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Landmark Matching via Large Deformation
Diffeomorphisms
Sarang C. Joshi and Michael I. Miller

Abstract—This paper describes the generation of large defor-
mation diffeomorphisms : 
 = [0 1]3 
 for landmark
matching generated as solutions to the transport equation

( ) = ( ( ) ) [0 1] and ( 0) = ,
with the image map defined as ( 1) and therefore controlled
via the velocity field ( ) [0 1]. Imagery are assumed
characterized via sets of landmarks = 1 2 . . . .
The optimal diffeomorphic match is constructed to minimize a
running smoothness cost 2 associated with a linear differen-
tial operator on the velocity field generating the diffeomorphism
while simultaneously minimizing the matching end point condition
of the landmarks.

Both inexact and exact landmark matching is studied here.
Given noisy landmarks matched to measured with error
covariances� , then the matching problem is solved generating
the optimal diffeomorphism ^( 1) =

1

0
^(^( ) ) +
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( )

1

0 


( ) 2

+
=1

[ ( 1)] � 1[ ( 1)] (1)

Conditions for the existence of solutions in the space of diffeomor-
phisms are established, with a gradient algorithm provided for gen-
erating the optimal flow solving the minimum problem. Results on
matching two-dimensional (2-D) and three-dimensional (3-D) im-
agery are presented in the the macaque monkey.

Index Terms—Deformable templates, medical imaging, pattern
theory.

I. INTRODUCTION

RECENT revolutionary advances in the field of medical
imaging have facilitated digital imaging modalities such

as magnetic resonance (MR), X-ray computed tomography
(CT), and cryosection imaging (CI), to name a few, and are
enabling extremally detailed study of anatomy. Although
the study of anatomical variability can be traced back to the
beginnings of modern science, the exquisite resolution and the
three-dimensional (3-D) and four-dimensional (4-D) capabili-
ties of these imaging modalities, combined with the advances in
digital computation, is only now enabling the detailed and pre-
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cisecomputationalstudy of the infinite biological variability of
anatomy. This is emerging as the discipline that we are coming
to call computational anatomy[1], [2] in which the main aim
of our own work is to develop mathematical and software tools
specialized to the understanding of the variability of brain
anatomy in humans and primate monkeys [3]–[12].

The transformations are constructed from
the group of diffeomorphisms of the coordinate system

, defined by vector fields of displacements

Within the framework of computational anatomy, the single
most important component is the generation of large deforma-
tion diffeomorphisms. Given any two anatomical images

assumed to be in the same homogeneous anatomy (see [2])
compute a diffeomorphism from one anatomy to the other:

. In our work, not only are the global structures
of deep nucleiimportant but as well we study the differen-
tial geometric features associated with the finest geometric
structures includingsulcal trajectories and cortical folds.
Notions such as Riemannian length, Gaussian curvature, and
surface area measures of highly complex folded structures are
at the heart of our investigative work and others [13]. Methods
which allow for the quantitative study of shape associated with
Riemannian lengths, curvatures, and surface area measures
are of crucial importance. It is therefore natural to organize
the transformations around the continuum, emphasizing the
properties of diffeomorphisms as they map the various tangent
spaces and curvature features of the embedded submanifolds.

The approach is motivated by the image matching problem
formulated via flows previously by Rabbitt and Christensen and
posed as a control formulation in Dupuis et al. [12]. The basic
protocol [5] followed for generation of the registration maps
employs a hierarchy of transformations “increasing” the dimen-
sionality successively via the fusion of landmark and image
matching. Low-dimensional, nonrigid, coarse registration in-
cluding the affine motions of global scale, rotation and trans-
lation, proceeds to high-dimensional, fine image matching reg-
istration resulting in the final maps [1]. One of the fundamental
limitations of our previous application of the compositional ap-
proach is that the landmark matching was based on small de-
formation kinematics, implying it will not necessarily produce
a diffeomorphism. Therefore, the ultimate goal of forming a
group cascade as championed by Matejic [14] might not suc-
ceed as landmark matching will not in general provide diffeo-
morphisms. This is the principal focus of this paper, to extend
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landmark matching to the large deformation setting insuring the
generation of diffeomorphisms.

A. Large Deformation Landmark Matching Problem

Our approach is to construct diffeomorphisms
in terms of the solutions to the ordinary differential

equation (ODE) defined by the transport equation as first used
in [7]

(2)

The final time diffeomorphism mapping the anatomy is
therefore controlled via the velocity field

(3)

We assume thetargets are characterized via sets of land-
marked imagery . A quadratic regis-
tration distance is defined between the measurements from the
various target anatomies. The transformation is generated which
minimize the distance while at the same time being a diffeomor-
phism.

Following the recent work of Dupuiset al. [12], we formu-
late the landmark matching problem as a control problem, with
the optimal diffeomorphic match constructed to minimize a run-
ning smoothness cost on the velocity field generating the diffeo-
morphism while simultaneously minimizing the matching end
point condition of the landmarks. If
is a sufficiently smooth vector field on , then, by the exis-
tence and uniqueness theorem of ODE’s [15], the solution exists
and is uniquely determined by the velocity field and the
initial condition . Furthermore, it defines a unique
diffeomorphism of via the solution to the above ODE.
By a continuously differentiable vector field, following [15] we
mean that each of the coordinate functions
are continuously differentiable with respect to
and .

Diffeomorphic landmark transformations are constructed by
forcing the velocity fields to minimize quadratic energetics on

defined via a matrix constant coeffi-
cient differential operator of the form

where is a constant-coefficient, differential operator. The
matching problem for the -landmarks
becomes

subject to (4)

where

The large deformation setting reduces in the small defor-
mation setting to the small deformation landmark matching
problem of Bookstein [16], [17] and others [18], [19]. Al-
though these methods have proved to be very powerful in the
study of biological shape [16]–[18], the deformations are not
constrained to bediffeomorphictransformations as they are
based on quadratic penalties derived from differential operators
motivated by small deformation kinematics. They do not allow
for large deformations that maintain the geometry and topology
of the template [7]. To illustrate, assume the anatomies are
deformed one to another according to .
This essentially removes the kinematic nonlinearity. Then the
minimization of the small deformation transformation mapping
the template to the target is chosen to minimize the thin-plate
“bending energies” while constraining the transformation at
the known landmark points. The energy minimization problem
solved is of the form

subject to

The basic difficulty for curved trajectories is illustrated in
Fig. 1, in which the small deformation solution forces the grid
lines to cross thus destroying the geometric properties of the
maps.

II. GENERATING LARGE DEFORMATION DIFFEOMORPHISMS

We force the transformations mapping the landmarks to be
diffeomorphisms by associating with them an energy
which gives them sufficient differentiability to insure the exis-
tence and uniqueness of the solution of the ODE. We have been
using operators motivated by mechanics such as

. Throughout we shall assume the compact setting
with the operator and boundary conditions chosen

so that the Green’s function is nonsingular and continuous in
both variables. For landmark matching we have used powers of
the Laplacian with with zero boundary conditions
which differentiates only in space, implyingis a diagonal op-
erator giving energetics in the form

Our results on generating diffeomorphisms apply for general
constant coefficient matrix differential operatorsas long as
the matrix Green’s function is continuous in both

and and the matrix function
is positive definite as an operator. This is true for the diagonal
Laplacian plus identity case

(5)

and is assumed throughout for the theorems.
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Assuming that the velocity fields are Gaussian random fields
induced by the differential operator [5], [18], we define the
spatial covariance matrix according to

...
...

...

(6)

with denoting the block entry
.

A. Inexact Landmark Matching

Assume the measured landmark points are defined to within
some covariance . Then the matching
problem has the following form.

Theorem 1: With the squared error distance for landmark
matching given by

let be a constant coefficient matrix differential operator with
matrix Green’s function continuous in both

and and positive definite, on compact domain
. Then the optimization

(7)

where

with the minimizer defined by (7) is of the form

(8)

where

(9)

The minimizing velocity fields are continuous and
is a diffeomorphism of

.
Proof: The proof has two parts. The first demonstrates that

the optimal velocity field is of the form given by (8). The second
part demonstrates that the resulting optimization (9) is a classic

nonlinear quadratic control problem in the Bolza form with the
continuity properties. With the uniqueness of the solution of the
ODE the diffeomorphism property results. See Appendix, The-
orem I-A for proof.

Equation (9) demonstrates that the optimization is reduced
to optimization of the , landmark trajectories

. The Euler–Lagrange conditions for these optimizers
are given as follows.

Theorem 2: The minimizer for the landmark matching
problem corresponding to with

(10)

satisfies the Euler–Lagrange conditions for

(11)

(12)

Proof: See Appendix, Section V-B for the proof.
Remark 1 (Relation to Eulerian Setting):In [7], [12], and

[20], we have studied the quadratic image matching in the in-
verse Eulerian frame . Then

(13)

where

Then the optimal diffeomorphism is given by the matching
problem stated in Dupuis [12]et al.; for landmark matching it
becomes

with optimal diffeomorphism
.

The power of working in the Lagrangian frame via (7)–(9) is
that we have reduced the optimization from velocity fields
on to velocity fields on

.
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B. Including the Affine Motions

We include the affine motions by allowing the target points
to carry the affine motions

(14)

Then the distance function is straightforwardly modified to in-
clude the affine motions

Then, Theorem 1 holds for the solution with the affine motion
added to the estimation. Letbe the constant coefficient matrix
differential operator as above with matrix Green’s function

continuous in both and and positive
definite, on compact domain. The optimizing diffeomorphism
is given by

(15)

where , with satisfying (8)
and

(16)

C. Exact Landmark Matching

As we will be interested in generating flows that match ex-
actly a given set of landmarks in the template and the target
we now state the associated energy minimization problem. No-
tice that care must be taken as . The problem of exact
matching of a set of landmarks in the template and the target is
formulated as follows.

Corollary 1: Given landmarks
that can be identified exactly with points

in the data, with operator as in theorem 1, the so-
lution to the energy minimization problem

subject to (17)

where

(18)

exists and defines a diffeomorphism of . The
optimum velocity field and diffeomorphism are given by

(19)

where

subject to (20)

with the optimal diffeomorphism given by
.

Proof: As in Theorem 1, the above minimization problem
of (17) is is equivalent to that of a finite dimensional optimal
control with fixed end point conditions. Following the same rea-
soning as in theorem 1, it is equivalent to that of finding the op-
timum paths of the landmarks points satisfying the minimiza-
tion of (20). It satisfies all the conditions required for existence
in theorem 1. However we must also prove that the set of exact
landmark matches is not empty, i.e. that their exists a velocity
field having finite cost which carries one set of landmarks to the
other. This is proven in Theorem 3 in the Appendix V-C. The
remainder of the proof is identical to theorem 1,

D. Implementation Algorithm

We now state the algorithm for the inexact landmark
matching case (see remark below for exact landmark matching
algorithm). The algorithm for landmark matching reduces
the problem to a finite dimensional problem by defining the
flows on the finite grid of fixed times of size

. Assume velocities piecewise constant
within the quantized time intervals, so that for

. It will be helpful for
the vectors to define the notation to mean theth
component of the vector .

Algorithm 1: The finite dimensional minimization over
becomes and

(21)



JOSHI AND MILLER: LANDMARK MATCHING VIA LARGE DEFORMATION DIFFEOMORPHISMS 1361

The gradient algorithm for minimizing (21) initializes with
and , and

iterates for .

1) Calculate gradient perturbation for each

:

(22)

where for

where

(23)

and for , and otherwise.
After stopping, define the final iterate as , and

(24)

with

(25)

for all

For including the affine motions, within each step of the
gradient on the velocity field we fix the diffeomorphism from
the previous iteration and solve the linear landmark
matching problem

(26)

giving

(27)

(28)

These are linear equations for fixed which are solved via
matrix inversion.

Remark 2: For choosing initial conditions for the inexact
landmark matching the identity map given by is used
for the initial condition. For exact landmark matching an ini-
tial condition is generated from the inexact landmark matching
solution following an approach suggested by Younes [21]. Con-
struct an inexact landmark match to within an-ball of the target
landmarks. The initial condition for exact matching is generated
by linearly interpolating the inexact landmark match onto the
target points. This insures an initial condition which does not
cross and maps the landmarks exactly.

III. RESULTS

For speed of implementation we have implemented the algo-
rithm corresponding to the infinite domain so that the Green’s
functions and resulting covariance have analytic closed
form expressions. For the Laplacian operator this gives
the Green’s functions and covariances of Kent [18], of the form

.
We now derive the covariance induced by the self-adjoint op-

erator with infinite boundary conditions. As the
covariance operator is given by the Green’s function for
the operator which is shift invariant, we use the Fourier trans-
form method for computing the Green’s function at the point
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Fig. 1. Top row: Left panel shows phantom of two landmark point matching,A matching toB, andC matching toD, with fixed corners used for the first
experiment. Middle and right panels compare the small deformation thin plate landmark deformation (middle panel) and the large deformation solution (right
panel). Bottom row: Left panel shows the determinant of the Jacobian of the thin plate landmark deformation. The right panel shows the determinant of the
Jacobian associated with the thediffeomorphictransformation. Notice that the determinant is negative in the region where the grid lines in the thin plate landmark
deformation cross over while the determinant of thediffeomorphictransformation is strictly positive everywhere.

with the shift invariance used to deduce it every where. In
the Fourier domain the spectrum of the the operatorcentered
at the origin is given by . Using rotational invariance
and spherical coordinates gives the space domain representation
via the Fourier integral

(29)

(30)

This gives the entire kernel according to
.

A. Small Deformation Solution

Large deformations present a significant challenge to small
deformation landmark matching such as in Bookstein [16], [17]
or Kent and Mardia [18], or Wahba [19] on spline methods. Al-
though these methods have proved to be very powerful in the
study of brain structures [16]–[18], the deformations are not
constrained to bediffeomorphictransformations. For small de-
formations, assume the anatomies are deformed one to another
according to . Then the minimization of the
small deformation transformation mapping the template to the
target is chosen to minimize the thin-plate “bending energies”
while constraining the transformation at known landmark points

. We include the affine motions by allowing
the target points to carry the affine motions

(31)

Following Joshi [5], [22] the small deformation cost is mini-
mized according to

(32)

This gives the optimal small deformation shown in (33) and (34)
at the bottom of the next page.

The large deformation landmark matching algorithm was im-
plemented in 2-D initially. Fig. 1 shows a set of results based on
a simple test pattern containing 2 matching points with fixed
corners requiring a nonlinear twisting motion for the matching.
The left panel of Fig. 1 shows the test grid pattern containing
four points A, B, C, and D which where chosen as landmark
points on the grid. Point A was mapped to point B and point
C was mapped to point D while the four corners were mapped
onto themselves.

Shown in the top row, middle panel of Fig. 1 is the small
deformation solution of equations (33) and (34). Notice how the
grid lines cross in generating the mapping.

The large deformation matching algorithm 1 was imple-
mented for the 2-D grid of points. Shown in the top right panel
of Fig. 1 is the result of matching to and to . Notice
that no grid lines cross. The bottom row shows the determinant
of the Jacobian of the small deformation (left panel) with the
diffeomorphic transformation (right panel). The color scale
shows black where the determinant of the Jacobian is negative,
and shows white where the Jacobian has positive determinant.
Notice that the determinant (left panel) flips sign and is negative
in the region where the grid lines in the small deformation
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Fig. 2. Left panel shows the optimum paths�̂(x ; t); n = 1; 2 traced out by the landmark points A, C, and the four corners of the image. Right panel shows
paths�̂(x; t) traced out by the grid points under the optimal velocity fieldv̂(x; t).

Fig. 3. Left column shows the two test patterns. Columns 2 and 3 show results of the deformation process using variances of� = 0:1; 1; 5, and10 respectively.

landmark deformation crosses over; the determinant of the
diffeomorphictransformation is strictly positive everywhere.

To illustrate the complete flow of points associated with the
diffeomorphic transformation, the left panel of Fig. 2 shows the
optimum paths traced out by the landmark points A, C and the
four corners. The right panel of Fig. 2 shows the paths traced
out by all the grid points under the optimum velocity field

. Notice again that the mapping is
one-to-one as none of the paths cross each other.

Shown in Fig. 3 are results from two other test patterns,
the “OVAL” and “S” (left column). The corresponding points
shown in the figure were used as landmark points and the
covariances associated with them was suc-

cessively varied. We chose using variances of

with (33)

...
...

...

(34)
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Fig. 4. Left panel shows the target oval test pattern. Middle panel shows the� = 0:1 large deformation solution. Right panel shows the small deformation
solution with� = 0:1.

. Shown in the middle and right columns of
Fig. 3 are the results of the large deformation process. Notice
that as the variance associated with the landmark identification
process is increased the OVAL does not deform exactly to the
target pattern.

Fig. 4 shows a comparison of the large deformation so-
lution (middle panel) compared to the small deformation
solution (right panel). Because the small deformation landmark
matching does not generate a diffeomorphism, it creates several
image landmarks in the mapped target.

B. Application to the Study of the Cortical Cartography

The mammalian cerebral cortex has the form of a layered,
highly convoluted thin shell of grey matter surrounding white
matter, and is one of the most striking features of the brain. The
cortex contains a complex mosaic of anatomically and function-
ally distinct areas which play a tremendously important role
in understanding brain functions [23]. As championed by Van
Essenet al. [24], to aid in the understanding of the geometry
and the functional topography of the cortex the convoluted cere-
bral cortex is mapped to a plane to generate a cortical flat map.
The cortical flat map, although inherently induces distortions,
allows for convenient visualization.

To understand individual variation in the cortical topography
the Van Essen group has been using the large deformation tools
to establish correspondences between the flat maps of various
individual cortical surfaces. Shown in Fig. 5 are the geometrical
features associated with the two flat maps of the cortical sur-
faces depicting the cortical geometry and the associated parti-
tioning schemes by Brodmann on the left, and Fellman and Van
Essen on the right. Notice the large variation in the geometry
and the shape of the cortical surfaces as depicted by the dif-
ference in the positions of the geometrical features associated
with the deep folds of the sulci and the fundi that were identi-
fied on both the flat maps. These features are used as the land-
marks for driving the deformation algorithms herein assumed
with known predefined correspondence (see [25] and [26] for
automated sulcus generation and matching based on the Frenet
frame supporting automated landmark correspondence genera-
tion). Shown in Fig. 6 is the result of the deformation process.

For this with , a

matrix operator defined on valued vector fields deforming
in the unit-square . The left panel of Fig. 6 shows the de-
formed flat map corresponding to the partitioning schemes by

Fig. 5. Figure shows the geometrical features such as the sulci and the fundi
that were identified on the flat maps and used as landmarks for the deformation
process. Data taken from the laboratory of Dr. D. Van Essen.

Fig. 6. Shown on the left is the deformed flat map corresponding to the
partitioning schemes by Brodman. Shown on the right the overlay of the
deformed partitioning schemes by Brodman on the partitioning scheme by
Fellman and Van Essen. Data taken from the laboratory of Dr. D. Van Essen.

Brodmann. Shown in the right panel is the overlay of the de-
formed partitioning schemes by Brodmann on the partitioning
scheme by Felleman and Van Essen.

C. Three-Dimensional Macaque and Human Hippocampus
Results

Examine the whole macaque cryosection brains shown in
Fig. 7 in which the gyri and associated sulci have been labeled.
The sulci and gyri are defined precisely in terms of the geomet-
rical properties of the cortical surface using the notions of ridge
curves and crest lines (extremal points of curvature) following
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Fig. 7. Top row shows the volume rendering of the template 87A (left panel) and the template mapped to the target 90C (middle) using only the sulcal line
constraints to define the transformation. The right panel shows the target brain 90C. Middle row shows corresponding sections through the template 87A (left) the
target 90C (right) and the deformed template (middle). Bottom row shows in the squared error between the respective sections and the target. Data taken from the
laboratory of Dr. D. Van Essen.

[27]. Using the dynamic programming algorithm for tracking
geometrically significant contours on the brain developed in
[27] the gyri and associated sulci were labeled in several whole
brains. The sulcal maps constrain the transformation from one
brain to the other. The top row of Fig. 7 shows fundus curves
of the major sulci which have been identified and placed into
the whole brains. The left and right panels show brains 87A and
90C with the fundus curves placed on the map. The deforma-
tion field was constrained so that the corresponding points were
mapped on to each other in .

Our group has extensively studied the mapping of the hip-
pocampus in MRI of human brains [8], [9]. All of this pre-
vious work has relied on the use of small deformation land-
mark matching, assuming that template and target landmarks are
similar. Fig. 7 shows large deformation landmark maps of the
macaque. The top panels show the volume rendering of the tem-
plate 87A (left panel) and the template mapped to the target 90C
using only the sulcal curve constraints to define the transforma-
tion. The right panel shows the target brain 90C. The middle
row of Fig. 7 shows corresponding sections through the tem-
plate 87A (left) the target 90C (right) and the deformed template
(middle). Shown in the bottom row is the squared error between
the respective sections and the target. Notice that there is a large
difference in the shape and positions of the major subvolumes
(the thalamus and the cortical folds) between the undeformed

template and the target. While there has been an alignment of the
major subvolumes in the deformed template with the target, the
strong differences that still remain are associated with the fact
that a relatively small number of landmarks are being used. To
generate more complete matches the landmark matching must
be coupled to the image matching as described in [1], [28].

Fig. 8 shows large deformation landmark maps of the hip-
pocampus studied via MRI. Shown in Fig. 8 are results on the
landmark matches of the hippocampus compared to hand seg-
mentations generated by Dr. J. Haller and Dr. L. Wang at Wash-
ington University.

IV. CONCLUSION

This paper describes the generation of large deformation dif-
feomorphisms . Both inexact and exact
landmark matching is studied here. Given noisy landmarks
matched to measured with error covariances , then the
matching problem is solved generating the optimal diffeomor-
phism where

(35)
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Fig. 8. Figure showing matching of the hippocampus based on landmarks showing the comparison of hand segmentations and automated landmark based matches.

Conditions for the existence of solutions in the space of diffeo-
morphisms are established, with a gradient algorithm provided
for generating the optimal flow solving the minimum problem.

Results demonstrate that large deformation solutions are ap-
propriate in the setting that the anatomical maps are required
to follow curved trajectories. This corresponds to the kinematic
nonlinearity introduced fundamentally via the transport equa-
tion. As shown for large curved deformations, the small defor-
mation solutions are inadmissible as they result in maps which
deform the lattice in nonphysical ways. Inconsistencies result
corresponding to noninvertibility of the maps.

Results on matching 2-D and 3-D imagery are presented in
the macaque monkey. We have found that for the understanding
of the curved geometries associated with cortical folding [29]
small deformation mapping cannot work. On the other hand, re-
sults are provided within demonstrating that by introducing the
kinematic nonlinearity matches can be generated consistently
on cortical folded surfaces. Perhaps the most fundamental lim-
itation of the work is the assumption of known correspondence
between curvilinear landmarks such as defined by sulcus and
gyrus curves. In [25] and [26], automated methods for sulcus
and gyrus curve generation are described; as well diffeomorphic
curve matching in is described based on the Frenet frame.
This approach is similar to the geometry based curve matching
proposed in [30] and [31]. As demonstrated in [26] this allows
for the matching across cortical surfaces based on automatic
correspondence generation between geometric features such as
the deepest cortical folds.

APPENDIX A
PROOF OFLANDMARK MINIMIZATION THEOREM

Proof of Theorem 1:Let us prove the optimizing field
of (7) is of the form

(36)

Choose the Hilbert space with finite energy
defined in terms of a second velocity fieldaccording to

(37)

with the choice of chosen to satisfy

(38)

implying . That (38) can be
made true follows from the fact that is chosen so that it is
positive definite with Green’s function that has finite energy, so
that for each , and is invertible
(full rank covariance). Then since following
from the fact that

if for each of the matrix Green’s function compo-
nents. This is true for the diagonal Laplacian case.

Hence, it is sufficient to show that (see
(39)–(40) at the bottom of the next page),with following
since implied by the facts that
for and giving

.
The optimal diffeomorphism satisfying

for the matching problem be-
comes (41)–(42), shown at the bottom of the next page. Then,
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choosing from (38) and taking the inverse covariance and
substituting for gives the equivalent optimization stated in
terms of the -Lagrangian landmark flow velocities according
to

(43)

where

(44)

This completes the first part of the proof.
To establish continuity of the minimizer, and the diffeomor-

phism property we notice that this is a classic quadratic control
problem in Bolza form ([32, ch. 3]), which we prove via the fol-
lowing lemma.

Lemma 1 (Bolza Lemma):There exists continuously differ-
entiable set of optimal paths satisfying

minimizing

Proof: Let ,
with velocity . The canonicalBolzaform becomes

(45)

We now use the existence of optimal control to prove the exis-
tence of a minimum to the optimization of (45). For this, de-
fine the following sets. Let be the set of all Lebesgue-in-
tegrable functions with values in and .
By the existence theorem of optimal control (see [32, ch. 3])
if 1) is not empty, 2) is compact and is continuous
on , 3) is convex in the control variable, and 4)

, then there exists
minimizing on . If in addition is of class
and the matrix is positive definite for all

then is of class and is of class on . The
above minimization of (45) satisfies all the above conditions as
follows.

1) is not empty as the identity mapping with
the trivial control is in as

.
2) is compact and is continuous as it is a

quadratic function of the endpoint .
3) is a positive definite covariance matrix and

is positive definite, im-
plying that is a convex function in the control variable

.
4) We now prove that . As

is symmetric positive definite

(39)

(40)

(41)

(42)
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where is the operator norm of the matrix .
Since the Green’s operator is assumed to be
continuous and is compact is bounded
and hence implying that

. Furthermore, is
of class as the Green’s operator ofis assumed to be
continuous, implying that is of class .

This implies that there exists optimal paths of class and

of class minimizing (45). Lemma 1
With the existence and differentiability of the solu-

tion of (45) we see that the velocity field given by
minimizes (7). Fur-

thermore as satisfy the system of linear equations

and as is of class , it implies that is of class
and hence by Lemma 2 below defines a diffeomorphism .

Lemma 2: Let be subset of . Let
be a continuously differentiable vector

field with support, , contained in for each . Let
be a solution to the system of ordinary differential equations

with initial condition . Then for each is a
diffeomorphism of .

Proof: As the vector field has compact support it is
a completevector field and hence has a unique solution
for all (see [15]). We prove that is a diffeomorphism
by showing that for each

1) is one-to-one and onto;
2) Both and are differentiable.

For all , as , it is imme-
diate that for all . For a fixed , consider the ve-
locity field with solution to the
ODE . By the uniqueness and exis-
tence theorem of ordinary differential equations it is immediate
that for all and .
This implies that for all as if for some

then for all as
. This is a contradiction, as by the above remark

. Similarly for all . This
implies that is one-to-one and onto and is given
by . By smooth dependence on initial conditions, both
and are continuously differentiable mappings for eachim-
plying that, is a diffeomorphism. Theorem

APPENDIX B
EULER–LAGRANGE

Proof of Theorem 2:The minimizer
for the landmark matching problem with

and minimizing

satisfies the Euler–Lagrange conditions of (11) and (12).
Proof: Let be the mini-

mizer and consider the one parameter family of functions
is an allowable

perturbation around the minimizer implying that
as . Thus the objective functional

satisfies for all allowable perturbations. Differ-
entiating and integrating by parts gives

(46)

implying for all allowable perturbations yielding the Euler–La-
grange conditions, for all

(47)

(48)
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As , gives
for

APPENDIX C
HOMOGENEITY LEMMA FOR EXACT LANDMARK MATCHING

As we will be interested in generating flows that match ex-
actly a given set of landmarks in the template and the target
we now state the associated energy minimization problem and
prove existence of a solution. Notice that care must be taken as

. Also, the trivial velocity field used in the proof of part 1
showing that is not empty will not be satisfied. We first prove
that given distinct landmark points, there exists a diffeomor-
phism which maps the points on to each other exactly. For this
define the concept of isotopy. Let be the space of all
compactly supported diffeomorphisms of .

Definition 1: Elements are said to be iso-
topic, – , if there is a map such
that . The map is called an
isotopy between and .

We use the Homogeneity Lemma from differential geometry
to extend from one landmark for the existence of a flow to that
of exactly matching the given landmarks.

Let open and connected, then there is
and a compactly supported isotopysuch that

and .
Lemma 3: Let be distinct points in

then there is a and a compactly supported isotopy
such that for all and .

Proof: We prove the above statement by induction. For
this, we use the Homogeneity Lemma for . That is, let

open and connected, then there is
and a compactly supported isotopysuch that and

.
Assume that it is true for . There exists disjoint open

connected sets such that
for and . By theorem above
there exists and and compactly
supported isotopes and . Let . It is immediate
that has the desired properties. Similarly the isotopy

also has the desired properties .

We now show that flows can generate all diffeomorphisms
isotopic to the identity and hence particularly diffeomorphisms
that map the given landmarks.

Theorem 3: If is isotopic to the then there
exists a vector field and an associated flow such
that .

Proof: As there exists a map
such that . Let

. As for each , it im-
plies that is compactly supported and hence
complete. By existence and uniqueness theorem there exists a
unique flow such that that satisfies the dif-
ferential equation . This implies that
the flow is in fact given by the isotopy .
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