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Landmark Matching via Large Deformation
Diffeomorphisms

Sarang C. Joshi and Michael I. Miller

Abstract—This paper describes the generation of large defor-
mation diffeomorphisms ¢ : @ = [0,1]® < Q for landmark
matching generated as solutions to the transport equation
do(z,t)/dt = v(é(z,t),t),t € [0,1] and ¢(x,0) = =,
with the image map defined as¢(-,1) and therefore controlled
via the velocity field v(-,t),¢ € [0,1]. Imagery are assumed
characterized via sets of landmarks{z,., ¥, n = 1,2,...,N}.
The optimal diffeomorphic match is constructed to minimize a
running smoothness cos}| Lv||? associated with a linear differen-
tial operator L on the velocity field generating the diffeomorphism
while simultaneously minimizing the matching end point condition
of the landmarks.

Both inexact and exact landmark matching is studied here.
Given noisy landmarks x,, matched to y,, measured with error
covariancesX ,, then the matching problem is solved generating
the optimal diffeomorphism ¢(x,1) = fol B(p(x,t),t)dt + x
where

1
o(:) = arg min/ / ||Lv(z, t)||* da dt
(1) Jo Ja

N
+ Z[yn - ¢’(mn’ 1)]T27_zl[yn - ¢’(mn’ 1)] (l)

Conditions for the existence of solutions in the space of diffeomor-
phisms are established, with a gradient algorithm provided for gen-
erating the optimal flow solving the minimum problem. Results on
matching two-dimensional (2-D) and three-dimensional (3-D) im-
agery are presented in the the macaque monkey.

Index Terms—Deformable templates, medical imaging, pattern
theory.

I. INTRODUCTION

cisecomputationaktudy of the infinite biological variability of
anatomy. This is emerging as the discipline that we are coming
to call computational anatomfd], [2] in which the main aim
of our own work is to develop mathematical and software tools
specialized to the understanding of the variability of brain
anatomy in humans and primate monkeys [3]-[12].

The transformationd € H : © — € are constructed from
the group of diffeomorphisms of the coordinate sysfent =
Diff (), defined by vector fields of displacements

heH:x=(x1,22,23) € L+ h(z)
= (h1(x), ha(z), hs(z) € Q.

Within the framework of computational anatomy, the single
most important component is the generation of large deforma-
tion diffeomorphisms. Given any two anatomical imades

I, assumed to be in the same homogeneous anatomy (see [2])
compute a diffeomorphism from one anatomy to the other:
I :f;:h_l I>. In our work, not only are the global structures

of deep nucleiimportant but as well we study the differen-
tial geometric features associated with the finest geometric
structures includingsulcal trajectories and cortical folds
Notions such as Riemannian length, Gaussian curvature, and
surface area measures of highly complex folded structures are
at the heart of our investigative work and others [13]. Methods
which allow for the quantitative study of shape associated with
Riemannian lengths, curvatures, and surface area measures
are of crucial importance. It is therefore natural to organize
the transformations around the continuum, emphasizing the

ECENT revolutionary advances in the field of medicaproperties of diffeomorphisms as they map the various tangent
imaging have facilitated digital imaging modalities suclspaces and curvature features of the embedded submanifolds.

as magnetic resonance (MR), X-ray computed tomographyThe approach is motivated by the image matching problem
(CT), and cryosection imaging (Cl), to name a few, and afermulated via flows previously by Rabbitt and Christensen and
enabling extremally detailed study of anatomy. Althoughosed as a control formulation in Dupuis et al. [12]. The basic
the study of anatomical variability can be traced back to thgotocol [5] followed for generation of the registration maps
beginnings of modern science, the exquisite resolution and #mploys a hierarchy of transformations “increasing” the dimen-
three-dimensional (3-D) and four-dimensional (4-D) capabilsionality successively via the fusion of landmark and image
ties of these imaging modalities, combined with the advancestratching. Low-dimensional, nonrigid, coarse registration in-
digital computation, is only now enabling the detailed and pretuding the affine motions of global scale, rotation and trans-
lation, proceeds to high-dimensional, fine image matching reg-
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landmark matching to the large deformation setting insuring theThe large deformation setting reduces in the small defor-

generation of diffeomorphisms. mation setting to the small deformation landmark matching
problem of Bookstein [16], [17] and others [18], [19]. Al-
A. Large Deformation Landmark Matching Problem though these methods have proved to be very powerful in the

Our approach is to construct diffeomorphismis: Q — study of biological shape [16]-[18], the deformations are not

[0,1]* —  in terms of the solutions to the ordinary differentiannStramed to baliffeomorphictransformations as they are

equation (ODE) defined by the transport equation as first us ased on quadratic penalties derived from differential operators
in [7] motivated by small deformation kinematics. They do not allow

for large deformations that maintain the geometry and topology
d(x, t) of the template [7]. To illustrate, assume the anatomies are
P v(p(z,1),t), ¢(z,0)==, t€[0,1]. (2) deformed one to another accordingdr,1) = = + u(x).
This essentially removes the kinematic nonlinearity. Then the
The final time diffeomorphisng(-, 1) mapping the anatomy is minimization of the small deformation transformation mapping
therefore controlled via the velocity field -, ¢), ¢ € [0, 1] the template to the target is chosen to minimize the thin-plate
“bending energies” while constraining the transformation at
the known landmark points. The energy minimization problem
solved is of the form

Pz, 1) =x+ /1 v(gp(z,s),s)ds, x€Q. 3)
0

We assume th¢argetsare characterized via sets of land- L I 2,
marked imagery{z,, y,,n = 1,2,..., N}. A quadratic regis- U= atgirn o 1)l de
tration distance is defined between the measurements from the subject tou(zy) = yp — &, n=1,...,N.

various target anatomies. The transformation is generated which
minimize the distance while at the same time being a diffeomor-
phism.

Following the recent work of Dupuiset al. [12], we formu-
late the landmark matching problem as a control problem, wi
the optimal diffeomorphic match constructed to minimize a run-
ning smoothness cost on the velocity field generating the diffeo-
morphism while simultaneously minimizing the matching end .
point condition of the landmarks. H(x,t),z € Q,t € [0,1] We force the transformations mapping the landmarks to be
is a sufficiently smooth vector field o, 1], then, by the exis- diffeomorphisms by associating with them an enefidy||?
tence and uniqueness theorem of ODE’s [15], the solution exigthich gives them sufficient differentiability to insure the exis-
and is uniquely determined by the velocity fielfiz, ¢) and the tence and uniqueness of the solution of the ODE. We have been
initial condition ¢(z,0) = x. Furthermore, it defines a uniqueusing operators motivated by mechanics such as —aV? +
diffeomorphism of2 «— 2 via the solution to the above ODE.bVV - +c. Throughout we shall assume the compact setting
By a continuously differentiable vector field, following [15] we2 = [0, 1]* with the operator and boundary conditions chosen
mean that each of the coordinate functienge, t),i = 1,2,3 so that the Green’s function is nonsingular and continuous in
are continuously differentiable with respecti#g ¢ = 1,2,3 both variables. For landmark matching we have used powers of
andt. the Laplacian withu = 1, b = 0 with zero boundary conditions

Diffeomorphic landmark transformations are constructed hwhich differentiates only in space, implyirgis a diagonal op-
forcing the velocity fields to minimize quadratic energetics oarator giving energetics in the form
Q x [0,1] = [0,1]* c R* defined via a matrix constant coeffi-
cient differential operator of the form

E(v) = / / Lo, )| de dt
o J0,1]
N _ _ Our results on generating diffeomorphisms apply for general
where L is a constant-coefficient, differential operator. Theonstant coefficient matrix differential operatatsas long as

The basic difficulty for curved trajectories is illustrated in
Fig. 1, in which the small deformation solution forces the grid
PHes to cross thus destroying the geometric properties of the

GENERATING LARGE DEFORMATION DIFFEOMORPHISMS

E(v):/Ol/QgK—VQ+c)v7¢(a:,t)|2da:dt.

matching problem for théV-landmarks{z,,,n = 1,...,N} the3 x 3 matrix Green’s functior?(z, ») is continuous in both
becomes x andy and the3 x 3 matrix functionK (x,y) = GG'(z,y)
L is positive definite as an operator. This is true for the diagonal
#(x,t) = arg min / / | Lv(z, t)||? dx dt Laplacian plus identity case
v(@t) .Jo Ja
subjecttop(z,,1) =y, n=1,...,N (4) V2 4e 0 0
L= 0 -V?+ec 0 (5)
where 0 0 V2 4¢
dg(z, 1)

g = ve,t).1),  ¢z,0) = and is assumed throughout for the theorems.
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Assuming that the velocity fields are Gaussian random field®nlinear quadratic control problem in the Bolza form with the
induced by the differential operatdr [5], [18], we define the continuity properties. With the uniqueness of the solution of the

spatial3N x 3N covariance matri¥{(¢(t)) according to ODE the diffeomorphism property results. See Appendix, The-
orem I|-A for proof.
K(¢(t) = Equation (9) demonstrates that the optimization is reduced
K 1), t e K 1), Lt to optimization of the/V, landmark trajectorieg(z,,,-),n =
(9o, 8), @@, 1)) (¢lon,8), élen, b)) ., IN. The Euler-Lagrange conditions for these optimizers
: : : are given as follows. . O
NE @y, 1), ¢(x1,1)) - K(P(en,t), p(xn, 1)) Theorem 2: The minimizerg(¢) for the landmark matching
BN %3N problem corresponding (x,,,0) = z,,n = 1,..., N with
(6)
Hon) arg min Z Pl
with (K (¢(t));; denoting théj, 3 x 3 block entry(K (¢(t)):; = n=1,....,N ° 5 (acn, ) ot
K(d)(xzv t)v ¢(xj7 t)) """
X (K(p(t))™1)s;0(x,, 1) dt + D(p(1
A. Inexact Landmark Matching ( (d)( N Jd)( it (@ )()10)

Assume the measured Iandmark points are defined to within

some covaranc&l,,n = -, V. Then the matching satisfies the Euler-Lagrange conditions foe= 1,2,3,n =
problem has the following form
Theorem 1: With the squared error distance for Iandmark

matching given by

.
N

N . -1 .
0= 32_: P, t)" <7a§/>(l(é)g),)t) )nj P(xj,t)
D(¢(1)) = [t — ¢(@n, D" ym — ¢(wn, 1)] )

e + (22 n1¢($1’ )) ) (11)
4

let L be a constant coefficient matrix differential operator with

3 x 3 matrix Green’s function7(z, ) continuous in bothe N L =
andy and K = GG positive definite, on compact domain 0= 22 (1) )ni (s, 1) + Xy (2, 1) = yn)-
2 = [0,1]3. Then the optimization j=1
12)
1
() = arg mjn/o /Q | Loz, )| dx dt + D(¢(1))  (7) Proof: See Appendix, Section V-B for the proof. O
Remark 1 (Relation to Eulerian Setting)n [7], [12], and
where [20], we have studied the quadratic image matching in the in-
L verse Eulerian framé = ¢—. Then
Ha1) = [ o).+ N
o :
with the minimizers defined by (7) is of the form D(R(1)) = ;[x My DI 55 [on = b, D] (13)
N N
5 where
=D K(#lwi,t),0) Y (K($(1) D)ijdlwst) (8) .
= i=t Bz, 1) = / _Vh(z, () + o
where i . ’ . .
Then the optimal diffeomorphism is given by the matching
(};(x ) problem stated in Dupuis [14t al, for landmark matching it
ny " _ 1y .
R [} 3 dtaoyhbecomes
..... 1
X (x,1) + D($(1)). ) o(z, 1) :argmin/ / | Lv(z, t)||? dz dt + D(h(1))
voJo Ja
R The m|n|m|2|ng veIOC|ty fielda;)(xn, -) are continuous and with optimal diffeomorphism
o(z fo t) dt + z is a diffeomorphism of2 —  A(z, 1) fo —Vh(z, )0(z,t) dt + =.
Q. The power of worklng in the Lagrangian frame via (7)—(9) is

Proof: The proof has two parts. The first demonstrates thttat we have reduced the optimization from velocity fields
the optimal velocity field is of the form given by (8). The secondn Q x [0, 1] to N velocity fields ¢(z,,-),n = 1,...,N on
part demonstrates that the resulting optimization (9) is a clasfic1].
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B. Including the Affine Motions exists and defines a diffeomorphispg-, 1) of @ < €. The

We include the affine motions by allowing the target pointgPtimum velocity fieldi and diffeomorphisn are given by
to carry the affine motions

N N .
(4,a) : yn € R® — Ay +a € R, O, t) =Y K(¢xat),0) D (K (¢ idle; 1) (19)
AeGL(3), acR: (14) =t =t
Then the distance function is straightforwardly modified to invhere
clude the affine motions X
(/)(.Tn, )
D(¢(1), A, a) n=1,...,N
N 1 . .
= [Ayn + a — ¢z, DS, Ay, +a — ¢z, 1] = arg ;(gin.) /0 > dlan )T (K (G(1) iy, ) dt
n=1 n=l,...N i

subject top(z,,1) = yp, n=1,....N (20)

Then, Theorem 1 holds for the solution with the affine motion
added to the estimation. Létbe the constant coefficient matrix )
differential operator as above wihx 3 matrix Green’s function With the optimal diffeomorphism given byp(z,1) =
G(z,%) continuous in bothr andy and K = GG positive jblﬁ(d)(x,t),t) dt + .
definite, on compact domai. The optimizing diffeomorphism Proof: Asin Theorem 1, the above minimization problem
is given by of (17) is is equivalent to that of a finite dimensional optimal

control with fixed end point conditions. Following the same rea-

. L ] L ) soning as in theorem 1, it is equivalent to that of finding the op-
(0(-), 4,8) = arg LH}}I}I/O /Q Loz, )" du dt timum paths of théV landmarks points satisfying the minimiza-
+ D(¢(1), A, a) (15) tion of (20). It satisfies all the conditions required for existence

in theorem 1. However we must also prove that the set of exact

s . S C e landmark matches is not empty, i.e. that their exists a velocity
h = t),t 0) = x, with o(- t 8) _ . - . -
whereg = v(¢(z,1), ), $(w,0) = x, with 5() satisfying (8) field having finite cost which carries one set of landmarks to the

and other. This is proven in Theorem 3 in the Appendix V-C. The
X remainder of the proof is identical to theorem 1, ]
n=L....N L D. Implementation Algorithm
=arg  min / Zd)(a:f,,t)(K(¢(t))_1)7¢j¢(xj,t). We now state the algorithm for the inexact landmark
n=(1>]\ Aa 0G5 matching case (see remark below for exact landmark matching
+ D(¢(1), A, a). (16) algorithm). The algorithm for landmark matching reduces
the problem to a finite dimensional problem by defining the
flows on the finite grid of fixed times of sizé, t,. = k&,
C. Exact Landmark Matching k=0,1,..., K = 1/6. Assume velocities piecewise constant

As we will be interested in generating flows that match exVithin the quantized time intervals, so that foe [tr—1: th),
actly a given set of landmarks in the template and the tar nit) = (¢(@n, ) — $n, ti—1)/6). It will be helpful for
we now state the associated energy minimization problem. NBE3 * 1 vectorsA to define the notatio4); to mean theth
tice that care must be taken 8s— 0. The problem of exact cOmponent of the vectod. _ L
matching of a set of landmarks in the template and the targetﬂig‘lgor'thm L: The finite dimensional minimization over

formulated as follows. " becomesy(y,0) =z, n = 1,..., N and
Corollary 1: Given landmarks{z,,,n = 1,2,...,N} C
Q = [0, 1]3 that can be identified exactly with poin{g,,,n = </A>($n,tk)
1,..., N} in the data, with operatakt as in theorem 1, the so- n»=1,...,n,
lution to the energy minimization problem k=L, K .
1 —ag win S [ t) — oo )]
8(-) = argmin / / Loz, £)|2 da dt Pt 82
v oJo JQ k=1,...,K
subject top(z,,,1) =y, n=1,...,N a7 t
X </ (K (¢(1) )i dt) [p(zj, tr) — Pz, te—1)]

where te—

N
Pz, t)y =+ /0 v(p(z,s),s)ds (18) + nz::l[yn = ¢, DS [yn — dlzn, 1] (21)
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The gradient algorithm for minimizing (21) initializes with =  with
0 and ¢ (zp,,tx) = #p,n = 1,...N, k = 1,...,K, and N A .
iterates form = 0,1,.... Z K($an,t),2) Y (K($(0) ™ Injd(;,1),

1) Calculate gradient perturbation for each =1

(25)

(f/)l( )) ¢3(x1):/1@(¢3(ggt)t)dt+x forallz € Q
Sl tn) = | dolemtn) | vn=1,....N, k=1,....K ’ 0 v ’ '

P3(@n, tr)

For including the affine motions, within each step of the
gradient on the velocity field we fix the diffeomorphism from

¢ (2, 1) the previous iteratiory””)(-) and solve the linear landmark
() (2, ) matching problem
— %m; (;rn, tk) N .
3 (T, tr) AmHD Gm+D) — aremin Z [Ayn +a— ¢ (z,, 1)}
9 p ((/)(")(1)) + (/)(m) 1)) Aa =
a¢l(gnztk) a¢1(gnztk) n
— A 76452(1;7“%)]3 (d)(" )(1)) + 6452(3871,“) (rn) 1 X E;l |:Ayn La— d)(rn)(xn’ 1):| (26)
9 m
et (™) + qug(acn,tk) ‘7)( ) (1)
2 ) giving
where forl = 1,2,3 _— N -t
A(m-l— ) — Z Yn¥n E;
aD(¢(1)) n=1

= 6[tk - 1] (22771[%1 - (/)(xnv 1)])1

Ibi(2n, tr) T
opoy _ (o (S (- )) @
=2 K(¢p())™ Ny dt [z, 1y
o =220 ([ KOO D drisen -
&(rn-l—l) _ <Z Enl>
- ¢<xj,tk+1>1> =
l ~
N (o X <Z S PAT Dy, — 0 (a, 1)) - (28)
+2) </ (K(d(t) )y dt [Pl ta) =t
=1 fe—
! These are linear equations for fixed™ which are solved via
— Plxjti1)] matrix inversion.
. Remark 2: For choosing initial conditions for the inexact
landmark matching the identity map given b§) = 0 is used
+ Z (zj,tg1) — ozt )T for the initial condition. For exact landmark matching an ini-
tial condition is generated from the inexact landmark matching
8 fthrl )1y dt solution following an approach suggested by Younes [21]. Con-
5 ! struct an inexact landmark match to withinahall of the target
(7”( ) landmarks. The initial condition for exact matching is generated
X [Pl thyr) — ‘Wcjvtk)] by linearly interpolating the inexact landmark match onto the
target points. This insures an initial condition which does not
where cross and maps the landmarks exactly.
t 1 —
0 Ji (K (@) ny dt ll. RESULTS
Oy (37] ) tk)

tein DK (H(1)) For speed of implementation we have implemented the algo-
- / <K(¢(t))_17K(¢(t))_1> dt rithm corresponding to the infinite domain so that the Green’s
i Iu(xj,tr) g functions and resulting covariandé(-, -) have analytic closed
(23) form expressions. For the Laplacian operdior V? this gives
the Green’s functions and covariances of Kent [18], of the form

andé[t, — 1] = 1 for ¢, = 1, and0 otherwise. K(z,y) = ||z — y||, =,y € R
After stopping, define the final iterate gs= ¢™+1, and We now derive the covariance induced by the self-adjoint op-
. . eratorL = —V? + ¢ with infinite boundary conditions. As the
A P (2, 1) — ) (2t 1) covariance operatdt (, ) is given by the Green’s function for
Han,t) = § ’ the operatoL? which is shift invariant, we use the Fourier trans-

t € tph—1,tr), k=1,...,K, (24) form method for computing the Green’s function at the point
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Fig. 1. Top row: Left panel shows phantom of two landmark point matchihgratching toB, andC' matching toD, with fixed corners used for the first
experiment. Middle and right panels compare the small deformation thin plate landmark deformation (middle panel) and the large deformatigrigdalutio
panel). Bottom row: Left panel shows the determinant of the Jacobian of the thin plate landmark deformation. The right panel shows the detehminant of t
Jacobian associated with the @i§eomorphidransformation. Notice that the determinant is negative in the region where the grid lines in the thin plate landmark
deformation cross over while the determinant of difteomorphicransformation is strictly positive everywhere.

y = 0 with the shift invariance used to deduce it every where. Frollowing Joshi [5], [22] the small deformation cost is mini-
the Fourier domain the spectrum of the the operaforentered mized according to
at the origin is given by||w||? +¢)?. Using rotational invariance

and spherical coordinates gives the space domain representation a,A G = arg min/ | Lu(x)|)? da
w,da Jo

via the Fourier integral ’ "
N
_ T
_ i A 1 —j2m{w,n) - Z[Ayn ta (xn + U,(.’En))]
Ko =3 W+ ™ =
Y[§ w C
—00J—o0 -0 x S Ay, + a — (2, + ulz,))]- (32)
(29)
2
== Vel (30) This gives the optimal small deformation shown in (33) and (34)

Vv e(2m) at the bottom of the next page.

The large deformation landmark matching algorithm was im-

This gives the entire kernel according t&(z,y) = plementedin2-D initially. Fig. 1 shows a set of results based on
(2/+/c(2m))eVele—ull, a simple test pattern containing 2 matching points with fixed

corners requiring a nonlinear twisting motion for the matching.
A. Small Deformation Solution The left panel of Fig. 1 shows the test grid pattern containing

Large deformations present a significant challenge to smitr Points A, B, C, and D which where chosen as landmark
deformation landmark matching such as in Bookstein [16], [1PPINtS on the grid. Point A was mapped to point B and point
or Kent and Mardia [18], or Wahba [19] on spline methods. AC Was mapped to point D while the four corners were mapped
though these methods have proved to be very powerful in tABIO themselves. _ o
study of brain structures [16]-[18], the deformations are not SNOWn in the top row, middle panel of Fig. 1 is the small
constrained to beiffeomorphicransformations. For small de-déformation solution of equations (33) and (34). Notice how the
formations, assume the anatomies are deformed one to anoffié} lines cross in generating the mapping. _
according top(z, 1) = @ + u(x). Then the minimization of the 1" large deformation matching algorithm 1 was imple-
small deformation transformation mapping the template to tfeented for the 2-D grid of points. Shown in the top right panel
target is chosen to minimize the thin-plate “bending energie€* Fi9- 1 is the result of matching to B andC to D. Notice

while constraining the transformation at known landmark pointg@t no grid lines cross. The bottom row shows the determinant
zn,n = 1,...,N. We include the affine motions by allowing of the Jacobian of the small deformation (left panel) with the

the target points to carry the affine motions diffeomorphictransformation (right panel). The color scale
shows black where the determinant of the Jacobian is negative,
and shows white where the Jacobian has positive determinant.
(A,a) : yn € R® — Ay, +a € R, Notice that the determinant (left panel) flips sign and is negative
A€ GL(3), ac R (31) in the region where the grid lines in the small deformation
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Fig. 2. Left panel shows the optimum patfiSvmt), n = 1,2 traced out by the landmark points A, C, and the four corners of the image. Right panel shows

pathsé(z, t) traced out by the grid points under the optimal velocity fié{d:, ¢).

Fig. 3. Left column shows the two test patterns. Columns 2 and 3 show results of the deformation process using vasiareds1afl , 5, and10 respectively.

landmark deformation crosses over; the determinant of thér,t),z € [0,1]%,¢ € [0, 1]. Notice again that the mapping is
diffeomorphidransformation is strictly positive everywhere. one-to-one as none of the paths cross each other.

To illustrate the complete flow of points associated with the Shown in Fig. 3 are results from two other test patterns,
diffeomorphic transformation, the left panel of Fig. 2 shows thihe “OVAL” and “S” (left column). The corresponding points
optimum paths traced out by the landmark points A, C and tkbown in the figure were used as landmark points and the
four corners. The right panel of Fig. 2 shows the paths tracedvariances.,,,n = 1,..., N associated with them was suc-

out by all the grid points under the optimum velocity fi3|dcessively varied. We choge, = 02((1) (1)) using variances of

n=1
N e~ Vellzn—|| 0 0 B
= 2 0 e~ Vellen ==l 0 B with (33)
no1 vear 0 0 e Vellza—zll | \ 3 .
- ~——
K(zn,x) B
B ) (K(zy, 1)+ %1 - K(z1,2x) 'z — (Ay 4 a)
B K(zn,z1) - K(zn,on)+ N zn — (Ayy + )
0= Z[}m 0= Zﬁnyz; (34)
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SoH
ST

A

Fig. 4. Left panel shows the target oval test pattern. Middle panel shows?the 0.1 large deformation solution. Right panel shows the small deformation
solution withe? = 0.1.

o? = 0.1,1,5,10. Shown in the middle and right columns of

Fig. 3 are the results of the large deformation process. Notic

that as the variance associated with the landmark identificatic

process is increased the OVAL does not deform exactly to tt

target pattern. e
Fig. 4 shows a comparison of the large deformation sc ‘g ..~

lution (middle panel) compared to the small deformatior

solution (right panel). Because the small deformation landmar -

matching does not generate a diffeomorphism, it creates seve Source Map arget Map

image landmarks in the mapped target. (Brodmann) (Canonical - Case 790)

.

R . Fig. 5. Figure shows the geometrical features such as the sulci and the fundi
B. Application to the Study of the Cortical Cartography that were identified on the flat maps and used as landmarks for the deformation

The mammalian cerebral cortex has the form of a |ayeretas)cess. Data taken from the laboratory of Dr. D. Van Essen.
highly convoluted thin shell of grey matter surrounding white
matter, and is one of the most striking features of the brain. T
cortex contains a complex mosaic of anatomically and functio
ally distinct areas which play a tremendously important rol
in understanding brain functions [23]. As championed by V&
Essenet al. [24], to aid in the understanding of the geometn
and the functional topography of the cortex the convoluted cel
bral cortex is mapped to a plane to generate a cortical flat m:
The cortical flat map, although inherently induces distortion
allows for convenient visualization.

To understand individual variation in the cortical topograph
the Van Essen group has been using the large deformation tc
to establish correspondences between the flat maps of vari s
individual cortical surfaces. Shown in Fig. 5 are the geometric g mann Areas Deformed Brodmann (lines)
features associated with the two flat maps of the cortical St A fier Deformation) displayed on FVE areas (solid)
faces depicting the cortical geometry and the associated paru-
tioning schemes by Brodmann on the left, and Fellman and Veig. 6. Shown on the left is the deformed flat map corresponding to the
Essen on the right. Notice the large variation in the geometpgtitioning schemes by Brodman. Shown on the right the overlay of the
and the shape of the cortical surfaces as depicted by the dor™ed Perlionng schemes by Srocnan on the parloning scheme by
ference in the positions of the geometrical features associated
with the deep folds of the sulci and the fundi that were identj- . . .
fied on both the flat maps. These features are used as the Iaftl?]@dmann. Shown in the right panel is the overlay of the de-

marks for driving the deformation algorithms herein assume(armed partitioning schemes by Brodmann on the partitioning

with known predefined correspondence (see [25] and [26] ngheme by Felleman and Van Essen.

automated sulcus generation and matching based on the Fr%peﬁ'hree-Dimensional Macaque and Human Hippocampus
frame supporting automated landmark correspondence gen'ﬁ@éults

tion). Shown in Fig. 6 is the resul;[ of the deformation process. Examine the whol on brai H )
. _ - xamin w m r ion brain wn in
For thisQ = [0, 1]2 with L = ( Vite 0 amine the whole macaque cryosection brains sho

0 v c)’ azx2 Fig. 7 in which the gyri and associated sulci have been labeled.
matrix operator defined ofR* valued vector fields deforming The sulci and gyri are defined precisely in terms of the geomet-
in the unit-squar€0, 1]%. The left panel of Fig. 6 shows the de-rical properties of the cortical surface using the notions of ridge
formed flat map corresponding to the partitioning schemes byrves and crest lines (extremal points of curvature) following
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Fig. 7. Top row shows the volume rendering of the template 87A (left panel) and the template mapped to the target 90C (middle) using only the sulcal line
constraints to define the transformation. The right panel shows the target brain 90C. Middle row shows corresponding sections through theAdtefi)dte=8

target 90C (right) and the deformed template (middle). Bottom row shows in the squared error between the respective sections and the targefrddathdake
laboratory of Dr. D. Van Essen.

[27]. Using the dynamic programming algorithm for trackingemplate and the target. While there has been an alignment of the
geometrically significant contours on the brain developed major subvolumes in the deformed template with the target, the
[27] the gyri and associated sulci were labeled in several whatong differences that still remain are associated with the fact
brains. The sulcal maps constrain the transformation from otlat a relatively small number of landmarks are being used. To
brain to the other. The top row of Fig. 7 shows fundus curveggenerate more complete matches the landmark matching must
of the major sulci which have been identified and placed intze coupled to the image matching as described in [1], [28].
the whole brains. The left and right panels show brains 87A andFig. 8 shows large deformation landmark maps of the hip-
90C with the fundus curves placed on the map. The deform@ecampus studied via MRI. Shown in Fig. 8 are results on the
tion field was constrained so that the corresponding points weéasdmark matches of the hippocampus compared to hand seg-
mapped on to each other IR, mentations generated by Dr. J. Haller and Dr. L. Wang at Wash-

Our group has extensively studied the mapping of the himgton University.
pocampus in MRI of human brains [8], [9]. All of this pre-
vious work has relied on the use of small deformation land- IV. CONCLUSION
mark matching, assuming that template and target landmarks ar
similar. Fig. 7 shows large deformation landmark maps of tqgomorphismsﬁ . Q = [0,1]® — Q. Both inexact and exact
macaque. The top panels show the volume rendering of the t ydmark matching is studied here. Given noisy landmasks
pla_lte 87A (left panel) and thetempl_ate mapp_ed tothe target 9 tched toy, measured with error covariances,, then the
using only the sulcal curve constraints to define the transfornE—

d

Fhis paper describes the generation of large deformation dif-

tion. The right panel shows the target brain 90C. The mid atching problem |s solved generating the optimal diffeomor-

row of Fig. 7 shows corresponding sections through the te emsm¢ (2, 1) fo £)dt + x where

plate 87A (left) the target 90C (right) and the deformed template

(middle). Shown in the bottom row is the squared error between o(+) = arg mm/ / | Lv(z, t ||2 d dt

the respective sections and the target. Notice that there is a large

difference in the shape and positions of the major subvolumes NG

(the thalamus and the cortical folds) between the undeformed + Z P, D155 [y — Plan, D] (35)
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Fig. 8. Figure showing matching of the hippocampus based on landmarks showing the comparison of hand segmentations and automated landmassbased matc

Conditions for the existence of solutions in the space of diffeo- Chooses € H the Hilbert space with finite enerdyLv||? <
morphisms are established, with a gradient algorithm provided defined in terms of a second velocity fietdaccording to
for generating the optimal flow solving the minimum problem. L

Results demonstrate that large deformation solutions are ap- e, t) = U]S,x’ B+ (e ?)
propriate in the setting that the anatomical maps are required _
to follow curved trajectories. This corresponds to the kinematic o nz_:l K(@(an, 1), 2)fn(t) +90(2,1) (37)

nonlinearity introduced fundamentally via the transport equa- ~

tion. As shown for large curved deformations, the small defor- (1)

mation solutions are inadmissible as they result in maps whiglith the choice of3,.(-) chosen to satisfy

deform the lattice in nonphysical ways. Inconsistencies result N

corresponding to noninvertibility of the maps. oz, 1), 1) = K(A(z:.1), . )5 (1
Results on matching 2-D and 3-D imagery are presented in (9lan, ), 1) ; (9(,8), @@ D)5 (1):

the macaque monkey. We have found that for the understanding n=1,...,N (38)

of the curved geometries associated with cortical folding [29]

small deformation mapping cannot work. On the other hand, f8Plying ¥ (¢(zx, t),t)) = 0,n = 1,..., N. That (38) can be
sults are provided within demonstrating that by introducing tHgade true follows from the fact thdt is chosen so that it is
kinematic nonlinearity matches can be generated consisteritsitive definite with Green’s function that has finite energy, so
on cortical folded surfaces. Perhaps the most fundamental lifRat || La(-, £)||> < oc for eacht, andK = GG is invertible
itation of the work is the assumption of known correspondené!ll rank covariance). Then € 7 since|| L||* < oo following

between curvilinear landmarks such as defined by sulcus df@m the fact that
2

gyrus curves. In [25] and [26], automated methods for sulcus N

and gyrus curve generation are described; as well diffeomorphic ||Li(,t)||? = / L Z K(p(xn,t),2)B.(t)|| dx

curve matching inRk® is described based on the Frenet frame. 21 n=1

This approach is similar to the geometry based curve matching N 2

proposed in [30] and [31]. As demonstrated in [26] this allows = / Z G(d(xn, 1), 2)B, ()| dx

for the matching across cortical surfaces based on automatic 2 |[n=1

correspondence generation between geometric features such as N 3

the deepest cortical folds. <> Z/Q 1G(P(n, 1), 2)Ba ()| dax
n=1k=1

APPENDIX A < oo
PROOF OFLANDMARK MINIMIZATION THEOREM if ||Gx]|? < oo for each of the matrix Green’s function compo-

nents. This is true for the diagonal Laplacian case.
Hence, it is sufficient to show thatlv||? > ||L3|* (see

(39)—(40) at the bottom of the next page),wiil) following

sinceTERM1 = 0 implied by the facts that(¢(x,,,t),t) =0

Proof of Theorem 1:Let us prove the optimizing field
of (7) is of the form

N N .
. N forn=1,...,N andK = GG giving L' LK (¢(xy,, 1), z) =
b(x) = K(¢(an,t),2) Z(K(¢(t)) Dnid(,t)- 8(¢(tn, t) — ).
n=t =t . The optimal diffeomorphism satisfyingp(x,1) =
B (1) fol v(¢(z,0),0)do + = for the matching problem be-

(36) comes (41)-(42), shown at the bottom of the next page. Then,
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choosings,(-) from (38) and taking the inverse covariance and ~ Proof: Let ¢(t) = [p(z1,1), ..., ¢(zy, )T € R,
substituting for3(-) gives the equivalent optimization stated irwith velocity ¢( ) € IR*N . The canonicaBolzaform becomes
terms of theV-Lagrangian landmark flow velocities according

1
to ¢ = argmin J(¢) = argmin/ H(p,d,t)dt + D(p(1)).
N N . {e} 0
= > K($(wn,1),2) Y (K(G0) ™ )njla;. 1) (45)
n=t =t 43 We now use the existence of optimal control to prove the exis-
(43) tence of a minimum to the optimization of (45). For this, de-
where fine the following sets. LetF be the set of all Lebesgue-in-
. tegrable functions)(-) with values inR*" and J(¢) < oc.
</3(a:n, ) By the existence theorem of optimal control (see [32, ch. 3])
n=1,...,N if 1) F is not empty, 2)Q is compact andD is continuous
L on €, 3) H(:,¢) is convex in the control variablé, and 4)
= arg ¢I(rmun / Zd) zi, YK (PO) )i d@it)  H(p, d, 1) 2 1| (t)]|%,er > 0,8 > 1, then there exists(t)
n—lm minimizing .7(¢) on F. If in addition H is of classC”,r > 2
+ D(¢(1)). (44) and the matrixH ., (4(t), $(t),t) is positive definite for allp

theng(¢) is of classC”—1 and¢(t) is of classC” on [0, 1]. The
above minimization of (45) satisfies all the above conditions as
|llows

This completes the first part of the proof.
To establish continuity of the minimizer, and the dlffeomo
phism property we notice that this is a classic quadratic contro

problem in Bolza form ([32, ch. 3]), which we prove viathe fol- 1) # 1S not empty as the identity mapping with
lowing lemma. 0 th%\ trivial control ¢() = 0isin F as J(0) =
Y T
Lemma 1 (Bolza LemmajThere exists continuously differ- 2n=1[®n 3yn] Xt n = ynl < o0 o
entlable set of opt|mal pathﬂa:,,, Jyn =1,...,N satisfying 2) Q = [0,1]° is compact andD is continuous as it is a
e f e s)ds + m|n|m|2|ng quadratic function of the endpoii{1).
mt = o n5) " 3) K(4(t)) is a positive definite covariance matrix and
('/;(x ) Hy o (6(1),t) = 2K ((t)) is positive definite, im-
plying thatH is a convex function in the control variable
1"’ N lying thatH i f ion in th | variabl
? ? d)-
1 . .
= are  min b T (K () L)isdla t) dt 4) We now prove thatH(¢,¢,t) > ci||o@®)|>. As
® 45(%,) / Z¢( PO Db, ) K~1(¢(t)) is symmetric positive definite
n=1,.
H($,6,1) H(p, 1) = d)(t)TK RGO
2
+Z ¢, DI S5 fym — (2, 1] 2K ())| (o)
1 .
& > - 2
D(tb(l)) - TraCe(K((/)(t))) H(/)(t)H

|1Lo]|* = || L(z +)||?
1 N

N 2
K ¢(xn,t),x)/3n(t)] H dxdt+||L¢||2+2/ Zﬁn(t)T/ LK (¢p(xn,t),z)L (2, t) du dt
— 0 =1 Q

TE;{MI
(39)
Lo )2 + 1Ly (40)
1
= arg lnin/ / || Lv(x, t)||? da dt + D(4(1)), (41)
ks 0 Q
— arg min / ZﬁT Bwi, 1), s, B (1) + D(B(L)). (42)
B ()= K(B(wi,t),6(1)): (1)
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where || - ||; is the operator norm of the matrik. ,,n» =1,..., N and minimizing

Since the Green’'s operato/ is assumed to be

continuous and{! is compact K(z,y) is bounded -

and hence Trace(K(4(t)) < oo implying that d)(x"’)

H(p,$,t) = ci||p(t)|> Furthermore, K(¢(2)) is " =1~

of classC? as the Green’s operator éfis assumed to be L& 1N

continuous, implying thai (¢, ¢, t) is of classC?. = ars 15171}1 /Zd)xi’ (@)™ il t)
This implies that there exists optimal path@) of classC? and s ~
H(t) = ¢(t) of classC* minimizing (45). Lemma H{g.:t)
With the existence and differentiability of the solu- NG T
tion of (45) we see that the velocity field given by +Z ¢, DI I yn = $(n, 1)
oz, t) = ZJ K (¢(z;,t),2)B;(t) minimizes (7). Fur-

thermore a$3]( ) satisfy the system of linear equations o -~
satisfies the Euler—Lagrange conditions of (11) and (12).

Proof: Let J)(a:n,t),n = 1,...,N be the mini-
a 5 mizer and consider the one parameter family of functions
</> Tn,t) ZK (@5, 1), B(x5,8))7 () H(xn,t) = ¢z, t) + en(zp,,t),n = 1,..., N is an allowable

perturbation around the minimizer implying thgtc,,, 0) = 0
R R as¢(z,,0) = z,,n =1,..., N. Thus the objective functional
and asp(t) is of classC?, it implies that¢(x, ¢) is of classC?
and hence by Lemma 2 below defines a diffeomorphigm t).
Lemma 2: LetQ be[0, 1]% subset ofR*. Letw : (z,t) € Q2% / H(p,d,t)
[0,1] — o(x,t) € IR® be a continuously differentiable vector
field with supportsupp(v(z,t)), contained irf} for eacht. Let 4 Z

T T
¢ be a solution to the system of ordinary differential equations lan, DI X7 yn = ¢ln, 1)]

dg(,t)
dt

= v(¢(t, x),t) satisfiesJ’(¢)|.—o = O for all allowable perturbations. Differ-
entiating and integrating by parts gives

with initial condition ¢(z,0) = z. Then for each, ¢(¢,-) is a

diffeomorphism ofQ? « . 1 N
Proof: As the vector fields(z, t) has compact support it is / ZZ 3(/)1 )™ (zn,t)dt
acompletevector field and hence has a unique solutjg, ¢) n=ti=t ’
for all ¢ (see [15]). We prove that(x, ¢) is a diffeomorphism L& oH J
by showing that for each +/ > EYW— Mi(@n,t) dt
. 0 p=1i=1 d)l(x"’t)

1) ¢(t,-) is one-to-one and onto; N

2) Both¢(t,-) and¢~1(t,-) are differentiable. + Z D, DES g — b, 1],
For allz € 99, assupp(v) C Q, v(z,t) = 0, it is imme- n=1

diate that for allt, ¢(x,t) = z. For a fixedt, consider the ve- 3

locity field o(z, s) = —v(z,t — s) with solution¢(x, ) to the 0= Z Z 5 T, 1)
ODE d¢(x, s)/ds = v(¢(x, s), s). By the uniqueness and exis- n=1 =1 d)l Tns )

tence theorem of ordinary differential equations it is immediate oH d OH

thgt f_or a!la: € O, ¢(t, p(z,t)) = x and</>(</>(a:,t.),t) = z. + 1 Odi(zn.t) ) dt m
This implies that for allz € Q, ¢(x,t) € Q as if for some n= l L

t,plx,t) =y & Q then(/N)(y7 s)y=yforall s asdg)(yls)/ds = X 771(97”7 t) dt
0. This is a contradiction, as by the above rematk, y) = N S
H(p(z,t),t) = x. Similarly for all z € , ¢(x,t) € . This + > (@, DT g — ¢lan, 1], (46)

implies thaty(t, -) is one-to-one and onto amd ' (¢, -) is given
by ¢(t,-). By smooth dependence on initial conditions, bgth _ _ o
and¢ are continuously differentiable mappings for eadm-  implying for all allowable perturbations yielding the Euler-La-

plying that,¢(t, -) is a diffeomorphism. Theorem grange conditions, foratt = 1,...,N,1=1,2,3
APPENDIX B oH d oH
o= (2% y_of_ 97 (47)
EULER-LAGRANGE Opi(xn,t) dt \ d¢y(zn,t)
_ o _ OH _
Proof of Theorem 2:The minimizer ¢ (z,,t),n 0= — 4 (7 fym — @n, 1)), - (48)

., N for the landmark matching problem with{z,,,0) = N 3(/)1(36}1, 1) +
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As H(p,$,t) = 3. dlai, )T (K(o(t)"1)ijd(z;, 1), gives
forn=1,...,N,1=1,2,3
OH +i< OH )
Odi(x,,t)  dt 8(})1(xn,t)
T
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We now show that flows can generate all diffeomorphisms
isotopic to the identity and hence particularly diffeomorphisms
that map the given landmarks.

Theorem 3:If f € Diff(Q2) is isotopic to theld then there
exists a vector field:(x, ) and an associated floy(z, ¢) such
that f(z) = ¢(z,1).

Proof: As f ~ Idthere existsamap: Q2 x [0,1] — Q

. Ipi(an, ) such thate = I(x,0), f(z) = I(z,1). Letv(I(z,t),t) =
. -1 . Al(x,t)/0t. As for eacht € [0,1] I(-,t) € Diff(Q2), it im-
+2) Pay, )" <%) (), 1) plit(as th)e/ltsupp(v(a:, ) c Qis E:orrlpa(ctljsupportéd)and hence
J ftn ™ complete. By existence and uniqueness theorem there exists a
N unique flow¢(x, t) such thaip(x, 0) = = that satisfies the dif-
+ |2 Z(K(¢(t))’l)m¢(x1,t) ; ferential equatiod¢(x,t) /0t = v($(x,t),t). Thisimplies that
j=1 . the flow is in fact given by the isotop¥(z, t). [

OH
< = K 1 N n, 71
Biend ~ | 2o K e 1) |
[] [1]
APPENDIX C [2]

HOMOGENEITY LEMMA FOR EXACT LANDMARK MATCHING 3]

As we will be interested in generating flows that match ex-
actly a given set of landmarks in the template and the target4]
we now state the associated energy minimization problem an
prove existence of a solution. Notice that care must be taken a
>} — 0. Also, the trivial velocity field used in the proof of part 1
showing thatF is not empty will not be satisfied. We first prove
that givenV distinct landmark points, there exists a diffeomor-
phism which maps the points on to each other exactly. For this
define the concept of isotopy. L&fI(€2) be the space of all

5]

compactly supported diffeomorphisms@f— €. 7
Definition 1: Elementsp?, ¢! € Diff(2) are said to be iso-
topic, ¢°—¢?, if there is aC> mapl : Q x [0,1] — Qsuch 8]

that(z) = I(x,0), ¢*(x) = I(z,1). The mapl is called an
isotopy betweempy and ;.

We use the Homogeneity Lemma from differential geometry [°]
to extend from one landmark for the existence of a flow to that
of exactly matching thév given landmarks.

Letz,y € U C ,U open and connected, then there is[10]
¢ € Diff(U) and a compactly supported isotopysuch that
¢(x) = yandI(-,0) = Id, I(-,1) = ¢(").

Lemma 3: Let z;, 5,4 = 1,..., N be distinct points irt}
then there is @ € Diff (2) and a compactly supported isotapy
such that for allV, ¢(x;) = v, andI(-,0) = Id, I(-,1) = ¢(-).

Proof: We prove the above statement by induction. For
this, we use the Homogeneity Lemma f5r = 1. That is, let
x,y € U C ,U openand connected, then therg is Diff (U)
and a compactly supported isotopysuch thaip(x) = y and

Assume that it is true fol. — 1. There exists disjoint open [16]
connected setst, U? C Q,U'NU? = P such thatz;,y; € U*
fori = 1,...,N —1andzn,ynx € UZ?. By theorem above 7]
there existsp! € Diff (/1) and¢? € Diff (/?) and compactly [18]
supported isotopeE* andI?. Let¢p = ¢ o ¢2. Itis immediate
that¢ has the desired properties. Similarly the isotdpy I' o
I? also has the desired propertigs, 0) = Id, I(-,1) = ¢. =

[11]

[12]

[13]
[14]

[15]

[19]

REFERENCES

M. Miller, A. Banerjee, G. Christensen, S. Joshi, N. Khaneja, U.
Grenander, and L. Matejic, “Statistical methods in computational
anatomy,”Statist. Meth. Med. Rescol. 6, pp. 267-299, 1997.

U. Grenander and M. |. Miller, “Computational anatomy: An emerging
discipline,” Quart. Appl. Math, vol. 56, pp. 617-694, 1998.

M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander, “Mathemat-
ical textbook of deformable neuroanatomieR®dc. Nat. Acad. Scivol.

90, no. 24, Dec. 1993.

U. Grenander and M. |. Miller, “Representations of knowledge in com-
plex systems,J. R. Statist. Soc.,Bol. 56, no. 3, pp. 549-603, 1994.

S. C. Joshi, M. I. Miller, G. E. Christensen, A. Banerjee, T. A. Coogan,
and U. Grenander, “Hierarchical brain mapping via a generalized
dirichlet solution for mapping brain manifolds,” iRroc. SPIE 1995
Int. Symp. Optical Science, Engineering, Instrumentatian. 2573,
Aug. 1995, pp. 278-289.

S. C. Joshi, J. Wang, M. I. Miller, D. Van Essen, and U. Grenander, “On
the differential geometry of the cortical surface,”moc. SPIE 1995
Geometric Methods Applied Imagin§an Diego, CA, July 9-14, 1995.
G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “Deformable
templates using large deformation kinematidEEE Transactions on
Image Processingrol. 5, no. 10, pp. 1435-1447, Oct. 1996.

J. W. Haller, G. E. Christensen, S. Joshi, J. W. Newcomer, M. |. Miller,
J. C. Csernansky, and M. W. Vannier, “Hippocampal MR imaging mor-
phometry by means of general pattern matchifgtiiology vol. 199,

pp. 787-791, June 1996.

J. W. Haller, A. Banerjee, G. E. Christensen, S. Joshi, M. I. Miller, M.
W. Vannier, and J. C. Csernansky, “Three-dimensional hippocampal vol-
umetry by high dimensional transformation of a neuroanatomical atlas,”
Radiology vol. 202, pp. 504-510, Feb. 1997.

S. Joshi, M. I. Miller, and U. Grenander, “On the geometry and shape of
brain sub-manifolds,int. J. Pattern Recognit. Artif. Intejlvol. 11, no.

8, 1997.

G. E. Christensen, S. C. Joshi, and M. I. Miller, “Volumetric transforma-
tion of brain anatomy,1EEE Trans. Med. Imagvol. 16, pp. 864-877,
Dec. 1997.

P. Dupuis, U. Grenander, and M. I. Miller, “Variational problems on
flows of diffeomorphisms for image matchindduart. Appl. Math, vol.

LVI, pp. 587-600, Sept. 1998.

L. D. Griffin, “The intrinsic geometry of the cerebral cortex)” Theor.
Biol., vol. 166, pp. 261-273, 1994.

L. Matejic, “Group cascades for representing biological variability,”,
Ph.D. dissertation, Brown Univ., Providence, RI, 1997.

W. M. Boothby, An Introduction to Differentiable Manifolds and Rie-
mannian Geometry New York: Academic, 1986.

F. L. Bookstein,The Measurement of Biological Shape and Shape
Change New York: Springer-Verlag, 1978, vol. 24.

——, Morphometric Tools for Landmark Data New York: Cambridge
Univ. Press, 1991.

J. T. Kent and K. V. Mardia, “The link between kriging and thin-plate
splines,” in Probability, Statistics and OptimizatipnF. P. Kelly,

Ed. New York: Wiley, 1994.

G. Wahba,Spline Models for Observational Data Philadelphia, PA:
SIAM, 1990.



1370

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

G. E. Christensen, R. D. Rabbitt, M. I. Miller, S. C. Joshi, U. Grenander,[32] W. H. Fleming and R. W. RisheDeterministic and Stochastic Con-
and T. A. Coogan,Topological Properties of Smooth Anatomic trol.  Berlin, Germany: Springer-Verlag, 1975.

Maps Norwell, MA: Kluwer, 1995.

L. Younes, “Discussion of mathematics for object recognition shape,
invariance and deformations,” iaroc. Workshop Mathematics Object
Recognition Shape, Invariance, DeformatipNsv. 1997.

S. Joshi, “Large deformation diffeomorphisms and Gaussian random
fields for statistical characterization of brain submanifolds,” Ph.D. dis-
sertation, Dept. Elect. Eng., Sever Inst. Technol., Washington Univ., ¢
Louis, MO, Aug. 1997.

D.J. Felleman and D. C. Van Essen, “Distributed hierarchical processi

in the primate cerebral cortexCerebral Cortexvol. 1, no. 1, pp. 1-47,
1991.

H. A. Drury, D. C. Van Essen, C. H. Anderson, C. H. Lee, T. A. Coogar
and J. W. Lewis, “Computerized mappings of the cerebral cortex. Amt
tiresolution flattening method and a surface-based coordinate systei
J. Cogn. Neurosgivol. 8, pp. 1-28, 1996. j
M. 1. Miller, N. Khaneja, and U. Grenander, “Dynamic programming
generation of curves on brain surfaceBdttern Anal. Machine Intell. .
vol. 20, pp. 1260-1264, Nov. 1998. computational anatomy.

M. Bakircioglu, U. Grenander, N. Khaneja, and M. Miller, “Curve

matching on brain surfaces using frenet distancisith. Brain Map,

vol. 6, no. 5, pp. 329-332, 1998.

N. Khaneja, “Statistics and geometry of cortical features,” M.S. Thesis,

Dept. Elect. Eng., Sever Inst. Technol., Washington Univ., St. Louis,

MO, Dec. 1996. Michaell. Miller received the B.S.E.E. degree from the State University of New
M. I. Miller, S. C. Joshi, and G. E. Christensen, “Large deformation fluidvork, Stony Brook, in 1976, and the M.S.E.E. and Ph.D.B.M.E. degrees from
diffeomorphisms for landmark and image matching,Biain Warping ~ The Johns Hopkins University, Baltimore, MD, in 1978 and 1983, respectively.
A.W. Toga, Ed. New York: Academic, 1999, pp. 115-131. He has been affiliated with Washington University, St. Louis, MO, since 1984
D. C. Van Essen, H. Drury, S. Joshi, and M. I. Miller, “Functional andas a Professor of electrical engineering, with joint appointments in the Institute
structural mapping of human cerebral cortex: Solutions are in the sdor Biomedical Computing and Mallinckrodt Institute of Radiology. In 1995,

Sarang C. Joshireceived the B.Sc., M.Sc., and
D.Sc. degrees in electrical engineering from Wash-
ington University, St. Louis, MO.

In November 1997, he joined IntellX, L.L.C.,
(now part of Medtronic), Boulder, CO, as Director
of Technology Development. In May 2000, he
joined the University of North Carolina, Chapel
Hill, as an Assistant Professor of radiation oncology
and biomedical engineering. His research interests
include pattern recognition, computational geometry,
image understanding and deformable templates, and

faces,”Proc. Nat. Acad. Scivol. 95, pp. 788-795, Feb. 1998. he was named to the Newton R. and Sarah L. Wilson Professorship in Biomed-
L. Younes, “Computable elastic distances between shaféslVl J. Ap- ical Engineering, which he held until 1998. In July 1998, he joined The Johns
plied Math, 1998. Hopkins University as a Professor of biomedical engineering and electrical and

H. Tagare, D. O’'Shea, and A. Rangarajan, “A geometric criterion faromputer engineering, where he currently directs the Center for Imaging Sci-
shape based nonrigid correspondencePrioc. 5th Int. Conf. Computer ence. His research and teaching interests are in the areas of pattern theory, com-
Vision, 1995, pp. 434-439. putational linguistics, computational neuroscience, and computational anatomy.



