 

• the classification based on s-reps without Euclideanization. 
• the classification based on volume, as is common in the neuro-

science literature. 
• the classification based on boundary PDMs with and without

Euclideanization; also, the PDM-based classification with Eu-

clideanization is shown superior to the PDM-based classifica-

tion without Euclideanization. 

This paper is organized as follows. Section 2 presents object

representations and statistical methods used by others for clas-

sification as well as those used by us. Section 3 describes the

hippocampi dataset. Section 4 describes our classification method.

Section 5 presents the experimental analysis approach we have

used. Section 6 gives the experimental results, and Section 7 dis-

cusses those results and draws conclusions. 

2. Background 

This section provides background information necessary to un-

derstand our method. We also briefly overview conventional shape

representations, statistical analysis techniques, and classification

methods. 

2.1. Object model 

At a high level there are two categories of object models that

have been proposed for statistical analysis: continuous, parameter-

ized models modulo parameterization ( Kurtek et al., 2012; Jermyn

et al., 2012; Bauer et al., 2010, 2012; Durrleman et al., 2014 ) and

discrete models. Due to the discrete models’ strengths in explicitly

dealing with localized features, we focus on those models. Among

the discrete models are those based on deformations of an atlas

( Beg et al., 2005; Miller et al., 2002; Wang et al., 2007 ), those

based on boundary PDMs ( Cootes et al., 1995; Styner et al., 2006;

Davies et al., 2003 ), and those based on skeletal models ( Styner

et al., 2004; Yushkevich and Zhang, 2013; Bouix et al., 2005; Schulz

et al., 2013b ). The PDM-based models have been the most popular.

The skeletal models were designed to add local object width fea-

tures and local directional features to those provided by PDMs. 
We overview the two shape representations that we compare:

DM and s-rep. For each representation, we provide 

• a brief descriptions of the representation. 
• the dimensionality of the representation. 
• the method used to capture modes of variation given a set of

observations. 

.1.1. Point distribution model 

A PDM is a point tuple for each object in a training set of exam-

le objects. In a boundary PDM each example object in the set has

 set of enumerated points along its boundary, with points with

orresponding index in each object chosen so as to be in corre-

pondence across the training set. The training set is automatically

ligned so that all the examples lie in the same coordinate system.

hen, it models average shape by taking means on the positions

ver the set of example objects. It can also model allowed shape

ariation via a number of modes of variation. 

Consider a boundary PDM in the training set p with n bound-

ry points. By scaling the entire point tuple such that the sum of

quares of all the center-of-mass-relative point features has unit

ength, we can think of this as projection onto the unit hyper-

phere S 
3 n −4 . The dimensionality of 3 n − 4 comes from the fact

hat we have used three degrees of freedom during alignment

nd one more degree of freedom in normalizing scale to unity.

herefore, as rigorously shown by ( Kendall, 1984 ), a boundary PDM

an be represented as a concatenation of this scaling factor and

his normalized tuple of points; we can say that a boundary PDM

bstractly lives on the manifold R 

+ × S 
3 n −4 . The modes of varia-

ion are captured through a Principal Component Analysis (PCA)-

ike procedure. Although direct use of PCA is common, after the

caling Kendall’s approach places the PDM on an abstract sphere.

CA is designed to analyze data on Euclidean space, so a vari-

nt of PCA that is designed to analyze data part of which is on

 sphere is more appropriate ( Kendall, 1984; Dryden and Mar-

ia, 1998 ), though direct application of PCA to the non-scaled-

ormalized point features is more common. 

Since the PDM in question represents points along the bound-

ry, its PCA-like analysis provides no information about the object

nterior. Moreover, it does not directly represent local directional

nformation or local object width information. 

.1.2. S-rep 

A discrete s-rep is a skeletal discretization of the interior of

he object. It consists of a grid of samples of the skeletal surface

which is an approximately medial surface) and, at each of these

amples, vectors called spokes pointing from the skeletal surface

o the object’s boundary which are approximately normal to the

oundary surface. These spokes explicitly capture local direction

nd local width information. Also, the spoke ends form a boundary

DM. 

The number of these sample spokes is chosen to be the mini-

um to achieve a desired level of accuracy of each training object’s

oundary implied by the continuous s-rep interpolated from the

iscrete spokes by Vicory’s work in ( Tu et al., 2015c ) as compared

o the input object boundary from the image data. An example dis-

rete s-rep of a hippocampus can be seen in Fig. 1 . 

For each case in the provided image data the initial set of s-reps

re fitted by solving an optimization problem based on criteria in-

luding the following: no spokes are allowed to cross each other,

rid sample points are approximately regularly spaced, spoke ends

ouch the object surface, spoke directions are approximately nor-

al to the tangent object surface, and the 3-spoke assembly (ma-

enta, red, and cyan in Fig. 1 (a)) at each exterior skeletal point

ts across the high curvature locus called the crest of the object

 Koenderink, 1990 ). 
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Fig. 1. (a) Skeletal model of a hippocampus s-rep; (b) solid model implied by that 

s-rep. Yellow spheres are sample points along the skeletal surface. Solid lines ex- 

tending from these sample points are spoke vectors, which are approximately nor- 

mal to the boundary surface. Interpolation of a discrete s-rep into a continuous 

skeleton with a continuous field of spokes forms a continuous s-rep whose spokes 

completely fill the interior of the object they are representing. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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Given such an initial set of s-reps, we want each spoke vector

o be in correspondence across the training set. This is achieved

hrough an iterative optimization process that involves repeating

he following three steps for each iteration. 

1. Extracting shape statistics of the current set of s-reps, i.e., mean

shape and modes of variation. 

2. Optimizing each case in the current set over modes of variation.

3. Extending or shortening each spoke to tighten the fit of the im-

plied boundary to the boundary of the object data. 

While this method provides repeatable models for a given

raining set of input boundaries as well as good correspondence

f spokes across the training cases, separate work mentioned in

ection 7 can lead to improved correspondence. 

Consider a discrete s-rep s with n spoke vectors and m grid

ample points on the skeletal surface. The set of sample skeletal

oints forms a PDM that is aligned such that its center of gravity

s at the origin. Additionally, this tuple of centered points is scaled

y a factor making the sum of squared distances to the origin to

e unity. Therefore, this PDM is described by a tuple of centered

oints that abstractly lives on the unit hypersphere S 3 m −4 and an

ssociated log-transformed scaling factor. The directional compo-

ent of each spoke abstractly lives on the unit 2-sphere S 
2 , and

he log-transformed associated length component of each spoke

ives on the Euclidean space R 

1 . Thus, a single discrete s-rep ab-

tractly lives on R 

n +1 × S 
3 m −4 ×

(
S 

2 
)n 

. In our hippocampal dataset

ach discrete s-rep has 24 skeletal sample points and 66 spokes,

utting the s-reps in our dataset on R 

67 × S 
68 ×

(
S 

2 
)66 

. 

As described in detail in Section 2.2.3 , modes of variation of

-reps are captured via Composite Principal Nested Spheres (CPNS)

 Jung et al., 2010b ), a PCA-like method used to analyze data some

eatures of which do not live in a flat Euclidean space but on

pheres. Here these features are the spoke directions present in

n s-rep and the scaled tuple of skeletal points. Indeed, CPNS has

een shown to be appropriate for analysis of PDMs, as well ( Jung

t al., 2010a ). For more information on s-reps and CPNS, see ( Pizer

t al., 2012 ). 

.2. Statistical methods to capture data’s variation 

We provide brief descriptions of statistical analysis techniques

sed to capture underlying modes of variation of the input data.

e first overview PCA, the conventional approach. Then, we briefly

verview PNS analysis, a variant of PCA to analyze data that live

n abstract spheres. Finally, we briefly describe CPNS, a statistical
nalysis technique that is appropriate for analyzing the data that

ive on a Cartesian product of Euclidean space and hyperspheres. 

.2.1. Principal component analysis 

Principal Component Analysis (PCA) has been an important sta-

istical method for analyzing data. It provides a means of reduc-

ng the intrinsic dimension of data by capturing its major modes

f variation. PCA has been widely used in the field of medical im-

ge analysis and computer vision because descriptions of objects of

nterest are often high dimensional, whereas the important varia-

ions can be quite low dimensional. Those modes of variation are

ften quite illuminating. PCA can be understood in terms of a for-

ard or backward procedure. In a forward method you progres-

ively build up the dimension of the approximating subspace being

tted to the data, whereas in a backward method you progressively

educe the dimension of the subspace being fitted to the data. 

Both approaches yield the same result if the data lie on a Eu-

lidean vector space. However, many shape features do not lie on a

uclidean space. The backward approach typically yields different

esults from the forward approach when applied to non-Euclidean

ata. As noted in ( Damon and Marron, 2014 ), the backward ap-

roach is usually more appropriate to analyze those non-Euclidean

eatures. 

Forward PCA increases dimension by adding the component

hat captures the most remaining variance; at each iteration a

omponent that best describes the data and that is orthogonal to

revious components is added to form a new best fitting manifold

o that the current manifold is the best fitting submanifold of the

ata in the original dimension. The principal component scores are

ound by projecting all the data onto the found submanifold. 

In contrast, the backward view of PCA progressively reduces the

ntrinsic dimension of the manifold by removing the component of

he least variance from all the data points; at the beginning of each

teration the data is projected onto the submanifold found in the

revious iteration, and then the best fitting submanifold is found

y minimizing the sum of squared distances of all the projected

ata. 

.2.2. Principal nested spheres 

Principal Nested Spheres (PNS) analysis is a special case of

ackward PCA on hyperspheres. PNS progressively reduces intrinsic

imension by finding the best fitting subsphere S k −1 that is nested

n the current hypersphere S k . At each iteration, the data points are

rst projected onto the subsphere found in the previous iteration;

hen the fitting is done by minimizing the sum of squared geodesic

istances of all the projected data points to the subsphere. Over

he training cases PNS will yield a tuple of signed geodesic dis-

ances to the best fitting subsphere for each dimension-reduction

teration. As long as the commonly satisfied criterion that the pro-

ected data points are much closer to the fitted subsphere than to

he poles of that subsphere holds, these signed geodesic distances

rovide an appropriate Euclideanized form of their spherical coun-

erparts. The final result of PNS yields Euclideanized variables and

 set of geodesic polar systems that provide a means of transfor-

ations between the original space and Euclideanized space and

ice versa. The dimension 0 point in feature space produced at

he end of this iteration is called the backwards mean. ( Jung et al.,

012 ) provides more information on the method. 

.2.3. Composite principal nested sphere analysis 

Suppose the data of interest live on a Cartesian product of a Eu-

lidean vector space and hyperspheres. Such an instance includes

ny model described by a combination of GOPs involving PDMs,

engths, directions, and scaling. In this case, PNS is applied in-

ependently to each GOP that lives on a hypersphere. As noted

n the previous subsection, each application of PNS on spherical
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GOPs produce their Euclidean counterparts. Then we apply con-

ventional PCA on the matrix of Euclideanized values concatenated

with the already Euclidean components. To make the components

appropriately commensurate ( Jung et al., 2010b ) when analyzing

shape variations of s-reps, we multiply each Euclideanized value

derived from a PDM by the geometric mean of the scale factors in

the training population, and we multiply each Euclideanized value

derived from a direction by the geometric mean of its associated

length. 

2.3. Classification methods 

We briefly describe two binary classification methods: SVM and

DWD. We concentrate on linear classification methods because this

framework is easier for scientists to gain insights from studying

features. We especially pay attention to the separating direction

vector in the feature space pointing from one class to the other.

Large entries in this vector indicate that the corresponding feature

is relevant. A good separating direction provides additional infor-

mation and insight into the data by visualizing the trends between

the classes by linearly interpolating and synthesizing the data in

the original feature space along the direction. 

2.3.1. Support vector machine 

SVM ( Cortes and Vapnik, 1995 ) is a binary classification method

that yields a separation direction in the feature space. SVM then

classifies a new example by thresholding the scalar value of the

projection of it’s feature tuple onto this direction. 

2.3.2. Distance weighted discrimination 

DWD is a classification method similar to SVM but which is

more robust to noise and limited sample size. Like SVM, DWD

takes in two classes of data and yields a separating direction that

can be used to classify new data points through projection and

thresholding. Unlike SVM, the separating direction computed by

DWD is influenced by all points in the data set. A full description

of DWD can be found in ( Marron et al., 2007 ). 

3. Materials 

In this work, we study the problem of classifying hippocampi

as schizophrenic or healthy. We have chosen to use the s-rep to

represent hippocampi; we will show later in Section 6 that rich

geometric features such as directions provided by the s-rep proved

to be important discriminating features between schizophrenic

hippocampi and healthy hippocampi. In the original study, 238

schizophrenics and 56 healthy controls were enrolled. High resolu-

tion Magnetic Resonance Imaging (MRI) scans (multi-site SPGR T1

weighted imaging on 1.5 T scanner at 0 . 9375 × 0 . 9375 × 1 . 5 mm 

3 

voxel resolution) were performed on the subjects. The MRI scans

were rigidly aligned to a common coordinate system prior to the

segmentation to account for variations in sensor field of view and

magnetic field. The hippocampi were automatically segmented

from the aligned MRI scans. Then segmented hippocampi were

positionally and rotationally aligned. In the data provided, the

hippocampi had been normalized in volume with the original

volumes provided as a separate scaling feature. Details on the

original MRI hippocampi dataset can be found in ( McClure et al.,

2013 ), and those on the segmentation method can be found in

( Gouttard et al., 2007 ). 

We have chosen to analyze the shape of the left hippocampus

in this study because that was the data available. The choice of left

versus right hippocampus would not affect the finding as there is

no biological correlation between the sideness of the hippocampus

and schizophrenia. Moreover, records of the left hippocampus were
ot available for 17 patients from the schizophrenia group. There-

ore, the dataset consists of 221 schizophrenia cases and 56 control

ases. 

A set of s-reps fitted to these MRIs were provided to us. S-reps

ere fitted using shape statistics drawn from the set where both

chizophrenic cases and control cases were pooled together. De-

ailed description of the actual s-rep fitting procedure can be found

n ( Schulz et al., 2013b; Merck et al., 2008 ). 

. Method 

The novelty of our classification method comes from the fact

hat we recognize that some GOPs are not Euclidean and that we

ppropriately take that into account during classification. Our clas-

ification method works as follows. 

1. Applying PNS to Euclideanize GOPs that live on a sphere and

commensurating those features to millimeters. 

2. Learning the separation direction from these features concate-

nated with the originally Euclidean features in the training data

using DWD. 

3. Computing the function that maps from values projected onto

the separation direction to the probability of belonging to the

schizophrenic group based on Bayes’ Theorem ( Fig. 2 ). 

4. Classifying each case in the test set based on the probabilities

computed using the function from the previous step. 

In this particular classification problem, positive examples are

-reps from the schizophrenic group and negative examples are s-

eps from the control group. In the following subsections, we pro-

ide detailed description for each step. 

.1. Euclideanization of s-reps and basis of the transformation 

etween s-rep space and Euclidean space 

As we have noted in Section 2.1.2 , a discrete s-rep has some

pherical GOPs, i.e., each spoke’s direction and the PDM formed by

ts skeletal sample points. We apply PNS separately to each spher-

cal GOP, producing corresponding Euclideanized variables. This is

onsistent with the shape statistics used in fitting, namely modes

f variation calculated using PNS. 

We considered both great subspheres and small subspheres at

ach iteration of PNS to Euclideanize spherical GOPs of the repre-

entation. Hypothesis testing was performed to decide which sub-

pheres to use at each iteration of PNS. Supplementary material of

 Jung et al., 2012 ) provides details on the hypothesis testing. Along

ith the Euclideanized variables, PNS yields a polar system to be

sed as the basis of a transformation between the original s-rep

pace and the corresponding Euclidean space, in both directions. 

We concatenate the already Euclidean and Euclideanized vari-

bles and scale each so that they are commensurate. These vari-

bles form the feature space on which classifiers are trained and

ested. We denote these concatenated variables as the composite

ata matrix. 

.2. Learning separating direction 

The composite matrix computed via PNS is the input to DWD.

WD learns a feature space separating direction between the two

lasses, i.e., the schizophrenic and the control group, via the train-

ng set of discrete s-reps Euclideanized as described in the previ-

us section. 

.3. Computing the function that maps from projected feature values 

o the probability of schizophrenia 

Given a separation direction and a case with an unknown

lass label, our objective is to compute that case’s probability
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Fig. 2. Visualizations of (left) the class likelihoods and (right) the probability mapping function overlaid on top of the distributions. The empirical histogram of the scalar 

projection of the control cases in the training set onto the separation direction is plotted in the blue dotted lines; then the Gaussian probability distribution for the controls 

is plotted in the blue solid curve. The histogram for the schizophrenic class is plotted in the green dotted lines, and the corresponding Gaussian probability distribution 

for the schizophrenic class is plotted in the solid green curve. The function on the right that maps from the scalar projection onto the direction to the probability of being 

schizophrenic is plotted as solid and dashed curves respectively for two different values of p ( schizo ). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 
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f belonging to the schizophrenic group. Using Bayes’ Theorem,

e can express this probability in terms of a prior and a like-

ihood of each class. We derive likelihood probabilities, i.e., the

robability distributions of each class, given the s-rep features, by

orming a pair of histograms ( Fig. 2 ) each describing statistics of a

lass. 

Using the trained polar system, we first transform the s-rep of

nterest into a point in feature space. Let d X be the scalar value re-

ulting from projecting that data point X onto the separation direc-

ion; let { d schizo } be projection values of positive training examples,

nd let { d control } be projection values of negative training exam-

les. We form a pair empirical histograms of d schizo and d control . By

reating d schizo and d control as random variables, we derive a prob-

bility distribution for each class from the respective histograms.

he F-test failed to reject the null hypothesis that the two distribu-

ions are Gaussian with a common standard deviation. We there-

ore computed the sample means of the respective histograms and

he unbiased least square estimate of their pooled variance. These

ere used to fit Gaussians forming the class likelihood probability

istributions. 

With these two distributions, p ( d X | schizo ) and p ( d X | control ), we

an infer a class label of an unknown case if the projection value of

hat case d X is given. It can be formulated by using Bayes’ Theorem

s follows. 

By Bayes’ theorem, 

p ( schizo| d X ) 
= 

p(schizo) p(d X | schizo) 

p(schizo) p(d X | schizo) + (1 − p(schizo)) p(d X | control) 
(1) 
j  
his can be reduced to 

p(schizo| d X ) = 

p(schizo) 

p(schizo)(1 − R (d X )) + R (d X ) 
(2) 

here 

 (d X ) = exp 

[ 

−1 

2 

{ (
d X − μcontrol 

σ

)2 

−
(

d X − μschizo 

σ

)2 
} ] 

(3)

here 

2 = 

(n schizo − 1) σ 2 
schizo 

+ (n control − 1) σ 2 
control 

(n schizo − 1) + (n control − 1) 
(4) 

here n schizo denotes the number of observations for the

chizophrenic observations, σ schizo denotes the standard deviation

f the scalar projections onto the direction for the schizophrenic

bservations, and similarly for the controls with n control and σ control .

In summary, we end up with the function mapping from pro-

ection value d X along the separation direction and p ( schizo ) to

 ( schizo | d X ). p ( control | d X ) is the complement of p ( schizo | d X ). Not

nly does this probability communicate intuitively to a user how

ertain a classification of a new case is but also its basis on param-

terized probability distributions allows stable predictions in the

ails of the distribution. Fig. 2 illustrates how the mapping from d X 
o p ( schizo | d X ) varies for different values of p ( schizo ). 

.4. Classification based on probability produced by the mapping 

unction 

We decide the class label of an unknown case given pro-

ected value d and the prior p ( schizo ) by comparing p ( schizo | d )
X X 
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Table 1 

Table of averaged AUC of ROCs, confidence interval corresponding to 95% level of 

the aforementioned methods and random guessing. 

Methods AUC Confidence i ntervals 

s-reps + PNS + DWD 0.6457 [0.6363, 0.6551] 

s-reps + DWD 0.5617 [0.5520, 0.5715] 

boundary srep-PDMs + PNS + DWD 0.5981 [0.5885, 0.6077] 

boundary srep-PDMs + DWD 0.5769 [0.5672, 0.5866] 

boundary spharm-PDMs + PNS + DWD 0.5750 [0.5653, 0.5847] 

boundary spharm-PDMs + DWD 0.5734 [0.5638, 0.5831] 

volume + DWD 0.5754 [0.5657, 0.5851] 

Random guessing 0.50 0 0 [0.4902, 0.5098] 
and p ( control | d X ). In particular, we study how p ( schizo | d X ) and

p ( control | d X ) varies as we vary the prior p ( schizo ). 

5. Experimental analysis 

We first compare the performance of our method against clas-

sification based on global volume and against classification based

on non-Euclideanized s-reps. 

To evaluate each method, we use repeated 4-fold cross valida-

tion so that we do not introduce bias in the testing procedure. We

first randomly partition the positive example set (schizophrenic

group) into 4 roughly equal size subsets and likewise with the neg-

ative example sets (control group). We set aside one of the subsets

from each class for validation and used the remaining subsets to

collect statistics necessary for the classification method; this pro-

cess is repeated so that every pair of quarters over both classes is

used for validation. 

A conventional way to compare classification methods is via

ROCs, and in particular via the area under ROC. However, in data

such as ours arising from cross validation the standard methods

for comparing ROCs are not applicable because the data from dif-

ferent tries of the cross validation are not statistically independent.

Instead, we directly compute true positive rate and true negative

rate by varying the prior p ( schizo ) from 0 to 1. These two curves

can be used to form an ROC ( Fig. 3 ). The area under this curve

tells us classification performance averaged over the range of prior

probability. 

We have conducted 625 rounds of these cross validations yield-

ing 10,0 0 0 pairs of true positive rate and true negative rate against

the prior. We pool these pairs of curves over 10,0 0 0 cross valida-

tion rounds to yield a single ROC ( Fig. 3 ). We then compute area

under this final ROC ( AUC 0 ). We report that value in Table 1 . 

In addition, we computed confidence intervals at the 95% level

for all the methods given 10,0 0 0 AUCs for each method. To do

this, we can think of AUC O as corresponding to its index k among

the sorted 10,0 0 0 individual AUCs. Under the conservative estimate

that these individual AUCs are drawn randomly with replacement

from a uniform distribution over the interval [0,1], k = AUC O × N.

From this uniform distribution, we can estimate the confidence in-

terval using order statistics ( Gentle, 2009; Jones, 2009 ). 

Order statistics U 1 ≤ U 2 ≤ ... ≤ U N are drawn indepen-

dently from the distribution Uniform (0, 1). Under this assump-

tion the k th order statistic, U k , follows the beta distribution

β( k, N + 1 − k ) . The mean and variance of β( a, b ) are a/ (a + b) and
ab 

(a + b) 2 (a + b+1) 
. Therefore, U k has expected value of k 

N+1 and variance

of k (N+1 −k ) 

((N+1) 2 (N+2)) 
. 

Because our sample size of 10,0 0 0 is sufficiently large, we can

approximate the beta distribution by a normal distribution. In that

case, the expected value of U k is approximately AUC O , and the vari-

ance is approximately k (N−k ) 

N 3 
= 

AUC O (1 −AUC O ) 
N . Thus the standard de-

viation of U k is 

√ 

AUC O (1 −AUC O ) 
N . 

With this approximation we computed each method’s 95% con-

fidence interval. These intervals are reported in Table 1 . 

5.1. S-rep based method compared to boundary PDM-based methods 

The boundary PDM is a common approach to represent a shape;

boundary PDMs represent a shape via a collection of points along

the object’s boundary. We wish to compare the qualities of clas-

sification when hippocampal shapes are represented by s-reps vs.

boundary PDMs to see if the rich geometric information provided

by s-reps does increase discriminative power over classification

based on boundary information ( Fig. 4 ). 

In order to make a fair comparison between boundary PDMs

and s-reps, we need boundary PDMs that can be compared directly
o s-reps. Recall that s-reps are a collection of spoke vectors point-

ng from skeletal sample points to the object’s surface and that s-

eps are fitted such that the spoke vectors are in approximate cor-

espondence across all cases in the training population; we form

oundary PDMs from these spoke end points. We will refer these

oundary PDMs as srep-PDMs. 

In order to make comparisons for PDMs not based on s-reps,

e also create PDMs by the conventional method based on spheri-

al harmonics. We used a standard software pipeline ( Styner et al.,

006 ) to create boundary PDM with 4002 points. The two cases

n schizophrenic groups produced badly formed PDMs, so we re-

oved those two cases for this analysis. We will refer these

oundary PDMs as spharm-PDMs. 

Once the points are in correspondence, we classify in two dif-

erent ways. First, we applied our DWD-based method directly to

he point coordinate features. Second, in order to understand ad-

antages of the Euclideanization on that type of the shape data,

e applied PNS to the point tuples to yield Euclideanized features

s well as a commensurated scale, and then we applied our DWD-

ased method to these features. The same cross validation strategy

sed with s-reps was applied to each of these methods. For each

ethod, in Table 1 we report the AUC as well as confidence in-

ervals. While these confidence intervals are valid, their not over-

apping does not strictly indicate statistical significance, as these

onfidence intervals can be made as small as desired by carrying

ut arbitrarily many cross validation trials. However, since to our

nowledge the statistics literature fails to have a satisfactorily pow-

rful test for the significance of findings from the cross validation

xperiments, we resort to reporting these confidence intervals. 

. Results 

Table 1 reports the performances of all the aforementioned

ethods in terms of the average AUC and its associated confidence

nterval. First, all of the methods show improvement over random

uessing with non-overlapping confidence intervals. Second, there

s no overlap among the confidence intervals for the best perform-

ng classification method based on s-reps, best performing classi-

cation method based on PDMs, and the method based on vol-

me alone. That is, s-rep-based classification with Euclideanization

s superior to all the other methods. 

For s-reps, s-rep-PDMs, and spharm-PDMs, classification using

uclideanization is superior to that without Euclideanization. For

he boundary PDMs derived from spherical harmonics, the con-

dence intervals in respect to the improvement in performance

rom Euclideanization do overlap. 

With Euclideanization both forms of model yield similar if

ot better classification than the common approach in the litera-

ure in hippocampal classification of using volume alone. The Eu-

lideanization is so important for s-rep-based classification that

ithout it even classification based on volume alone is superior. 
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Fig. 3. The ROCs for s-rep based classifcation methods with and without PNS based Euclideanization. The classification method of s-reps without Euclideanization of spherical 

GOPs in s-reps yields AUC of 0.5617. Our proposed method that uses s-reps as the object representation and uses DWD as the classification method with Euclideanization of 

s-rep’s spherical GOPs via PNS yields the AUC of 0.6550. 

Fig. 4. The ROCs for aforementioned classifcation methods with and without PNS based Euclideanization. Our proposed method that uses s-reps as the object representation 

and uses DWD as the classification method with Euclideanization of s-rep’s spherical GOPs via PNS yields the AUC of 0.6550. 
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. Discussion and conclusion 

In this paper, we have presented a novel classification method

hat recognizes that rich geometric information is provided by s-

eps and that that information does not live in Euclidean space.

e have shown improvement in classification performance when

ll of the GOPs of either s-reps or boundary PDMs derived from

-reps are Euclideanized via PNS analysis. Indeed, since shape is

ssentially non-Euclidean, it is not surprising that trying to ana-

yze the geometrically rich s-rep models without Euclideanization

otably harms the performance. We believe that the advantages of

uclideanization to shape classification is the primary message of

his paper. 

We have not seen significant advantage to using Euclideaniza-

ion on boundary spharm-PDMs. One possible cause is the number

f points in spharm-PDMs; there are a total of 4002 points for each

ase in spharm-PDMs whereas there are only a total of 66 points

or each case in srep-PDMs. This significantly increases the dimen-

ionality of the sphere in which the shape representation resides,

o the curved manifold can be more well approximated by a flat

pace. 
We have also shown that s-rep-based classification does pro-

ide an advantage over traditional volume based classification

f hippocampi under schizophrenia; we therefore claim that

hape descriptions add additional discriminative power. We have

lso shown improvement in classification accuracy when using

-reps over boundary PDMs assuming both are appropriately

uclideanized; we conclude that local object directions and local

bject width add discriminative power. 

We chose this classification between schizophrenics and con-

rols as our target problem partly because the discriminability of

hese shapes was not previously studied and also because its low

evel of classification accuracy could be expected to particularly

trongly illustrate the effects of object representations and statisti-

al analysis methods. It remains to be seen how strongly this effect

pplies with shape classes that are more easily discriminated, i.e.,

or classifications that are clinically useful. 

Our method yields a separating direction through the pooled

ackwards mean in the feature space of the Euclideanized s-reps.

ach point on this vector can be used to generate an s-rep us-

ng the polar system. Viewing the sequence of the s-reps as an
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Fig. 5. Selected frames from the sequence of the s-reps while walking along the 

separation direction through the pooled backwards mean from the schizophrenic 

class to the control class. Viewing the sequence as a looping movie makes the local 

shape changes between the two classes more noticeable. 
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animation yields understanding of the shape changes between

the two classes. Fig. 5 shows selected frames from the sequence.

Our group’s paper on hypothesis testing on shapes using PNS-

Euclideanization ( Schulz et al., 2013a ) analyzes the discriminability

between these two classes of hippocampi locality by locality and

GOP by GOP. 

The experiments described in this paper were done on a single

data set of 277 hippocampus s-reps. These s-reps were fitted, as

described in Section 2.1.2 , using statistics computed from the en-

tire dataset. This introduces a bias in classification evaluation be-

cause, when the data is partitioned into training and testing groups

during cross validation, the s-rep models in the testing group have

their fits affected by not only the training data but also the test-

ing data. Unfortunately, the cost required to correct this bias by

recomputing statistics and s-reps in every iteration is prohibitive,

so the bias could not be removed. Instead, we choose to exam-

ine the effect of this bias has on a single partitioning of the cross

validation. 

For that partitioning, we fit s-reps to the training hippocampi

and testing hippocampi using statistics computed using the train-

ing data only; this reflects the procedure that would be used when

applying a trained classifier to previously unseen data. Using these

unbiased s-rep fits, we performed the experiment described in

Section 4 only on that partitioning. For the method on the classifi-

cation of s-reps with Euclideanization, the unbiased analysis yields

an AUC for this partition of 0.600. The analysis on the same par-

tition using the original biased s-reps yields an AUC of 0.591. The

difference is about 0.2 times the standard deviation of the AUCs

across partitions. While this result comes from the only one parti-

tion, this suggests that there are negligible effects of the bias from

the model fitting. 

There are still some further questions to be investigated. 

• To see if our results extend to other anatomic objects and dis-

eases, we would like to apply the method on different appli-

cation problems, e.g., classification of Alzheimer patients or of

infants at high risk of autism based on shapes of the neu-

roanatomical structures. We are also interested to see classifi-

cation quality when there are multiple structures involved, e.g.,

hippocampus and caudate. 
• In Euclideanizing a spoke direction using PNS, we apply PNS

separately because we are making the naive assumption that

each direction is independent. However, because object surface

is continuous and smooth, each direction is highly correlated

to its neighbors. We would like to produce a Euclideanization

method that reflects this correlation. Also, others are suggesting

methods for statistical analysis directly on the curved shape-

feature space manifold ( Benjamin Eltzner and Huckemann,

2015; Sommer, 2015 ), and it would be interesting to evaluate

classification methods using these ideas. 
• As previously mentioned in Section 2.1.2 the method we used

to achieve spoke correspondence in s-reps across the training

set could be improved. In separate work, reported in ( Tu et al.,

2015b ) and in ( Tu et al., 2015a ) under review, we created a

method to improve the correspondence by spoke shifting on

each training case, so as to minimize an entropy measure. This

entropy measure reflects both shape probability distribution

tightness and uniformity of coverage of the spokes in each

training case. The shape probability distribution used is derived

from the same PNS approach used in this paper. The correspon-

dence was shown to be improved in a set of lateral ventricles

and in a subset of the hippocampi used in this paper. It would

be interesting to see whether classification of hippocampus

could be improved using these correspondence improved

models. Finally, ( Tu et al., 2015c ) also showed improved PDM

correspondence when using the spoke tips as the PDM as

compared to a PDM derived from spherical harmonics and then

improved in correspondence by the entropy-based method of

( Cates et al., 2006 ). This further justifies our decision to use

the s-rep derived PDM instead of PDMs derived from spherical

harmonics in the classification study reported in this paper. 
• Other work is in progress comparing different statistical meth-

ods against DWD. It would be interesting to see how DWD

for our purpose compares to other statistical methods such as

Support Vector Machine, Difference of the Means, and Random

Forests. 
• It would be interesting to measure the relative power of classi-

fication via other shape representations that have been used in

the anatomic shape analysis literature, including but not limited

to parameterized surface representations used in ( Kurtek et al.,

2012; Jermyn et al., 2012; Bauer et al., 2010, 2012; Durrleman

et al., 2014 ), deformation fields used in ( Lancaster et al., 2003 ),

Villalon-Reina et al. , the spherical harmonic coefficients used in

( Gerig et al., 2001 ), spherical wavelet coefficients used in ( Nain

et al., 2007 ), and atlas deformation representations such as LD-

DMM momentum ( Beg et al., 2005; Miller et al., 2002; Wang

et al., 2007 ). 
• Whereas this paper compares the classification performances of

shapes, we are preparing another work on comparison of prob-

ability distribution estimation on shapes as we vary the rep-

resentation and whether Euclideanization is used, as well as

one focusing on probability distribution estimations on shape

change using Euclideanization. 
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ppendix 

As noted in Section 7 , we visualize the hippocampal shape dif-

erence between the schizophrenics and the healthy controls by

inearly interpolating points in feature space; these points are in-

erpolated along the separation vector that points from the posi-

ive class (schizophrenics) to the negative class (controls) passing

hrough the mean of all the training cases in the Euclideanized fea-

ure space. We generate a sequence of s-reps from these interpo-

ated points. We create an animation using these s-reps that loops

ack and forth three times in two different views, i.e., axial view

nd coronal view. We strongly recommend interested readers to

ake a look at the full sequence in the supplementary data. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.media.2016.01.007 . 
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