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Abstract Principal component analysis (PCA) for various types of image data is
analyzed in terms of the forward and backward stepwise viewpoints. In the tradi-
tional forward view, PCA and approximating subspaces are constructed from lower
dimension to higher dimension. The backward approach builds PCA in the reverse
order from higher dimension to lower dimension. We see that for manifold data the
backward view gives much more natural and accessible generalizations of PCA. As
a backward stepwise approach, composite Principal Nested Spheres, which gener-
alizes PCA, is proposed. In an example describing the motion of the lung based on
CT images, we show that composite Principal Nested Spheres captures landmark
data more succinctly than forward PCA methods.

1 Introduction

Principal component analysis (PCA) is a widely used data exploration method in a
variety of fields, for many purposes including dimension reduction and visualization
of important data structures. In image analysis, the dimensionality of objects under
investigation is usually very high, so dimension reduction through PCA is essential
in some analysis; see for example, [18].
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The classical PCA is based on the Euclidean properties of vector space, espe-
cially inner products and orthogonality. PCA is easily applicable for the many data
types with these properties, an example of which is Functional PCA ([19, 20]),
where the data set consists of smooth curves and the goal is to understand the vari-
ation in a set of curves. By a basis expansion of curves, the Euclidean properties
are still well-defined, and the Functional PCA is a complete analog of the classical
PCA.

Two useful viewpoints on PCA are the forward and backward stepwise ap-
proaches. In the traditional forward view, PCA is constructed from lower dimension
to higher dimension. In the backward point of view, PCA is constructed in reverse
order from higher to lower dimensions. These two approaches are equivalent in Eu-
clidean space but lead to different methodologies in non-Euclidean data discussed
next.

A growing number of data types are non-Euclidean, so the classical PCA idea
does not apply. This paper focuses on the mildly non-Euclidean data, which are also
referred to as manifold data, as in that context, the data objects are on the surface
of a curved manifold forming a feature space. Data on curved manifolds have long
been investigated. Among those the following are best studied:

Directional data Angles or directions lie on the unit circle or the unit sphere (or
a hemisphere), which include wind or ocean current directions, orientation of
cracks on rocks, and directions from the earth to celestial objects. A substantial
amount of literature can be found in the area of circular, angular or directional
statistics, see [3], [14].

Statistical shape space Landmark-based shape analysis analyzes data lying on
special manifolds. A shape is defined as an equivalence class under translation
and rotation, scaling in many cases and sometimes reflection. Thus, shape spaces
are constructed by removing the translation, scale, and rotation from the set of
landmarks, as proposed and investigated by both Kendall [12] and Bookstein [1]
and described well in [2].

Due to advances in technology, a demand to analyze different types of manifold
data is growing. These modern data are mostly from medical imaging and include

Medial shape representations Shapes of 2-d or 3-d objects are represented in
a parametric model, called m-reps in short, including directions and angles as
parameters. The data space here is a manifold that is a direct product of Euclidean
space and unit spheres. See [21].

Diffusion Tensor Imaging DTI [17] is a recently developed and widely studied
MRI technique that measures the diffusion of water molecules in a biological
object. Random motion of water molecules in each voxel of an image is rep-
resented by a 3-d tensor, i.e. a non-negative definite 3× 3 matrix. Each tensor
lies in a lower dimensional sub-manifold of R9 since it has to be non-negative
definite. DTI data, consisting of multiple tensors, thus naturally lie in a manifold.

Diffeomorphisms A common methodology for comparing shapes in image anal-
ysis is to use diffeomorphisms ([9], [8]), i.e. smooth space warping functions.
This method delivers a new approach to shape analysis. A shape is considered
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as a distortion (i.e. diffeomorphism) of some template. Thus a set of shapes is
represented as a set of diffeomorphisms and the variation in the population of
diffeomorphisms can be studied to understand variation in shapes. The set of
diffeomorphisms forms a very high dimensional manifold.

Conventional statistical analysis, including PCA, is not directly applicable to
these manifold data. On the other hand, there is a growing need of PCA-like meth-
ods, because the dimensionality of the data space is often very high. Previous ap-
proaches for generalized PCA to manifold data are listed and discussed in Section 2.
Many commonly used methods can be viewed as the forward approach. However,
[15] also points out that the backward viewpoint is seen to provide much more nat-
ural and accessible analogues of PCA than the standard view. This is discussed in
Section 2.2.

Section 3 is devoted to proposing a methodology of generalized PCA to the sur-
face point distribution model (PDM). The method, composite PNS, can be viewed
as an extension of Principal Nested Spheres, proposed by [10] and discussed in Sec-
tion 3.1, which also can be viewed as a backward generalization of PCA to manifold
data. The procedure of the proposed method is illustrated in Section 3.2.

Advantages of the proposed method are presented by some experimental results
in Section 3.3. We use this approach to describe the motion of the lung using land-
mark data extracted from CT images. We show that composite Principal Nested
Spheres captures more variation of this landmark data in fewer dimensions than the
standard PCA.

2 Forward and backward stepwise view of PCA

The forward and backward stepwise views of PCA, either in Euclidean space or for
manifolds, are discussed in this section.

2.1 Mathematical development for Euclidean PCA

Let X1, . . . ,Xn be d-dimensional column vectors that are inputs for Euclidean PCA.
The data matrix is formed by aggregating the data vectors: X = [X1, . . . ,Xn]. A for-
ward stepwise view to Euclidean PCA is understood by increasing the dimension of
the best approximating (affine) subspace, as described in the following steps:

1. Find a center point that best represents the data, by minimizing the sum of
squared distances: the empirical mean X̄ = 1

n ∑n
i=1 Xi.

2. Find a line, an affine 1-d subspace, that best approximates the data, again by
minimizing the sum of squared distances from the data to the line. Pythagorean
theorem shows that this line must pass through the sample mean X̄ . This affine
one dimensional subspace can be written with a direction vector u1 so that
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AS1
1 = {X̄ + cu1 : c ∈ R}.

The direction u1 is the first principal component (PC) direction. The orthogonal
projections of the data Xi onto AS1

1 are then in the form X̄ + ciu1, which are the
best rank 1 approximation of the data. The amount of deviation ci from the center
is called PC scores.

3. Next find a line in the affine subspace orthogonal to u1, that best represents
the data. The line is denoted with the second PC direction vector u2 by AS1

2 =
{X̄ + cu2 : c ∈ R}. Since u1 and u2 are orthogonal, the best two dimensional
approximation of the data is contained in the affine 2-d subspace

AS2 = AS1
1 ⊗AS1

2 = {X̄ + c1u1 + c2u2 : c1,c2 ∈ R},

where ⊗ represents the direct product. PC scores for the second PC are found
again through the projections of the data onto AS1

2 (or AS2), similar to the 1-d
case.

4. Higher order components can be found iteratively for k = 3,4, . . . ,d, that results
in k-dimensional affine subspaces

ASk =⊗k
j=1AS1

j = {X̄ +∑k
j=1 c ju j : c1, . . . ,ck ∈ R}.

In this forward formulation of PCA the best approximating affine subspaces are
constructed from the lowest dimension to higher dimension, i.e.

{X̄} ⊂ AS1
1 ⊂ AS2 ⊂ ·· · ⊂ ASd .

This formulation is most useful for heuristic understanding of the method. A practi-
cal formulation uses the fact that the PC direction vectors u j are eigenvectors of the
sample covariance matrix S = 1

n−1 (X− X̄)(X− X̄)T or the left singular vectors of
the centered data matrix (X− X̄).

The viewpoint that seems most useful for generalization of PCA to manifold data
is the backward stepwise view. In backward PCA, principal components are found
in reverse order, i.e. ASks are fitted from the largest dimension, which leads to

Rd = ASd ⊃ ASd−1 ⊃ ·· · ⊃ AS1
1 ⊃ {X̄}.

In particular, ASd−1 is found from ASd by removing the PC direction ud ∈ ASd ,
which is orthogonal to ASd−1. Deriving ASd−1 from ASd is equivalent to the finding
of the (d−1)-dimensional linear subspace of ASd that minimizes the sum of squared
distances. The projections XP

i of Xi to ASd−1 are then the best (d −1)-dimensional
approximation of the data, and the signed length of projections (from Xis) become
the PC scores. An application of the Pythagorean theorem yields that ASd−2 can be
found in the same manner from the projections XP

i .
In Euclidean space, the forward and backward approaches are equivalent. How-

ever, in non-Euclidean spaces, this is usually not the case, and the choice of view-
point affects the generalizations of PCA.
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Fig. 1 (Left) The usual unit sphere S2 with a geodesic segment (great circle segment) joining the
north pole and a point in the equator. The tangent plane at the north pole is also depicted. (Right)
Plot of 10 points along the equator with random perturbation and the geodesic mean (black square)
near the north pole illustrates the case where the geodesic means on S2 does not represent the data
well.

2.2 PCA approaches for manifold data

A widely used approach to manifold PCA, called Principal Geodesic Analysis
(PGA, [5]), generalizes PCA in a forward stepwise manner. The first step in PGA
is to find a center point for the manifold data. While the sample mean (i.e. the aver-
age) is not defined, a useful notion for generalization of mean is the Fréchet mean,
defined as a minimizer of minx∈M ∑n

i=1 ρ2(x,xi), where M is the data space and ρ
is a metric defined on M . The Fréchet mean is widely applicable, since it only re-
quires a metric on the manifold. In Euclidean space, the sample mean is the Fréchet
mean with the usual metric ρ(x,y) = ∥x− y∥. On curved manifolds, distances are
commonly measured along geodesics. A geodesic is an analog of straight lines in
Euclidean space; it is roughly defined as the shortest path between two points (see
Fig. 1). The geodesic distance function measures the shortest arc length between
two points. With the geodesic distance as its metric, the Fréchet mean is often called
geodesic mean.

Having the geodesic mean as the center point in PGA, the second step is to find
a geodesic (instead of a line) that best represents the data, among all geodesics that
pass through the geodesic mean. The higher order components are again geodesics
that are orthogonal (in a sense) to the lower order geodesics. In practice, these
geodesic components are computed through the projection of the data onto the tan-
gent space at the geodesic mean. The PGA and similarly defined forward approaches
are developed for various types of data; see e.g. [5] for m-reps data, [4] for DTI data,
and [2] for shape data.

However, there has been a concern that the geodesic mean and tangent space ap-
proximation can be very poor. As a simple example, consider the usual unit sphere
S2 in R3 and the data distributed uniformly along the equator of the sphere as illus-
trated in Fig. 1. In this case, the equator itself is the geodesic that best represents the
data. However, the geodesic mean is located at near the north or the south pole, far
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from any data. PGA finds principal geodesics through this geodesic mean, which
fail to effectively describe the variation in the data.

This observation motivated [7] to propose Geodesic PCA (GPCA). In GPCA, the
geodesic mean or any pre-determined mean is no longer used; instead it finds the
best approximating geodesic among all possible candidates. A center point of the
data is then found in the first geodesic component. In the equator example above,
GPCA finds the equator as the first component. GPCA can be viewed as a back-
ward approach, particularly when applied to S2, since the center point is found
last. In higher dimensional manifolds, for example in hyperspheres Sp, p > 2 and
Kendall’s shape spaces (see [6]), GPCA does not appear to be fully backward, since
the method is built by considering lower dimensional components first, only with an
exception for center point. Nevertheless, the advantage of the method indeed comes
from the backward viewpoint, i.e. from reversing the order of the first two steps.

Another method that can be viewed as the backward stepwise approach is Princi-
pal Arc Analysis (PAA), proposed by [11], which is a non-geodesic generalization
of PCA. PAA is motivated by data distributed along a small circle on S2. Since the
major variation is no longer along a geodesic, no geodesic based methods including
PGA and GPCA capture the variation effectively. PAA begins with the full sphere S2

and finds the small circle as the best fitting 1-d approximation of the data, followed
by a center point contained in the small circle. PAA was shown to provide just this
type of effective data approximation in S2 and also in m-reps data in [11].

In generalizations of PCA for higher dimensional manifolds, including hyper-
spheres Sp and Kendall’s shape spaces, the backward stepwise principle led to a
new fully backward generalization of PCA: Principal Nested Spheres (PNS), pro-
posed by [10]. In taking the backward approach, it inherits the advantages of GPCA.
In using non-geodesic approximation, it inherits advantages of PAA. A detailed de-
scription of the method can be found in Section 3.1. PNS has been shown to provide
more representative description of the data (compared to other forward stepwise ap-
proaches) in a number of standard examples in [10]. A discussion of application of
PNS to Euclidean data, in Section 3, shows how beneficial a backward generaliza-
tion of PCA could be even for Euclidean data.

3 Method

In this section, a method for Euclidean data that possesses the advantage of back-
ward generalization of PCA is discussed. In particular, when the dataset is a set
of the surface point distribution models (PDM) representing the shape of an ob-
ject, the backward generalization of PCA to shape space, Principal Nested Spheres
(PNS), fits well. We summarize PNS in more detail and discuss the composite PNS,
followed by experimental results which shows that the composite PNS gives more
effective description of the PDMs in lower dimension than Euclidean PCA.
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3.1 Principal Nested Spheres

The analysis of PNS is summarized in this section. PNS is essentially a decompo-
sition method for hyperspheres and Kendall’s shape space, which generalizes PCA
in a non-geodesic way. Detailed geometric properties and statistical discussions of
PNS can be found at [10]. As mentioned in Section 2.2, the first step in PNS is to
reduce the dimension d of Sd to d−1. Specifically, we wish to find the best approx-
imating sub-manifold of dimension d − 1. PNS solves this problem with a flexible
class of sub-manifolds in the form of nested spheres.

A k-dimensional nested sphere Ak of Sd is nested within (i.e. sub-manifold
of) higher dimensional nested spheres; and Ak itself can be thought of as a k-
dimensional sphere. As an example, Ad−1 of Sd is defined with an axis v1 ∈ Sd

and distance r1 ∈ (0,π/2] as follows,

Ad−1(v1,r1) = {x ∈ Sd : ρd(v1,x) = r1},

where ρd is the geodesic distance function defined on Sd . The parameter v1 drives
the ‘direction’ that is not contained in Ad−1. In relation to the backward view of
Euclidean PCA in Section 2.1, the direction coincides to ud , which is orthogonal
to ASd−1. The distance from v1 to any point in Ad−1 is r1, which is responsible for
the curvature of Ad−1. This flexibility of curvature in Ad−1 allows PNS to capture a
certain form of non-geodesic variation.

Lower dimensional nested spheres are defined similarly. Since Ad−1 is essentially
a sphere, Ad−2 can be defined again with a pair (v2,r2) and in a way that Ad−2
is nested within Ad−1. Iteratively, one can continue to build a sequence of nested
spheres Sd ⊃ Ad−1 ⊃ ·· · ⊃ A1.

In PNS with a data set X1, . . . ,Xn ∈ Sd , the pair (v,r) of nested spheres is fitted to
the data iteratively so that the fitted nested spheres represent the data. [10] proposed
minimizing the sum of squared distances to the data, i.e. the d−1 dimensional PNS
is

Âd−1 = argmin
n

∑
i=1

ρd(Ad−1,Xi)
2, (1)

where ρd(Ad−1,Xi) is defined as follows. Each Xi can be projected on Ad−1 along
the minimal geodesic that joins Xi to Ad−1. Denote XP

i for the projection. The length
of the minimal geodesic is the distance, that is ρd(Ad−1,Xi) = ρd(XP

i ,Xi). Note that
each observation gets a signed residual zd,i.

The second (or the d − 2 dimensional) PNS is found with the projections XP
i .

Since XP
i ’s are on Âd−1, one can use the method (1) by treating Âd−1 and {XP

i } as
Sd−1 and {Xi}, respectively. Simply put, Âd−2 is fitted to XP

i ’s by minimizing the
sum of squared distances. In general, we recursively find the sequence of PNS from
the (iteratively) projected data.

The lowest level principal nested sphere Â1 is then a small circle, with intrinsic
dimension 1. The Fréchet mean of XP

1 , . . . ,X
P
n ∈ Â1 is used as the best 0-dimensional
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representation of the data in the framework of PNS. Denote the Fréchet mean as Â0,
and keep the signed deviations z1,i of XP

i for later use.
As a result, PNS constructs the sequence of the best approximating sub-manifolds

Sd ⊃ Âd−1 ⊃ ·· · ⊃ Â1 ⊃ {Â0},

for every dimension. The backward principle is essential to PNS, since the forward
stepwise generalizations of PCA are not be equivalent to PNS (see Section 2.2) and
are even not clearly defined for non-geodesic variation.

Furthermore, we wish to represent the data in an Euclidean space for further anal-
ysis (e.g. the method of composite PNS, discussed later in Section 3.2). Recall that
in the procedure above, we have collected the signed residuals zk,i. The Euclidean-
type representation of the data by PNS is obtained by combining those residuals
into a p×n data matrix

Z =

 z1,1 · · · z1,n
...

. . .
...

zd,1 · · · zd,n

 ,

where each column is the corresponding sample’s coordinates in terms of the PNS.
Each entry in row k works like the kth principal component score.

The procedure is computationally fast in a moderate size of dimension and sam-
ples, when using the computational algorithm proposed in [10] for the optimization
task (1). However in the high dimension low sample size situation where for exam-
ple p > 1000 and n < 100, strict application of the iterative procedure results in a
very slow computation. [10] have shown that the intrinsic dimensionality of the data
can be reduced to n−1 without losing any information and that the first d −n PNS
can be found trivially by an application of singular value decomposition. This fact
is used when it applies, including the experiments in Section 3.3.

3.2 Application of PNS to scaled point distribution models

The surface point distribution model (PDM) representing the shape of a human
organ (or other solid object) is denoted by Xi = [x1(i), . . . ,xp(i)]T where x j(i) =
(xi j,yi j,zi j) is the jth point on the surface and p is the number of points on the
surface. The subscript i denotes the ith sample or time point, and let n be the total
number of time points. A scaled PDM (SPDM) is derived from a PDM by moving
each point towards some designated center point by some fixed factor such that the
sum of squared distances from the center point is unity. Thus an SPDM is a PDM
that lies on a unit hypersphere, which reflects the shape. The PCA-like analysis of
such data should reflect not only variability on the hypersphere but also the correla-
tion between the scale factor, which reflects the size, and the shape.

Wanting to apply a backward generalization of PCA, we might think to use PNS,
but it applies only to the variability on the hypersphere. In the composite PNS we
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propose, the variables are separated into the size and the shape variables. The dimen-
sion of the shape space is reduced by PNS. Then the size variable is post-combined
with the result of PNS, to incorporate the correlation between size and shape.

A procedure for the composite PNS is as follows:

1. (Centering) Let X̃i = Xi − 1
np ∑i j x j(i) be the ith uniformly translated PDM, so

that 1
np ∑i j x̃ j(i) = (0,0,0).

2. (Scaling) Let Si = (∑p
j=1

∥∥x̃ j(i)
∥∥2
)

1
2 be the size of the ith PDM, measured by the

sum of squared distances to the center. The scaled PDM is X̃∗
i = X̃i/Si, so that

the size of X̃∗
i is 1 for all i. Then the pair (X̃∗

i , Si) represents the shape and size of
Xi, respectively.

3. (Shape analysis by PNS) Find principal nested spheres and PNSmean, as de-
scribed in the previous subsection with inputs {X̃∗

i }, and denote the resulting
Euclidean-type representation as an m×n matrix Z = (zki), where zki is the ith
sample’s deviation from the PNSmean along the kth principal arc, and m ≤ n−1
is the number of components, which may be chosen by practitioners.

4. (Size analysis in log scale) Since the size Si is strictly positive, it makes most
sense to compare variability in a log scale. Let S̄n = (∏n

i=1 Si)
1
n be the geometric

mean of the size, which is the exponential of the arithmetic mean of log(Si).
Define S∗i = log(Si/S̄n).

5. (Composite space for shape-and-size of PDM) In order to incorporate the correla-
tion between the size variables S∗i and the shape variables Z , define a composite
data matrix

Zs =

(
S
Z

)
,

where S = (S∗1, . . . ,S
∗
n) and each column contains the size (Si) and shape

(z1i, . . . ,zmi) information of each sample.
6. (Principal arcs and scores) Let the spectral decomposition of the (m+1)-dimensional

square matrix 1
n−1ZsZ T

s be UΛUT , where U = [u1, . . . ,um+1] is the orthogonal
matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues λ1, . . . ,λm+1.
Similar to the conventional PCA, the eigenvectors uk represent the direction of
important variation in the space of Zs which leads to the principal arc when
converted back to the original space of PDMs. Likewise, the eigenvalues λk rep-
resent the variation contained in each component. Principal Arc scores for each
component are computed by uT

k Zs, which is the vector of the kth scores of all n
samples.

The analysis of composite PNS can be used in a same fashion as Euclidean PCA
is used. Both provides a nested sequence of subspaces (or sub-manifolds) for dimen-
sion reduction, and PC scores (or PA scores) that are important for visualization of
important data structure, and for further analysis such as PC regression.

The advantage of composite PNS comes from the flexible class of sub-manifolds
instead of subspaces. As shown in Section 3.3, the proposed method gives more
effective decomposition of the space compared to Euclidean PCA and PGA.
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Fig. 2 (Left) Scatterplot of NCAT lung data by PC scores in the first three components of Euclidean
PCA. Time points are labeled as 0-9 in the scatterplot and the proportion of variance contained in
each component appears in the labels of axes. Major variation in the data is non-linear. (Right)
Scatterplot of the NCAT lung data by PA scores of composite PNS. The non-linear variation is
captured in the first principal arc, and thus the variation appears linear. The first component in
composite PNS contains more variation (98.74% of the total variation) than 92.64% of PCA.

3.3 Experimental results

Respiratory motion analysis in the lung is important for understanding the motili-
ties of tumors and various organs in the lung of an individual patient for radiation
therapy applications. The PDM of the lung boundary is used as the surrogate signal
for characterizing the respiratory motion [13]. The usual PCA has been used for
extracting shape deformation statistics of a patient’s lungs from a sequence of 3-d
CT images collected at ten time points within one breathing cycle. In preparation
for PCA (also for composite PNS) on this data set, the geometric correspondence
over the the training samples is optimized via an entropy-based correspondence al-
gorithm [16].

We consider two examples. The first data set is from 4D Nurbs-based Cardiac-
Torso (NCAT) phantom thorax CTs, which were produced at ten phases sampled
in one breathing cycle. The second data set is from Respiration-correlated CT of a
real patient. The CT data sets are provided by a 4-slice scanner (lightSpeed GX/i,
GE Medical System), acquiring repeat CT images for a complete respiratory cy-
cle at each couch position while recording patient respiration (Real-time Position
Management System, Varian Medical Systems). The CT images are retrospectively
sorted (GE Advantage 4D) to produce a series of 3D images at different respiratory
time points.

The difficulty of the problem is two-fold; the dimension is very high (d = 10550,
which could be much higher depending on the number of points on the surface)
while the sample size is small (n = 10) and the major variation is non-linear, as
shown in Fig. 2 for the NCAT data sets.

Fig. 2 shows scatter plots of NCAT lung data by the usual PCA (in the left panel)
and by composite PNS (in the right panel). The dimension of the data space is re-
duced to 3 to visualize the structure of major variation. The non-linear variation ap-
parent in the PCA subspace is represented as a linear motion in the sub-manifold of
composite PNS. In particular, the quadratic motion in the PC 1–2 plane is efficiently
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Fig. 3 Axial view (left) and coronal view (right) of boundaries of lungs. Illustrated is the variation
of shapes captured in the first principal arc.

captured by the 1-dimensional principal arc. Observe that the sum of variances con-
tained PC 1–2 is roughly the amount of variation in the first principal arc.

The data set from the real patient gives a similar result, where the cumulative pro-
portions of variances in the first three sub-manifolds (96.38%, 97.79%, and 98.63%,
respectively) are higher than those of PCA (93.52%, 96.25% and 97.74%).

The major lung motions contained in the first principal arc is illustrated in Fig. 3.
We show the coronal and axial slices of lungs corresponding to the PNSmean and
±1.5 standard deviations.

We also measure the discrepancy between the PDM at each time point and its
1-d approximation by PCA or composite PNS. The discrepancy here is computed
by the square root of sum of squared distances between corresponding points. In
the patient lung data, the discrepancy of 1-d approximations by composite PNS is
uniformly smaller than that by PCA, as summarized in Table 1.

Table 1 Discrepancy of 1-d approximations at each time point of the real patient lung motion.

time point 1 2 3 4 5 6 7 8 9 10

PCA 65.2 69.9 88.7 77.7 38.9 74.4 44.1 69.8 74.6 57.6
composite PNS 38.2 66.9 66.1 55.6 37.8 36.7 30.4 63.0 60.2 44.6

4 Conclusion

The backward PCA approaches have proven useful for dimension reduction of non-
linear manifolds. In particular, PNS enjoys the advantages of the fully backward
approach that enable it to yield more succinct description of the data, as shown in
the example of size and SPDM shape changes with application to the lung motion.
Image analysis benefits from taking attention to analysis of shapes, and thus statis-
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tical analysis in that domain might be beneficial. Particularly, the idea of PNS can
be generalized to a variety of applications over both computer vision and medical
imaging.
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