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Summary. Scientists often need to test hypotheses and construct corresponding confidence intervals. In
designing a study to test a particular null hypothesis, traditional methods lead to a sample size large
enough to provide sufficient statistical power. In contrast, traditional methods based on constructing a
confidence interval lead to a sample size likely to control the width of the interval. With either approach,
a sample size so large as to waste resources or introduce ethical concerns is undesirable. This work was
motivated by the concern that existing sample size methods often make it difficult for scientists to achieve
their actual goals. We focus on situations which involve a fixed, unknown scalar parameter representing
the true state of nature. The width of the confidence interval is defined as the difference between the
(random) upper and lower bounds. An event width is said to occur if the observed confidence interval
width is less than a fixed constant chosen a priori. An event validity is said to occur if the parameter
of interest is contained between the observed upper and lower confidence interval bounds. An event re-
jection is said to occur if the confidence interval excludes the null value of the parameter. In our opin-
ion, scientists often implicitly seek to have all three occur: width, validity, and rejection. New results
illustrate that neglecting rejection or width (and less so validity) often provides a sample size with a
low probability of the simultaneous occurrence of all three events. We recommend considering all three
events simultaneously when choosing a criterion for determining a sample size. We provide new theoret-
ical results for any scalar (mean) parameter in a general linear model with Gaussian errors and fixed
predictors. Convenient computational forms are included, as well as numerical examples to illustrate our
methods.
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1. Introduction
1.1 Motivation
Many statisticians and scientists strongly prefer confidence in-
tervals over hypothesis tests. Much of the appeal arises from
the ability of confidence intervals to help quantify the magni-
tude of an effect in units of scientific interest. Unfortunately,
existing methods for choosing a sample size to compute a con-
fidence interval often fail to address important scientific goals.
For example, Pisano et al. (2002) conducted a study to

compare mammography displays. Traditionally, radiologists
have read mammograms on film (hardcopy). Recently devel-
oped digital mammography equipment allows display on a
computer screen (softcopy). In order to adopt the use of soft-
copy images, the time required to read a mammogram needs
to be considered, in addition to image quality. In this study,
radiologists were asked to read under both modalities in order
to determine if the mean reading times differ substantially.
Such investigators often ask, “How many subjects are

needed to have a high probability of producing a confidence

interval for the parameter of interest with width no greater
than a fixed constant?” This question is usually easy to an-
swer, given independent observations from distributions of as-
sumed known structure (e.g., Gaussian). However, in many
situations, the question is incomplete. In addition to desiring
a narrow confidence interval for the true mean time differ-
ence, the scientists in our example were also very interested
in knowing whether reading softcopy is faster or slower than
reading hardcopy. That is, they were also interested in the
rejection of the null hypothesis of no difference in true mean
reading times.
Consider a fixed, unknown scalar parameter, θ, represent-

ing the true state of nature, with corresponding null value
θ0 <θ. With L and U as the lower and upper (random)
bounds, confidence interval width is defined as U −L. An
event width is defined as U −L≤ δ, for fixed δ > 0 chosen a
priori. An event validity is defined as L≤ θ≤U . An event re-
jection, of the null hypothesis that θ= θ0, is said to occur if
the observed interval excludes θ0. As phrased in the question
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above, only the width of the interval is considered, while re-
jection and validity have been neglected.
The new methods differ from previous work by simulta-

neously considering width, validity, and rejection to choose
a sample size. We will argue that the best question is of-
ten “Given validity, how many subjects are needed to have a
high probability of producing a confidence interval that cor-
rectly does not contain the null value when the null hypoth-
esis is false and has a width no greater than δ?” Addressing
this question will lead to sample sizes that are more likely to
achieve desired scientific goals than those chosen with tradi-
tional methods.

1.2 Notation
All results are presented in terms of a scalar (expected value)
parameter in the general linear multivariate model (GLMM),
assuming fixed predictors. The general notation includes a
wide range of special cases: one-sample t-test, two-sample t-
test, paired-data t-test, and planned scalar contrasts in uni-
variate, multivariate, or repeated measures analysis of vari-
ance (ANOVA). The notation is essentially from Muller et al.
(1992) and is summarized in Table 1.
Lowercase bold always indicates a (column) vector, while

uppercase bold indicates a matrix. Whenever random variable
and matrix notation conflict, matrix notation will dominate.
Detailed information about all random variables discussed in
this article can be found in Kotz, Balakrishnan, and Johnson
(2000), and Johnson, Kotz, and Balakrishnan (1994, 1995).
For fixed and known design matrix X, fixed unknown pa-

rameter matrix B, observed responses Y, and unobserved er-
rors E, the assumed model is

Y = XB+E, (1)

with rows of E independent and rowi(E)′ ∼ Np(0,Σ),
which indicates that rowi(E)′ is length p and follows a
normal distribution with mean 0 and covariance matrix
Σ. The usual estimators are B̃ = (X′X)−X′Y and Σ̂ =
Y′{I− (X′X)−X′}Y/νe, where νe=N − r is the error degrees
of freedom (d.f.) and r=rank(X). The associated general lin-
ear hypothesis (GLH) about Θ=CBU can be stated

H0 : CBU = Θ0, (2)

Table 1
Definitions of matrices

Symbol Size Definition and properties

X N × q Fixed, known design matrix
B q× p Primary parameters (means)
C a× q Between-subject contrasts
U p× b Within-subject contrasts
Θ=CBU a× b Secondary parameters
Θ0 a× b Parameter null values
Σ p× p Covariance matrix of

rowi (E)′
Σ∗=U′ΣU b× b Covariance matrix of

rowi (EU)′
M=C(X′ X)−C′ a× a Middle matrix
Δ=(Θ−Θ0)

′ b× b Unscaled ncentrality
×M−1(Θ−Θ0)

for fixed and known Θ0 (a× b). Only testable hypotheses are
considered, which require full rank Σ∗, M, and U and C=
C(X′X)−(X′X).
The special case a= b=1 implies that the a× b secondary

parameter Θ, the a× b known constant Θ0, and the b× b co-
variance matrix Σ∗ become the scalars θ, θ0, and σ2

∗, respec-
tively. In turn, all univariate and multivariate repeated mea-
sures tests provide the same p-value. Define Δ̂ = (Θ̂−Θ0)

′

×M−1(Θ̂−Θ0). The statistic to test the hypothesis in (2)
may be computed as

F =
trace(Δ̂)/(ab)

trace(Σ̂∗)/b

=
(θ̂ − θ0)

′m−1(θ̂ − θ0)
/
1

σ̂2∗
/
1

=
(θ̂ − θ0)

2

σ̂2∗m
, (3)

where m is the scalar version of the middle matrixM defined
in Table 1 and the simplifications arise from the restriction
a= b=1.

1.3 Example Details
The process of planning a follow-up study to Pisano et al.
(2002) will illustrate the new methods. The randomness of the
mean and variance estimators makes any sample size choice
based on such estimators random. The desire to account for
this randomness leads naturally to the desire to create a con-
fidence interval around the (estimated) sample size. Taylor
and Muller (1995, 1996), and Muller and Pasour (1997), de-
rived exact methods for creating such confidence intervals in
the context of power analysis for any general linear univariate
model with fixed predictors. Including a careful and complete
treatment of methods needed to account for such random val-
ues would considerably lengthen the present article. Hence,
for the sake of brevity, we reserve that discussion for a future
article.
In planning the Pisano et al. (2002) study, the scien-

tists felt that radiologists would tolerate the disadvantage
of an increase in true mean reading time of up to 25% in
order to gain the many advantages of softcopy over hard-
copy display. Experience with similar studies led us to ex-
pect that log response time would approximately follow a
Gaussian distribution. Hence, the model was formulated in
terms of the mean difference of the logarithms of reading
times. With thi and tsi the random observed viewing times
for reader i for hard and softcopy, respectively, it follows that
yi = log10(thi/tsi )= log10(thi )− log10(tsi ). The model simplifies
to y=1Nβ + e, with β = E(yi). The hypothesis of interest
has θ0=0 and θ=1 · β · 1, which reduces (2) to H0 : θ=0.
No information about the variance in reading time differences
was available before the study began. A sample size of eight
radiologists was chosen (with each radiologist reading a soft-
copy and hardcopy mammogram) in order to control costs
while still hopefully providing a defensible variance estimate.
It was expected that a subsequent study would be conducted,
if necessary, to achieve more precise conclusions.
The paired-data analysis led to an estimated mean dif-

ference (hardcopy minus softcopy) of 0.076 log10 seconds of
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viewing time, with estimated error variance 0.012. Properties
of the logarithmic transformation allow noting that the ob-
served difference corresponds to an approximately 16% reduc-
tion in median reading time (softcopy better than hardcopy).
In order to examine the sensitivity of sample size to the choice
of inputs, we considered 10, 20, and 40% differences in true
mean viewing time. Corresponding log10 scale widths of 0.046,
0.097, and 0.222 lead to recruiting 106, 29, or 9 radiologists,
respectively, based on confidence interval width alone.
The null hypothesis of interest is that there is a true mean

difference of zero between hard and softcopy (log10) reading
times. Since softcopy images may take more or less time,
a two-sided test is required. Based on power considerations
alone, assuming a true mean difference of 0.076 log10 seconds
and a target power of at least 0.9 for a paired-data t-test leads
to using 24 radiologists.
The calculations dramatically illustrate the risks of what

Muller et al. (1992) described (in the context of power anal-
ysis) as a misalignment of sample size rule and scientific
objective. In the current example, sample size could be ei-
ther more than four times too large (106 vs. 24) or roughly
three times too small (9 vs. 24) when using a width criterion
rather than a power criterion. The choice of criterion depends
entirely on the scientific objective.
In our experience, scientists usually fail to control both

power and width criteria, despite computing a confidence in-
terval and conducting a test of the null hypothesis at the end
of the study. We propose to resolve the conflict among sample
size rules by requiring the sample size to meet both power and
width criteria conditional on a validity criterion, resulting in
the alignment of sample size rule and scientific objective. The
impact of seeking a high probability of achieving a valid con-
fidence interval of width no more than δ, while also requiring
a high rejection probability, is the focus of this article.

1.4 Literature Review
All current sample size methods for confidence intervals are
based on some combination of two objectives: validity and
width. Following the Neyman-Pearson tradition, define θ as
the fixed, unknown parameter of interest representing the true
state of nature, θ0 as the null (comparison) value, U as the up-
per (random) interval bound, L as the lower (random) interval
bound, and assume θ > θ0. The event validity (V) occurs if the
observed interval contains the parameter of interest, namely,
L̂≤ θ≤ Û , so that

Pr{V } = Pr{L≤ θ≤U}. (4)

Setting Pr{V } = 1− α, with α fixed a priori, [L , U ] is said
to provide an exact (1−α)-size confidence interval for θ.
The term “validity” is in some sense misleading. We con-
sider only valid procedures for computing confidence inter-
vals, in the sense that all have a confidence coefficient of 95%.
The (random) confidence interval is inherently valid regard-
less of whether or not its realization happens to capture the
true value of the parameter. However, we use the term “valid-
ity” to describe whether or not the realization of the random
confidence interval happens to capture the true value of the
parameter.
Although some basic assumptions differ from those in

the Neyman-Pearson tradition, current Bayesian methodol-

ogy also targets validity (conditional on the observed data)
as the objective function for confidence intervals. However,
Bayesians are allowed a more intuitive interpretation of a con-
fidence interval, namely, the probability that the population
parameter is between the observed realizations of the (ran-
dom) L and U, given the observed data, is at least 1−α.
See Carlin and Louis (2000, Section 2.3.2, p. 35) for a fully
Bayesian treatment of confidence (probability) intervals.
With δ > 0 constant and fixed a priori, the event width (W)

occurs if Û − L̂≤ δ, so that

Pr{W} = Pr{U − L≤ δ}. (5)

Kupper and Hafner (1989) noted that some popular sample
size formulas for confidence intervals, which seek to control
width, may poorly approximate the sample size needed due
to the use of large sample approximations in lieu of exact
small-sample results.
Lehmann (1959) stated, “there is no merit in short inter-

vals that are far away from the true θ,” suggesting that there
is little reason to control the width of a confidence interval
which does not have Pr{V } ≥ 1− α. Formalizing this idea,
Beal (1989) advocated determining sample sizes using the
conditional probability

Pr{W |V } = Pr{U − L≤ δ |L≤ θ≤U} = Pr{W ∩V }
Pr{V } . (6)

Beal concluded that realizations of confidence intervals which
happen to include the true parameter tend to be slightly wider
than confidence interval realizations in general (uncondition-
ally). At about the same time, Hsu (1989) independently dis-
cussed Pr{W ∩V } in the multiple-comparison setting, pre-
senting the two-treatment situation as a special case. Wang
and Kupper (1997) and Pan and Kupper (1999) extended the
width and the width given validity criteria to two-population
and multiple-comparison settings for Gaussian data, while
treating confidence interval width as random.
Bristol (1989) compared sample sizes based on Pr{W} to

those based on power. He found comparisons difficult, since
Pr{W} is not directly related to power. He had no clear pref-
erence for either method, except to note that the method used
should align with the analysis goal.
While not the main focus of the work presented here, power

analysis does play an important role. See Muller et al. (1992)
for a review of power analysis in the GLMM.
Equivalence and noninferiority tests are special cases of

hypothesis testing. Various connections between methods for
confidence intervals, and methods for equivalence and nonin-
feriority studies have been investigated. See Hsu et al. (1994),
Bauer and Kieser (1996), Chow and Liu (2000), and Rashid
(2000) for further information.
Cesana, Reina, and Marubini (2001) recommended control-

ling both power and confidence interval expected width when
choosing a sample size for comparing a binomial proportion
to a reference value. Their goals agree very closely with ours.
In contrast to their one-sample binomial results, the new re-
sults here apply to any scalar hypothesis in a GLMM, and
add the requirement that the confidence interval contains the
parameter with a high probability.
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2. New Results
2.1 Logic behind the Approach
The new results are founded on the premise that addressing both
power and confidence interval criteria simultaneously will lead
to the best choice of sample size for statistical inferences based
on confidence intervals. All existing methods for the GLMM
address rejection alone, width alone, or width given validity.
Solving the problem in the GLMM framework allows develop-
ing a single approach that applies to a wide variety of common
designs.
The new methods derived in this article were motivated

by the following premise. Rules for choosing sample size for
studies using confidence intervals for statistical inference have
traditionally focused on controlling width alone. However, as
Lehmann (1959), and then Beal (1989) and Hsu (1989), ar-
gued, confidence interval width should be controlled condi-
tional on validity. Since confidence intervals ideally exclude
the null value when the the alternative is true, which implies
rejecting the corresponding null hypothesis, rejection should
be considered simultaneously with width and validity.

2.2 Concept of Rejection
We define rejection, denoted R, as the event that the confi-
dence interval does not contain the null value. Rejection is
a third property which can be used to choose sample sizes
for confidence interval–based inferences. Having computed a
confidence interval, a data analyst may conduct a hypothesis
test by observing whether or not the interval excludes the null
value. For a two-sided test of H0 : θ= θ0 vs. Ha : θ �= θ0, the
probability of the event rejection can be written as

Pr{R} = Pr{(U < θ0) ∪ (θ0 < L)}. (7)

In the special case of a one-sided hypothesis test of H0 :
θ= θ0 vs. Ha : θ > θ0 (θ < θ0), Pr{R} reduces to Pr{θ0 <L}
(Pr{U <θ0}). The (unconditional) definition of power (the
probability of rejecting the null hypothesis) and Pr{R} then
coincide exactly. See Leventhal and Huynh (1996) for a re-
lated discussion.

2.3 An Exact Expression for Pr{(W ∩ R) |V }
For a two-sided situation, sample size may be chosen to
control

Pr{(W ∩ R) |V }
= Pr{[(U − L≤ δ) ∩ (U < θ0 ∪ θ0 < L)] | (L≤ θ≤U)}.

(8)

In words, Pr{(W ∩R) |V } is the probability that the width
of an interval is less than a fixed constant and the null hy-
pothesis is rejected, given that the interval contains the true
parameter.
Varying the form of hypothesis test and confidence inter-

val desired leads to several special cases of Pr{(W ∩R) |V }.
In practice, a two-sided hypothesis test and a two-sided con-
fidence interval (2s test/2s CI) would typically be used to-
gether, although a one-sided hypothesis test might be paired
with a one- or two-sided confidence interval (1s test/1s CI;
1s test/2s CI). The following theorem and corollaries provide
expressions for Pr{(W ∩R) |V } and related probabilities for
the GLMM framework. See the Appendix for all proofs.

Theorem: With σ2
∗ , νe and m as defined in Section 1.3,

let f crit=F−1
F (1−α; 1, νe) indicate the (1−α) quantile of

the cumulative distribution function (CDF) of a central F
random variable with 1 as the numerator and νe as the de-
nominator d.f. Also assume that θ > θ0, δ(>0) is the confi-
dence interval width desired, θd= θ− θ0, x1= νeδ

2/(4σ2
∗f critm),

c1=(f crit/νe)
1/2, and c2= θd/(σ

2
∗m)

1/2. Let Φ(·) indicate the
CDF of a standard normal variate and fχ2(x; νe) the central
chi-squared density function with νe df. For a 2s test/2s CI,
with a= b=1 (which insures a scalar parameter),

Pr{(W ∩R) |V }

=

∫ x1

0

[
Φ

(
c1x

1/2
)
−Φ

{
max

(
c1x

1/2 − c2,−c1x
1/2

)}]
× fχ2(x; νe)

1− α
dx. (9)

Corollary 1: Assume θ > θ0. For the one-sided test H0 :
θ= θ0 vs. Ha : θ > θ0 with a= b=1, and a two-sided confidence
interval, (9) still holds.

Corollary 2: Assume θ > θ0. For the one-sided test H0 :
θ= θ0 vs. Ha : θ > θ0 with a= b=1, and a lower one-sided con-
fidence interval of the form [L, ∞), the probability is

Pr{(W ∩R) |V }

=

∫ x1

0

{
Φ

(
c1x

1/2
)
−Φ

(
c1x

1/2 − c2

)}fχ2(x; νe)

1− α
dx. (10)

Corollary 3: Assume θ < θ0. For the one-sided test H0 :
θ= θ0 vs. Ha : θ < θ0 with a= b=1, and a two-sided confidence
interval, the probability is

Pr{(W ∩ R) |V }

=

∫ x1

0

[
Φ

{
min

(
−c1x

1/2 − c2, c1x
1/2

)}
−Φ

(
−c1x

1/2
)]

× fχ2(x; νe)

1− α
dx. (11)

Corollary 4: Assume θ < θ0. For the one-sided test H0 :
θ = θ0 vs. Ha : θ < θ0 with a = b = 1 and considering an
upper one-sided confidence interval of the form (−∞, U ], the
probability is

Pr{(W ∩R) |V }

=

∫ x1

0

{
Φ

(
−c1x

1/2 − c2

)
−Φ

(
−c1x

1/2
)}fχ2(x; νe)

1− α
dx. (12)

Corollary 5: Alternate forms for Beal’s (1989)
Pr{W |V }, and Hsu’s (1989) Pr{W ∩V }, can be imme-
diately derived as special cases by eliminating rejection (R) for
each of the one- and two-sided cases described above.

Three distinct equalities deserve mention: i) The symmetry
of the normal distribution leads to the equivalence of the form
of (9) in Corollary 1 and (11) in Corollary 3, which both in-
volve a 1s test/2s CI; ii) A similar equivalence holds between
(10) and (12), which both involve a 1s test/1s CI; iii) Requir-
ing validity in Pr{(W ∩R) |V } disallows the “opposite” tail,
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meaning that (9) holds for the situation described in Corol-
lary 1. Some practical implications of these equivalencies are
described in Section 5.

2.4 A Better Computational Form for Pr{(W ∩R) |V }
in Equation (9)

In some cases, equation (9) leads to computational diffi-
culties which can be avoided as follows. If x0= θ2

dx1/δ
2,

then c1x
1/2 − c2=−c1x

1/2. The strictly increasing function
c1x

1/2 − c2 and strictly decreasing function −c1x
1/2 intersect

at x0= θ2
dx1/δ

2. When θ > θ0, c1 and c2 are both nonnega-
tive; so when x1 > x0, max(c1x

1/2 − c2,−c1x
1/2) = c1x

1/2 − c2;
when x1 ≤x0,max(c1x

1/2 − c2,−c1x
1/2) = −c1x

1/2. Thus,

Pr{(W ∩R) |V }

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x0

0

{
Φ

(
c1x

1/2
)
−Φ

(
− c1x

1/2
)}fχ2(x; νe)

1− α
dx

+

∫ x1

x0

{
Φ

(
c1x

1/2
)
−Φ

(
c1x

1/2 − c2

)}fχ2(x; νe)

1− α
dx,

δ > θd;∫ x1

0

{
Φ

(
c1x

1/2
)
−Φ

(
− c1x

1/2
)}fχ2(x; νe)

1− α
dx, δ ≤ θd.

(13)

In the following, d(x)= 0 if x ≤ x0, while d(x)= 1 if x > x0.
The first two integrals in (13) can be combined and rewritten
into a more computationally efficient form, yielding

Pr{(W ∩R) |V }

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ x1

0

[
{1− d(x)}

{
Φ

(
c1x

1/2
)
−Φ

(
−c1x

1/2)
}

+ d(x)
{
Φ

(
c1x

1/2
)
−Φ

(
c1x

1/2 − c2

)}]fχ2(x; νe)

1− α
dx,

δ > θd;∫ x1

0

{
Φ

(
c1x

1/2
)
−Φ

(
−c1x

1/2
)}fχ2(x; νe)

1− α
dx, δ ≤ θd.

(14)

Computing each case of Pr{(W ∩R |V } and Pr{W |V } re-
quires specifying the values for {θd, δ, σ2

∗, νe, α}. A scale-free
(canonical) form for these parameters is {θd/σ∗, δ/σ∗, νe, α}
since, for c > 0, the sets {θd, δ, σ2

∗, νe, α} and {cθd, cδ, cσ2
∗,

νe, α} yield identical results.
3. Numerical Results
3.1 Computational Methods
All programs were written in SAS/IML (SAS Institute, 1999).
Exact numerical integration used the QUAD function. A limited
set of simulations helped check the programming accuracy
and also the original derivation. Direct numerical integration
allowed computing over one hundred Pr{(W ∩R) |V } values
per second on a 450 MHz PC.
Using equation (14) to compute values of Pr{(W ∩R) |V }

near 1.0 and sample sizes greater than 300 led to nu-
merical instability. Applying a quantile transform (Glueck
and Muller, 2001) eliminated all numerical instability and
added only a small percent increase in computation time.
For this application, let Fχ2(x; νe) indicate a central chi-
squared c.d.f. with νe d.f. and corresponding (1−α) quantile

F−1
χ2 (1− α; νe). The actual transformation is p = Fχ2(x; νe),

with x = F−1
χ2 (p; νe) and dp = fχ2(x; νe) dx. The bounds

become 0 and Fχ2(x1; νe).

3.2 Comparing Sample Sizes
Choosing to control Pr{(W ∩R) |V }, Pr{W |V }, Pr{W} or
Pr{R} (i.e., power) as the design goal can dramatically af-
fect the sample size required. The various results in this sec-
tion will illustrate this important conclusion. In contrast, the
“sidedness” (i.e., whether or not the test or confidence in-
terval is one-sided or two-sided) has little effect on the re-
sulting sample size. Therefore, detailed numerical results are
reported only for the 2s test/2s CI, although all other cases
were examined numerically (based on the corresponding the-
ory in Section 2). In particular, the value of Pr{W} does
not depend on the sidedness of the test and confidence in-
terval, due to underlying mathematical relationships. This
occurs because one-sided intervals control only half of the
corresponding two-sided interval. Comparing the proofs in
the Appendix for the one- and two-sided cases illustrates
this point in detail. Furthermore, only slight numerical differ-
ences in Pr{(W ∩R) |V }, Pr{W |V }, and Pr{R} were noted
for the conditions considered. Overall, the 1s test/2s CI and
1s test/1s CI probabilities differed from the 2s test/2s CI
probabilities by no more than 0.025 for Pr{(W ∩R) |V }, and
by no more than 0.007 for Pr{W |V } and Pr{R}.
Figure 1 contains nine plots of N, with log2 spacing and

νe=N − r=N − 2, versus the probability of achieving the
desired event, for α=0.05, σ2

∗=1, δ ∈ {0.5, 1.0, 1.5}, θd ∈
{0.5, 1.0, 1.5}, and θ0=0 (note that θ0=0 implies θ= θd).
In all computations and plots, Pr{W |V } and Pr{W} were
virtually indistinguishable, never being more than 5% apart.
Given the previously stated preference for Pr{W |V }, Pr{W}
was dropped from further consideration, and is not included
in the plots.
The conditions in Figure 1 fall into two groups. Those

on and above the diagonal (from upper left to lower right)
have δ≤ θd, while those below the diagonal have δ > θd. If
δ≤ θd, then Pr{(W ∩R) |V } and Pr{W |V } coincide in the
plots and mathematically, as can be confirmed via proofs in
the Appendix. Comparisons among plots clearly illustrate the
dramatic impact that alignment or misalignment of target
probability with scientific goals may have.
Table 2 provides additional detail for each plot in Figure 1.

The sample sizes vary due to the choice of target probability,

Table 2
Sample size (N) for (i) Pr{(W ∩R) |V }, (ii) Pr{W |V }, and
(iii) Pr{R}; σ2

∗=1, θ0=0, α=0.05, and νe=N − r, r=2

θd=0.5 θd=1.0 θd=1.5

δ Prob. (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0.5 0.8 268 268 128 268 268 34 268 268 18
0.9 276 276 172 276 276 46 276 276 22

1.0 0.8 124 74 128 74 74 34 74 74 18
0.9 160 78 172 78 78 46 78 78 22

1.5 0.8 124 36 128 40 36 34 36 36 18
0.9 160 40 172 44 40 46 40 40 22
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Figure 1. Event probabilities as a function of N with log2 spacing, νe=N − r, r=2, σ2
∗=1, θ0=0, and α=0.05.

Pr{(W ∩R) |V }: solid line; Pr{R}: dashed line; Pr{W |V }: dotted line.

Pr{(W ∩R) |V }, Pr{W |V }, or Pr{R}, and the numeric value
specified, either 0.8 or 0.9.
The major conclusion to be drawn from Figure 1 and

Table 2 is that failure to align the event probability used to
choose a sample size with the primary study endpoints can
result in serious sample size errors. First, consider θd=1.5
and δ=0.5. Achieving Pr{R} ≥ 0.90 requires N =22. How-
ever, achieving Pr{(W ∩R) |V } = Pr{W |V } ≥ 0.90 requires
N =276 subjects! Second, consider the situation with θd=0.5
and δ=1.5. Achieving Pr{R} ≥ 0.90 requires N =172, and
to obtain Pr{(W ∩R) |V } ≥ 0.90 requires N =160. In con-
trast, to have Pr{W |V } ≥ 0.90 requires only N =40 subjects!
The sudden rise in probability that can be seen in the

Pr{(W ∩R) |V } and Pr{W |V } curves, especially in the first
row of plots in Figure 1, can be explained in two ways. First,
the choice of log2 scale sample size was made to most ef-
fectively plot the Pr{R}, Pr{W |V }, and Pr{(W ∩R) |V }
curves simultaneously. Unfortunately, this results in the
Pr{(W ∩R) |V } and Pr{W |V } curves appearing to rise
sharply at an arbitrary point. The choice of a different log
base would flatten the curves, but make them more difficult
to display on the same set of axes. Secondly, the sensitivity of
the Pr{(W ∩R) |V } and Pr{W |V } curves to the choice of δ
is reflected in the steep slopes of these curves. The impact of
δ on these curves can also be seen by noticing the steepness
of the Pr{W |V } and Pr{(W ∩R) |V } curves relative to the
Pr{R} curve.

One last feature of Figure 1 deserves mention, although
it is difficult to see given the size of the individual plots
in the figure. Consider the curve for Pr{(W ∩R) |V } in the
plot in the lower left corner and the same curve in the plot
immediately above it. Neither has exactly the classical “S”
shape commonly seen in sample size function curves. The
Pr{(W ∩R) |V } curve in each plot is smooth in the techni-
cal sense in that it has a continuous first derivative and is
also strictly monotone. Nonmonotone variation in the second
derivative corresponds to the “bumpy” shape. The bumpy
sections of the curves reflect the discord between the events
rejection and width as each tries to dominate the calculation.
It is not coincidence that the bumps occur in abscissa ranges
where the inflection points occur for the Pr{R} and Pr{W |V }
curves.
A number of features of Table 2 merit comment. Since

Pr{R} is independent of δ, the sample size required to
achieve the Pr{R} criterion is the same for any δ. Consider,
for example, θd=0.5 and Pr{R} = 0.8. The same sample
size of 128 is required for δ=0.5, δ=1.0, and δ=1.5.
Similarly, since Pr{W |V } is independent of θd, the sam-
ple sizes required using the Pr{W |V } criterion are con-
stant for a fixed target probability (0.80 or 0.90), as θd
changes across columns. As expected, the sample sizes for
Pr{(W ∩R) |V } and Pr{W |V } are identical when θd ≥
δ. Also, as δ increases, Pr{(W ∩R) |V } and Pr{R} essen-
tially coincide. This occurs because as δ increases, the width
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component of Pr{(W ∩R) |V } becomes less restrictive, in-
creasing the relative role of rejection in the calcula-
tion. If δ=∞, then Pr{(W ∩R) |V } = Pr{R |V }, which
is close to Pr{R} (for typical values of Pr{V }, such as
0.95, which are near 1.0). Lastly, when δ=1.5, θd=1.0,
and Prob. = 0.8, in Table 2, the sample size for
Pr{(W ∩R) |V } is greater than that for both Pr{W |V }
and Pr{R}. This counterintuitive result reflects the im-
pact of conditioning on the event validity (V ). Recall
that Pr{(W ∩R) |V } = Pr{W ∩R∩V }/Pr{V } and note that
Pr{W ∩R∩V }≤ Pr{R}. For this particular situation, since
the sample sizes for Pr{(W ∩R) |V }, Pr{W |V }, and Pr{R}
are so close, the denominator (Pr{V } = 0.95 for all cases in
the figures provided) causes this seemingly paradoxical result.

3.3 How Should δ and θd be Chosen?
Although Figure 1 contains a great deal of information, it also
raises a number of interesting questions. The interaction be-
tween δ and θd in the computation of Pr{(W ∩R) |V } yields
sample sizes that are sensitive to the choice of each parameter,
particularly δ. Figures 2 and 3, which are analogs to Figure 1,
display event probabilities as a function of δ and θd, respec-
tively. The figures were created to provide further guidance
in the choice of δ and θd and give a more complete picture of
the interaction between δ, θd, and N.
Figure 2 contains nine plots of δ, with log2 spacing, versus

the probability of achieving the desired event, while Figure 3

Figure 2. Event probabilities as a function of δ with log2 spacing, νe=N − r, r=2, σ2
∗=1, θ0=0, and α=0.05.

Pr{(W ∩R) |V }: solid line; Pr{R}: dashed line; Pr{W |V }: dotted line.

contains nine plots of θd, with log2 spacing, versus the prob-
ability of achieving the desired event, both with N ∈ {20,
50, 100} and νe=N − r=N − 2. All other values remain the
same as in Figure 1. Jointly examining the three figures al-
lows one to form guidelines to handle the four dimensional
problem, which requires specifying three of δ/σ∗, θd/σ∗, N
and the probability of interest to determine the fourth. A
range of N, or Pr{(W ∩R) |V }, is typically specified, allow-
ing Pr{(W ∩R) |V } or N to be computed across that range.
The choice of δ and θd must be based on scientific, not sta-
tistical, principles.
The choice of δ is determined from scientific, monetary,

temporal, and ethical considerations in much the same way
that θd is for power analysis. A critical part of the consulta-
tion process with investigators is the elicitation of scientifi-
cally plausible values for δ and θd, and, in turn, their relative
size. In particular, consider the Pisano et al. (2002) exam-
ple. In that context, the choice of δ is determined largely by
the practical consideration of the inconvenience to the radi-
ologist. However, θd is controlled by the maximum tolerable
(clinically useful) increase in reading time between hardcopy
and softcopy.
We agree with Lenth’s (2001) position that choice of sam-

ple size (e.g., analyses based on Pr{(W ∩R) |V }, Pr{W |V },
or Pr{R}) should be cast in the units of the data, not in
the abstract. Although Figures 1–3 serve as an excellent
guide to determine sample size based on the new criterion,
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Figure 3. Event probabilities as a function of θd with log2 spacing, νe=N − r, r=2, σ2
∗=1, θ0=0, and α=0.05.

Pr{(W ∩R) |V }: solid line; Pr{R}: dashed line; Pr{W |V }: dotted line.

Pr{(W ∩R) |V }, accurate analysis specific to a particular
study should be completed with speculations for parameter
values chosen for the study at hand.
There are several points worth mentioning about Figures 2

and 3. The relationship between Pr{(W ∩R) |V }, Pr{W |V },
and Pr{R} is complex, due to the interaction between the
parameters θd, δ, and N. As described at the end of Sec-
tion 2.2, Pr{W ∩R∩V }≤ Pr{R}. Of course, similar rea-
soning implies Pr{W ∩R∩V }≤ Pr{W ∩V }. However, con-
ditioning on the event V explains why Pr{(W ∩R) |V } is
not necessarily less than Pr{R}, although the inequality
Pr{(W ∩R) |V }≤ Pr{W |V } always holds. These facts are
illustrated by the figures.
It may require some thought to understand why horizon-

tal lines occur in many of the plots in Figures 2 and 3. Since
Pr{R} is independent of δ,Pr{R} is constant in each plot
in Figure 2, but increases across each row as sample size
increases. In Figure 3, Pr{W |V } is independent of θd and
hence constant in each plot, but also increases across each
row as sample size increases. Furthermore, in the top row of
plots in Figure 3 and in the leftmost plot of the second row,
note that Pr{(W ∩R) |V } = Pr{W |V } = 0. Since the in-
equality Pr{(W ∩R) |V }≤ Pr{W |V } must always hold, and
Pr{W |V } is constant in each plot in Figure 3, Pr{W |V } = 0
implies Pr{(W ∩R) |V } = 0. With Pr{W |V }> 0 in the lower
portion of Figure 3, Pr{(W ∩R) |V } approaches Pr{W |V } as
θd increases. Since Pr{(W ∩R) |V } is jointly dependent on θd
and δ, it is not constant in either figure.

4. Example Revisited
Consider again the Pisano et al. (2002) study introduced in
Section 1.1. Table 3 contains sample sizes for log10-scale con-
fidence interval widths corresponding to a reduction of 10, 20,
or 40% in viewing time, with a desired target probability of at
least 0.9. Table 3 further illustrates the potential for excessive
or inadequate sample size due to misalignment.

Table 3
Softcopy study sample size (N) for θd=0.076, σ2

∗=0.012,
θ0=0, α=0.05, and νe=N − r, r=1

δ Pr{R} Pr{W |V } Pr{(W ∩R) |V }
0.046 24 106 106
0.097 24 30 30
0.222 24 9 23

5. Discussion and Conclusions
Several conclusions arise from the four possible cases based on
combining a one- or two-sided test with a one- or two-sided
confidence interval. The 1s test/1s CI and 2s test/2s CI combi-
nations have obvious applications and have a simple
relationship to each other. More precisely, for the Gaussian
theory setting developed here, if α for the 1s test/1s CI
method is half that for the 2s test/2s CI method, then the
sample sizes chosen will be nearly the same. Combining a
one-sided test with a two-sided interval seems both natural
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and appealing. However, the hypothesis test size must be ex-
actly twice the α for the confidence interval in order to avoid
serious logical inconsistencies in the interpretation of the re-
sults for the symmetric distributions considered here. Finally,
using a two-sided test with a one-sided interval has no logical
appeal to us.
The examples in Figure 1 and Tables 2 and 3 illustrate the

magnitude of error that can be made in study planning due to
misaligning the sample size rule with the scientific goals. Fur-
thermore, such errors can occur in either direction: choosing
a sample size much smaller than necessary allows virtually no
chance of achieving a successful outcome; alternately, choos-
ing a sample size far larger than necessary may waste signif-
icant resources and create unnecessary risk to subjects. Sci-
entists often seek to both test hypotheses and construct cor-
responding confidence intervals. Targeting Pr{(W ∩R) |V },
rather than Pr{R},Pr{W |V }, or Pr{W}, helps achieve both
goals in a single study, without undue cost or risk to subjects.
Defensible study design requires aligning the sample size

rule with the scientific goal. The joint consideration of
width, rejection and validity, especially in the calculation of
Pr{(W ∩R) |V }, is a new and practical tool for achieving such
alignment. Either Pr{W} or Pr{R} may be emphasized by
changing the relative sizes of δ and θd in Pr{(W ∩R) |V }. In
fact, Pr{R |V } and Pr{W |V } are special (limiting) cases of
Pr{(W ∩R) |V }.
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Résumé

Les scientifiques ont souvent besoin de tester des hypothèses
et de construire les intervalles de confiance correspondant.
En planifiant une étude pour tester une hypothèse nulle
particulière, les méthodes traditionnelles conduisent à une
taille d’échantillon assez grande pour fournir une puissance
statistique suffisante. A l’opposé, les méthodes traditionnelles
de construction d’intervalle de confiance conduisent à une
taille d’échantillon appropriée pour contrôler la largeur de
l’intervalle. Avec l’une ou l’autre des approches, une taille
d’échantillon si grande qu’elle gaspille les ressources ou qu’elle
introduise des questions éthiques n’est pas souhaitable. Ce
travail a été motivé par le fait que les méthodes actuelles de
recherche de taille d’échantillon rendent difficiles aux scien-
tifiques l’atteinte de leurs objectifs. Nous nous centrons sur
les situations qui impliquent un paramètre scalaire fixe mais
inconnu représentant le vrai état de la nature. La largeur de
l’intervalle de confiance est définie comme la différence entre
les bornes (aléatoires) supérieures et inférieures. L’événement
largeur est dit se réaliser si la largeur de l’intervalle de
confiance observée est inférieure à une valeur constante
fixée a priori. L’événement validité est dit se réaliser si le
paramètre d’intérêt est situé entre les limites supérieure et
inférieure observées de l’intervalle de confiance. L’événement
rejet est dit se réaliser si l’intervalle de confiance exclut
la valeur nulle du paramètre. Notre opinion est que les
scientifiques recherchent souvent, de manière implicite, la

réalisation des ces trois événements: largeur, rejet et validité.
De nouveaux résultats illustrent le fait de négliger le re-
jet ou la largeur (et à un moindre degré la validité) four-
nit souvent une taille d’échantillon avec une faible proba-
bilité d’occurrence simultanée des trois événements. Nous
recommandons de considérer ces trois événements simul-
tanément pour déterminer une taille d’échantillon. Nous four-
nissons de nouveaux résultats théoriques pour n’importe quel
paramètre scalaire (moyenne) dans un modèle linéaire général
avec erreurs Gaussiennes et prédicteurs fixés. Des formes de
calcul adaptées illustrent nos méthodes avec des exemples
numériques.
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Appendix

Proof of Theorem. Define a two-sided 100(1−α)% confi-
dence interval for θ by

1− α = Pr

{
−f

1/2
crit ≤ (θ̂ − θ)(

σ̂2∗m
)1/2 ≤ f

1/2
crit

}

= Pr
{
θ̂ − σ̂∗(fcritm)

1/2 ≤ θ≤ θ̂ + σ̂∗(fcritm)
1/2

}
= Pr{L≤ θ≤U}
= Pr

{
|θ − θ̂| ≤ σ̂∗(fcritm)

1/2
}

= Pr{V }, (A.1)

where L = θ̂ − σ̂∗(fcritm)
1/2 and U = θ̂ + σ̂∗(fcritm)

1/2. Addi-
tionally, with this notation,

Pr{W} = Pr{U − L≤ δ}
= Pr

{
2σ̂∗(fcritm)

1/2 ≤ δ
}
, (A.2)

and

Pr{R} = Pr{(U < θ0) ∪ (θ0 < L)}

= Pr
{[

θ̂+ σ̂∗(fcritm)
1/2 <θ0

]
∪
[
θ0 < θ̂− σ̂∗(fcritm)

1/2
]}

= Pr
{[

θ̂d < −σ̂∗(fcritm)
1/2

]
∪
[
σ̂∗(fcritm)

1/2 < θ̂d
]}

,

(A.3)

where θ̂d = θ̂ − θ0. Define X = νe(σ̂
2
∗/σ

2
∗), x1= νeδ

2/
(4σ2∗f critm), c1=(f crit/νe)

1/2, θd= θ− θ0 > 0, c2= θd/(σ
2∗m)1/2

and note that θ̂d ∼ N (θd, σ2
∗m) and X ∼ χ2(νe), so that

X follows a central chi-squared distribution with νe d.f.
Since Z = (θ̂ − θ)/(σ2

∗m)
1/2 ∼ N (0, 1), equation (A.1) can be

rewritten as

|θ − θ̂|≤ σ̂∗(fcritm)
1/2 ⇔{

θ − θ̂≤ σ̂∗(fcritm)
1/2

}
∩

{
−(θ − θ̂)≤ σ̂∗(fcritm)

1/2
}

⇔{
θ − θ̂(
σ2∗m

)1/2 ≤ σ̂∗(fcritm)
1/2(

σ2∗m
)1/2

}
∩

{
θ̂ − θ(
σ2∗m

)1/2 ≤ σ̂∗(fcritm)
1/2(

σ2∗m
)1/2

}
⇔

{
−Z ≤

(
Xfcrit

νe

)1/2}
∩

{
Z ≤

(
Xfcrit

νe

)1/2}
⇔

(
−c1X

1/2 ≤Z
)
∩

(
Z ≤ c1X

1/2
)
= V1 ∩V2. (A.4)

Also, equation (A.2) can be rewritten as

2σ̂∗(fcritm)
1/2 ≤ δ ⇔

σ̂∗
σ∗

≤ δ

2σ∗(fcritm)1/2 ⇔

(
σ̂∗
σ∗

)2

νe ≤ νe

{
δ

2σ∗(fcritm)1/2

}2

⇔

X ≤ x1.

(A.5)

In turn, (A.3) can be rewritten as{
θ̂d < −σ̂∗(fcritm)1/2

}
∪
{
σ̂∗(fcritm)1/2 < θ̂d

}
⇔{

θ̂d − θd

(σ2∗m)1/2
<

−σ̂∗(fcritm)1/2 − θd

(σ2∗m)1/2

}
∪
{
σ̂∗(fcritm)1/2 − θd

(σ2∗m)1/2
<

θ̂d − θd

(σ2∗m)1/2

}
⇔

{
θ̂ − θ

(σ2∗m)1/2
<

−σ̂∗(fcritm)1/2 − θd

(σ2∗m)1/2

}
∪
{
σ̂∗(fcritm)1/2 − θd

(σ2∗m)1/2
<

θ̂ − θ

(σ2∗m)1/2

}
⇔

{
Z<−

(
Xfcrit

νe

)1/2

− θd

(σ2∗m)1/2

}
∪
{(

Xfcrit

νe

)1/2

− θd

(σ2∗m)1/2
< Z

}
⇔

(
Z < −c1X

1/2 − c2

)
∪
(
c1X

1/2 − c2 < Z
)

= R1 ∪R2.

(A.6)

We know Z = (θ̂ − θ)/(σ2
∗m)

1/2 ∼ N (0, 1). Then, Z/
(X/νe)

1/2 ∼ t(νe), so that Z/(X/νe)
1/2 follows a cen-

tral t distribution with νe d.f. and Z and X are independent.
Since Pr{V } = 1− α, computing Pr{(W ∩R) |V } reduces to
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considering Pr{W ∩R∩V }, namely,
Pr{(X ≤x1) ∩ (R1 ∪R2) ∩ (V1 ∩V2)} =

=

∫ x1

0

Pr{(R1 ∪R2) ∩ (V1 ∩V2) | (X = x)}fχ2(x; νe) dx

=

∫ x1

0

Pr{(V1 ∩V2 ∩R1) ∪ (V1 ∩V2 ∩R2) | (X = x)}
fχ2(x; νe) dx

=

∫ x1

0

Pr{∅ ∪ (V1 ∩V2 ∩R2) | (X = x)}fχ2(x; νe) dx

=

∫ x1

0

Pr
{[
max

(
c1X

1/2 − c2,−c1X
1/2

)
< Z ≤ c1X

1/2
]∣∣

(X=x)
}
fχ2(x; νe) dx

=

∫ x1

0

[
Φ

(
c1x

1/2
)
−Φ

{
max

(
c1x

1/2 − c2,−c1x
1/2

)}]
fχ2(x; νe) dx,

(A.7)

with c2 > 0 implying (V 1 ∩ V 2 ∩ R1)= ∅.

Proof of Corollary 1. By changing the definition of rejection
to θ0 <L in the proof of the Theorem, R1 is eliminated and
the Corollary 1 result follows directly.

Proof of Corollary 2. Define a lower one-sided 100(1−α)%
confidence interval for θ as

1− α = Pr

{
−∞ <

θ̂ − θ(
σ̂2∗m

)1/2 ≤ f
1/2
crit

}

= Pr
{
θ̂ − σ̂∗(fcritm)

1/2 ≤ θ < ∞
}

= Pr{L≤ θ}
= Pr{V }.

(A.8)

Eliminating the event V 1 in addition to R1 in the proof of
the Theorem leads immediately to the Corollary 2 result.
Note that width, more accurately the lower half-width, is de-
fined as θ̂ − L≤ δL. If δL equals δ/2, then Pr{U − L≤ δ} =
Pr{θ̂ − L≤ δL} and the width criterion has the identical ef-
fect on sample size in the two situations.

Proof of Corollary 3. By changing the definition of rejection
to U <θ0 in the Theorem proof, R2 is eliminated and the
Corollary 3 result follows directly.

Proof of Corollary 4. Define an upper one-sided 100
×(1−α)% confidence interval for θ as

1− α = Pr

{
−(fcrit)

1/2 ≤ θ̂ − θ(
σ̂2∗m

)1/2 < ∞
}

= Pr
{
−∞ < θ≤ θ̂ + σ̂∗(fcritm)

1/2
}

= Pr{θ≤U}
= Pr{V }.

(A.9)

Eliminating the event V 2 in addition to R2 in the proof
of the Theorem leads immediately to the Corollary 4 re-
sult. Note that width, more accurately described as the up-
per half-width, is defined as U − θ̂≤ δU . If δU equals δ/2,
then Pr{U − L≤ δ} = Pr{U − θ̂≤ δU} and the width crite-
rion has the identical effect on sample size in the two
situations.

Proof of Corollary 5. The results for each case of Pr{W |V }
can be obtained immediately from the proofs of the Theorem
and Corollaries 1 through 4 by eliminating the event rejec-
tion.




