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Elastic Model-Based Segmentation
of 3-D Neuroradiological Data Sets

Andras Kelemen, @bor Sgkely,* and Guido Gerig

Abstract—This paper presents a new technique for the au- I. INTRODUCTION

tomatic model-based segmentation of three-dimensional (3-D) . .
objects from volumetric image data. The development closely GMENTATION of anatomical objects from large three-

follows the seminal work of Taylor and Cootes on active shape imensional (3-D) medical data sets, obtained from routine
models, but is based on a hierarchical parametric object descrip- magnetic resonance imaging (MRI) examinations, for exam-
tion rather than a point distribution model. The segmentation ple, represents a necessary yet difficult issue in medical image

system includes both the building of statistical models and the analysis. With the steady increase of routine use of 3-D
automatic segmentation of new image data sets via a restricted . )

elastic deformation of shape models. Geometric models are de-'Ma9!Ng methods SU_Ch as MRI, computer _tomogrgph_y (CT),
rived from a sample set of image data which have been segmented@nd 3-D ultrasound in radiological diagnosis, monitoring, ra-

by experts. The surfaces of these binary objects are converted diotherapy, and surgical planning, for example, there is a clear
into parametric surface representations, which are normalized need for improved and efficient methods for the extraction of
to get an invariant object-centered coordinate system. Surface anatomical structures and for a description by morphometric

representations are expanded into series of spherical harmonics vsis. | limited licati tai b
which provide parametric descriptions of object shapes. It is analysis. In some limited applications, segmentation can be

shown that invariant object surface parametrization provides a achieved with minimal user interaction by applying simple
good approximation to automatically determine object homology and efficient image processing methods, which can be applied
in terms of sets of corresponding sets of surface points. Gray- routinely [8].

level information near object boundaries is represented by 1-D In many clinical applications, such as computer assisted

intensity profiles normal to the surface. Considering automatic dioth | . | b f
segmentation of brain structures as our driving application, our neurosurgery or radiotherapy planning, a farge number o

choice of coordinates for object alignment was the well-accepted Organs must be identified in the radiological data sets. While
stereotactic coordinate system. Major variation of object shapes a careful and time-consuming analysis may be acceptable for

around the mean shape, also referred to as shape eigenmodesgutlining complex pathological objects, no real justification for

are calculated in shape parameter space rather than the feature g,y 5 procedure can be found for the delineation of normal
space of point coordinates. Segmentation makes use of the ob- .
healthy organs at risk.

ject shape statistics by restricting possible elastic deformations X = L . .
into the range of the training shapes. The mean shapes are Delineation of organ boundaries is also necessary in various

initialized in a new data set by specifying the landmarks of the types of clinical studies, where the correlation between mor-
st(_areotactlc coo!rdlnate system. The model elastlc_:ally deforms, pho|ogica| Changes and therapeutica| actions or clinical diag-
driven by the displacement forces across the object's surface, ,qis myst be analyzed. In order to get statistically significant

which are generated by matching local intensity profiles. Elastical It | b f dat t tb ted. F
deformations are limited by setting bounds for the maximum results, a large number or data sets must be segmented. For

variations in eigenmode space. The technique has been appliedSuch applications manual segmentation becomes questionable,
to automatically segment left and right hippocampus, thalamus, not only because of the amount of work, but also with

putamen, and globus pallidus from volumetric magnetic reso- regard to the poor reproducibility of the results. The necessity
nance scans taken from schizophrenia studies. The results haveof obtaining high reproducibility and the need to increase

been validated by comparison of automatic segmentation with the . . . .
results obtained by interactive expert segmentation. efficiency motivates the development of computer-assisted
automated procedures.

Index Terms— Automatic 3-D segmentation, elastically de-
formable surface models, statistical shape models.
Il. MODEL-BASED SEGMENTATION
OF 3-D RaDIOLOGICAL DATA

Elastically deformable contour and surface models, so-
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but force the snake into undesired local energy minima. Theen investigated. We have demonstrated that, based on a
procedure could become more robust if the deformation ofgeneral surface parametrization scheme [3], the concept can
snake would be limited to shapes within the normal variatidie generalized for 3-D organ surfaces with spherical topology,
of a class of object boundaries. using spherical harmonics as shape descriptors. This paper
Elastically deformable parametric models offer a straightummarizes the basic concepts of the newly developed 3-D
forward way for the inclusion of prior knowledge in thesegmentation system and also presents evaluation results, using
image segmentation process. This is done by incorporatiagollection of 22 volumetric MR brain data sets.
prior statistics to constrain the variation of the parameters of The 3-D segmentation discussed here is based on statistical
the elastic model. Such procedures have been developedsbgpe models generated from a collection of manually seg-
Vemuri and Radisavljevic [31], using a hybrid primitive callednented MR image data sets of different subjects. The process
deformable superquadrics constructed in a multiresolutican be divided into two major phases: a model-building stage
wavelet base, or by Staib and Duncan [23] for deformabéd the automatic segmentation of large series of data sets.
Fourier models. « In the training phase, the results of interactive segmen-
For complex shapes described by a large number of often tation of sample data sets are used to create a statistical
highly correlated parameters, the use of such priors may shape model which describes the average as well as the
become tedious. The modal analysis as proposed by Pentland major linear variation modes.
and Sclaroff [17] offers a promising alternative by chang- « The model is placed into new unknown data sets and is
ing the basis from the original modeling functions to the elastically deformed to optimally fit the measured data.
eigenmodes of the deformation matrix. The dominant partThe generation of the statistical model will be discussed

of the deformations can thus be characterized by only;Q detail in the following sections. The purely geometrical
few eigenmodes,_ substantially reducing thg dimensionality Qfatistical model proposed in our earlier paper [26] has been
the object descriptor space. Methods using modal analygigended by incorporating gray-valued profiles across the
have been successfully applied to medical image analysis %an surface, implementing the concept proposed by Cootes
Sclaroff and Pentland [20] and Nastar and Ayache [15], fgyq Taylor [5], [6] for 3-D models.
example. _ ) The matching process is initialized using the average geo-
Cooteset al. [5] combined the power of parametric deetrical model resulting from this training phase. A two-stage
formable shape descriptors with statistical modal a“aWSiaﬂgorithm, described in Section VI, is used to deform this
They use active shape models, which restrict the possibigydel to optimally fit the features of a new data set, while
deformations using the statistics of training samples. Objeg{)| restricting the deformations to the variability allowed by
shapes are described by the point distribution model (PDMje statistical model. This algorithm makes full use of the
[6], [7], which represents the object outline by a subset @fay-value profiles normal to the surface, which is efficiently
boundary points. There must be a one-to-one correspondepgRulated by using a dual representation of the object both as

between these points in the different outlines of the training cgjlection of sample points and as a parametrized surface.
set. After normalization to size, orientation, and position, they

provide the basis for the statistical analysis of the object shape
deformations. The mean point positions and their modes of
variation (i.e., the eigenvectors corresponding to the largest
eigenvalues of their covariance matrix) are used for limitin)- 1raining Set
the object deformations to a reasonable linear subspace of th§oday’s routine practice for 3-D segmentation involves
complete parameter space. Principal component analysis Blse-by-slice manual processing of high-resolution volume
also been used for the characterization of anatomical shajsa. Working on a large series of similar scans, human
variability, using other shape parametrization schemes suchobservers knowlegeable in anatomy become experts and pro-
invariant moments [18], [19], for example. duce reliable segmentation results, although at the cost of a
For a large training set containing several anatomical strumansiderable amount of time per data set. Realistic figures are
tures, the generation of the PDM parametrization becomssveral hours to one day per volume data set, for only a small
very tedious and, because of the lack of a reasonable get of structures. Regions in 2-D image slices corresponding
tomatization, can be a source of errors, suggesting alterta-cross sections of 3-D objects are outlined and painted
tive approaches for form parametrization. Staib and Dunchg different interactive tools, performing delineation purely
have already demonstrated segmentation by parametricafignually [25] or partially supported by image data using
deformable elastic models for two-dimensional (2-D) outlinesnergy minimization schemes discussed above. The series
[23] and 3-D object surfaces [22], [24] using Fourier descri@f binary regions segmented from consecutive slices form
tors. In our previous work [26] we combined the statisticalolumetric voxel objects. Fig. 1(a) illustrates the result of an
modal analysis with parametrization based on 2-D Fouriezxpert segmentation of the left hippocampus from a magnetic
descriptors. Using spatial normalization based on the generaligonance head dataset.
accepted Talairach coordinate system [28], we demonstrated®ur initial training set, consisting of 30 male brain MR vol-
that fully automatic segmentation of organ contours on 2-Omes, a courtesy of the Harvard Medical School in Boston, has
image slices can be achieved. In this previous paper, theen processed this way. These datasets have been acquired
feasibility of a 3-D extension of this method has alreadgnd deep gray-matter structures have been processed in the

I1l. 3-D OBJECT MODEL
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Fig. 1. Model building. (a) Interactive segmentation of a left hippocampus.
(b) Reconstruction from surface shape descriptor up to degree one. (c
Reconstruction up to degree ten. (d) Normalization of the shape pose ir -z
object space.

Fig. 2. Stereotactic coordinate system used for object space normalization.

frame of a comparative psychiatric study [21]. In each volumeggitical. B-splines or wavelets could be used, as well as other
six brain regions have been manually labeled in both hengcal representations. As discussed later, shape correspondence
spheres. These regions include the amygdala/hippocampksong multiple individuals is obtained by rotating(&, ¢)
complex, the parahippocampal gyrus, thalamus, caudate Berameter net over the object surface to a canonical position
cleus, putamen, and globus pallidus. Fig. 6 compares thgsed on global surface parametrization. We therefore make
segmented four different brain objects for an individual casge of the hierarchical shape representation offered by spher-

with the average models. ical harmonics, resulting in the following (truncated) series
In order to demonstrate some model building aspects whigRpansion:

require a larger training set, we will also refer to a set of

K k
71 corpus callo_sum outlines, a courtesy of the European v(8, ¢, p) = Z Z MY, ¢), (3)
BIOMORPH project. 0 e ks
where
B. Parametric Shape Representation o
Tk
In the following, the term parametrization will be used in ar=|em | (4)
two different ways. On the one hand, the process which maps i’;
two parameter values (¢) to each point on a surface is called Ca
surface parametrization. These surface mappings parametiiibe coefficients;™ are 3-D vectors with component§;, ¢,
an object shape with respect to surface coordinatest): andc?; with degreel and ordern. A detailed description can

be found in Brechbhleret al. [3]. All the ¢;* with components

vi(s, t) x(s, t) (z, y, z) define the shape description vector
11(8, t) = UQ(Sv t) = y(s, t) . (1) 0 0 0 1 0 1 1 0 1
v3(s, ) 2(s, t) p :(CWO’ Cyar Caar Cor s Corr Coro Cyro Gy Oy
o o : et et K KT
To make a clear distinction, surface parametrization will LT TEL TA T TR TAK

refer to this mapping procedure. In the following, we wilFig. 1(b) and (c) illustrates the hierarchical property of spher-
consider only surfaces with spherical topology, which is triéal harmonics: reconstructing the shape from coefficients
for a broad class of anatomically interesting organ boundarié%, to degree one results in an ellipsoid. Incorporating more
in particular for all studied structures of the basal ganglia. Suglgscriptors [up to degree ten in Fig. 1(c)] increases the level
surfaces can be parametrized by two polar variatflem(l) ©f details and more closely approximates the original shape.

and therefore defined by three explicit functions over them
C. Anatomic Reference Coordinate System

6
— =0, 9) Our driving application is the automatic segmentation of
v, 9) = | vl6.9) | @ 4 tter structures of the human brain. We begin b
(0, ¢) eep gray-matter structures of the human brain. We begin by

choosing the standard stereotactic coordinate system proposed
Second, shape parametrization denotes the computatign Talairach for global alignment of the head image data
of object shape descriptors parametrizing these coordinatds. Basic features used for alignment are the approximation
functions. One possibility is an expansion over a completé the interhemispheric fissure by a midsagittal plane and
set of basis functions. With respect to computing elastthe definition of the anterior and posterior commissure (AC-
shape deformations, the choice of basis functions is n@C) (see Fig. 2). The identification of the symmetry plane of
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the brain and the position of the AC-PC line is performed

manually by selecting reference points on 2-D slices of the
volumetric images. Each data set is transformed into canonical
coordinates by 3-D rotation and scaling as illustrated in

Fig. 1(d).

In comparison to a fully object-centered spatial normal-
ization the segmentation method described in this paper can
incorporate small deviations of translation and orientation into
the shape statistics. This allows us to reproducibly define a
global coordinate system, based on a small set of significant
external landmarks for initializing shape models at their most
likely positions.

In our earlier work [26] we found that in medical im-
ages there is no real justification for separating similarity (© (d)
transformation from shape deformation because of the strang 3. (a) Corresponding parameter values o= /2, ¢ = 0, =, and
correlation between the position and shape of organs. Accogd= /2, 37/2 (thick lines) illustrated on an ellipsoid. (b)-(c) On three
ingly, for images representing anatomy the relative positiofdividual left hippocampal structures.
rotation, and size of healthy organs is restricted in a similar
and correlated way to their elastic deformation. We therefomring points in one space must map to neighbors in the other
introduced models incorporating this full biological Val’iabi”tyspace' Our approach is to achieve a correspondence between
with respect to a natural reference system, which resulted igjiferent objects by constructing a mapping that preserves
much more robust segmentation process in 3-D. The Talairagfeas. Based on the voxel representation, such a mapping
reference used here is a straightforward extension to our earligsigns the square facets on the object surface to a portion

AC-PC based 2-D coordinate system. of the surface of the unit sphere. It is not possible, in general,
to map every surface facet to a spherical square. Distortions
IV. CORRESPONDENCE BYPARAMETRIZATION cannot be avoided, but they should be minimal.

During the present study we established surface corresponthe surface parametrization, i.e., the embedding of the
dence between the items of the training set by an aré¥ject surface graph into the surface of the unit sphere, is
preserving parametrization followed by the object-oriente¥Plved as a constrained optimization problem, looking for
normalization of its starting point. This fully automatic procethe optimal coordinates of all vertices [3]. However, the
dure, which will be described in more detail in this sectiof€sulting representation of the surface by a parameter net with
has certain strong limitations and provides only a first stdfPmogeneous cells is so far only determined up to a 3-D
in establishing correspondence. However, preliminary 3-fotation in parameter space. Point-to-point correspondence of
studies have revealed that corrections resulting from featufét'faces of different objects would require parameters which
based correspondence search based on curvature [27], e.g.dargot depend on the relative position of the parameter net.
minor and arc-length based parametrization provides a gob@e object can be rotated to a canonical position in parameter
first approximation. space by making use of the hierarchical shape description

The shape representation proposed in this paper result@?§avided by spherical harmonic descriptors. The coefficients of
a continuous mapping function between similar objects. THi&e spherical harmonic function of different degrees provide a
is done using a uniform parametrization of closed surfacg¥asure of the spatial frequency constituents that compose the
and by calculating an invariant object-centered descriptigfucture. As higher frequency components are included, more
(Brechtiihler et al. [2], [3]). By sampling of the spherical detailed features of the object appear. To define a standard
reference surface, this method can also be used to geneR&gition, we only consider the contribution of the spherical
corresponding pairs of surface points. harmonics of degree one, which is an ellipsoid representing

A key step in the shape description of a surface is itge coarse elongation of the object in 3-D space. We rotate
mapping to the parameter space, the sphere. Any point on th@ parameter space so that the north péle=(0) will be
surface must map to exactly one point on the sphere and vaieone end of the shortest main axis, and the point where the
versa. The location on the sphere corresponding to a surf&€0 meridian ¢ = 0) crosses the equatof & 7/2) is at one
point defines the surface parameters of the point. It can ®ed of the longest main axis. Fig. 1(b) and (c) illustrates the
represented as two polar or three Cartesian coordinates, reld@édtion of the middle main axis on the reconstruction up to

through the bijection degree one and ten, respectively.
Objects of similar shape will get a standard parametrization
x sin @ cos ¢ which becomes comparable, i.e., parameter coordirfétes)
y | =|sinfsing¢ |. are located in similar regions of the object shape across the
z cos 6 set of objects (see Fig. 3). Corresponding points on different

object surfaces are therefore found by calculating a canonical
Mapping a surface to the sphere assigns parameters to eymsametrization, rather than by interactive selection of labeled
surface point. The mapping must be continuous, i.e., neigsets of 3-D points.
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The normalization techniques described here require th
precondition that coefficients of degree one represent a rei . ) ) ) v V . /
ellipsoid. If, however, the ellipsoid degenerates to an ellipsoid
of revolution or a sphere, the technique will fail to derive ‘
stable main axes. Objects of higher symmetries, such as regul. \
polygons and polyhedra, are a good example for the limitation: J J / / J

of the normalization technique.

V. CAPTURING STATISTICAL INFORMATION OF SHAPE ‘) ‘/ \/ _/) ‘/' \/

After transformation to canonical coordinates, the object
descriptors are related to the same reference system and can ,
directly compared. An existing procedure for describing a class ‘) ’) ‘_/) \/
of objects follows our 2-D method as described irelSay et
al. [26], where the calculations are carried out in the domalftig. 4. lllustration of all 22 left hippocampal structures of the training sets,

of shape descriptors, rather than the Cartesian coordinate§®fa/ized and reconstructed from their descriptors.
points in object space.

A. Principal Component Analysis of a Set of Shapes w / ) ) ) )

The mean model is determined by averaging the descriptor:
¢; of the IV individual shapes (see Fig. 4)

Z%E (5) -/\/\/J‘/)

. . . . . Fig. 5. Largest two modes of variation fof = —2\/A; --- 2 \/A;. In
Eigenanalysis of the covariance mat® results in eigen- the middle columnp; = 0 represents the mean model.

values and eigenvectors representing the significant modes of

shape variation modes, instead of the spherical harmonics. Equation (10)

_ 1 Z(c' —®) - (¢; - 6) describes how to generate new examples of the shapes by
N-1 ! ! varying the parametetswithin suitable limits, so that the new
shapes remain similar to those in the training set. The limits for
each element ob are derived by examining the distributions
of the parameter values required to generate the training set.

where the columns ofP. hold the eigenvectors and the ' el Van )
diagonal matrixA the eigenvaluea, of . Vectorsh; describe If Gaussian distributions are assumed, the variances of the

the deviation of individual shapes from the mean shape’elements ob are given by_the corresponding eigenvalues.
using weights in eigenvector space, and are given below To choose the appropriate number of eigenmodes for the
shape representation, the following has to be taken into consid-

c; =c+ P.b;. (8) eration. Supposing Fourier harmonics up to degreleas been

. . . .used, there will be&sn? free parameters describing the shape.
Fig. 5 illustrates the largest two eigenmodes of the h'FI" " b g P

traini ¢ while Fia. 7 deicts th his results in a covariance matrix of the si@?) x (3n})
S?C:mg:sm rzlsf"r;?)rf:d’ ;V 's elg. dotte?jplrnse ;s{g{lﬁirre 9 r%d theoretically ir8n? different eigenmodes. However, if the
Igenvalu ea by sz ( ine) 9 wif aining set only consists oV < (3n7) samples, there will be
components of one individual vectby. As after the first few only N — 1 linearly independent columns or rows ¥ and
eigenvectors the variance becomes very small, thetfiasgest lso that many eigenmodes R.. It follows that the number
eigenmodes have been taken for building a flexible moda modest should be smaller than botN and 3n2
that explains the biological variability of the hippocampa !
shape. Any shape in this linear subspace is approximated t < min(N, 3n?). (12)

by combining the mean shape and a weighted sum of the o
deviations obtained from the first few modes One method for calculatingis to choose the smallest number

of modes such that the sum of their variances explain a

J

P, = AP. @)

c=c¢c+P.b (9) sufficiently large proportion of\y, the total variance of all
. . . H1e independent variables, where
whereb is a vector of weights, one for each eigenvector and,
since eigenvectors are orthogon#l! P, = I, b of a given min(N, 3n;)
shapec can be computed using Adr= > A (12)
b= PT(c—q). (10) .

and )\, is the kth diagonal element of\.
The vectob can also be thought of as a new and more compactNeglecting eigenmodes corresponding to small eigenvalues
representation of the shape in the new basis of the deformatisionly reasonable if the shape variation is globally distributed
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have resampled the surface of our models and characterized

Putamen each deformation mode by the surface point with the largest
| Globus pallidus deviationdy,. For our models, both sorting criterig, and dj,
/ ' l produced identical ordering of deformation modes.

B. Validation of Statistical Models

In the example above, 22 samples of hippocampi have been
used to derive a statistical model. Applying (12) we find
that the ten largest eigenvalues express 99% of the variation
represented in the training set. It is important to note that this
does not correspond to the true anatomical variability of the
organ shape, only that of the limited representation provided
by the selected parametric shape descriptors. Accordingly, the
parametrized 22 shapes of the training set can be described
@ with minor error using the model, but no information is
provided for shapes not included in the initial population.

The description error of a shape not included in the training
set can be computed by first projecting its descriptongo the
subspace of the major eigenvectors (10), then approximating
coefficientse from the projection (9), and finally comparirg
ande. The difference betweanand¢is given by the Euclidean
distance of the two vectors

Thalamus

Hippocampus

e = Dryale, €). (13)

It must be mentioned that the value«if an absolute measure

of shape similarity in an abstract, object-dependent parameter

space and, consequently, only allows comparisons between
(b) representations of the same organs.

Fig. 6. (@) Left and right thalamus, globus pallidus, putamen, and hippocam-T(_) demantrate the predlct|ye ability of the st'atlstlcal modgl,

pus in one individual case. (b) Their average models computed from W€ investigated how the quality of the model increases while

cases. incorporating more individuals in the training set. We first
have built a statistical model using 11 arbitrarily chosen
0.4k shapes out of the entire set, as needed, to be able to compute
ten deformation modes and determine the above measure of
0.2}  TTTTeeel - segmentation error for the remaining shapes not included in
l/\ ‘ -/__,,\ e the t_rgining set. Repeating the computations fo_r a _statistically
5 g R D T significant subset of the [22 choose 11] combinations of the
-0.2 Y entire set and finally averaging the errors, we obtain a measure
for the 11-shape model, as shown in Fig. 8(a) and (b), by the
-0.4}{” first data points. The size of the training set is then increased
one by one and the average error is computed, based on
-0-8 segmentation results using the largest ten eigenmodes to obtain
-0.8 the rest of the data points in the same figure. One can observe
that the average error decreases as the model grows.

While this decrease of the error is significant in practically

Fig. 7. Statistics of shape deformation. The dotted line represents the squage _ o ; :
root of eigenvalues,/A; sorted by decreasing size. The continuous IinLé,\ilIrI cases, for our 3-D training sets even the insertion of the

illustrates the components of an individual vectgr, which describes the last item leads to a significant improvement of the model. As
deviation of the shape; from the mean shape a comparison, a similar experiment for the statistical model
generated from 71 2-D outlines of the corpus callosum on
along the whole object surface. Some diseases are thouglidsaggital brain slices has been performed. The result is
to be correlated with very small localized anatomical difshown in Fig. 8(c). One can clearly see that, in this case,
ferences. Eigenmodes describing highly localized (but stite model becomes saturated and the addition of a certain
significant) variations should not therefore be discarded, eveamber of new shapes to the training set does not increase
if the corresponding eigenvalue is small. Thus, choosinlge model’'s information content. On the other hand, adding
eigenmodes related to maximal local deformations resultsnew individuals to our 3-D models could further increase
a better representation of the training set. To investigate tteir ability to describe unseen shapes of the same kind.
influence of local deformations on the selected eigenmodes, Was apparent deficiency of our 3-D models also explains the
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Fig. 8. Predictive ability of the models derived from the training sets of 22 2 =0 et
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hippocampi in the (a) left and (b) right hemisphere. (c) The same performance
curve computed for the training set containing 71 corpora callosa. It displays (14)

the average representation ereofor shapes not included in the training set

when using the ten largest eigenmodes, while increasing the number of shages obtain a dual description of the object surface by the

used for the generation of the statistical model frome= 11 ton = N — 1, . . .
where N is the number of available shapes for the organ in question. coordlnate_s of a set of surface poiats T_he equation above
can be written in a more compact matrix form as

difference in segmentation quality we only experience in 3-D, z = Ac (15)

between shapes included and not included in the training set, ) ) )
as discussed later in Section VIII. wherezx represents the coordinates in object space atitke

spherical harmonics descriptord. consists of the function

values ofY;™(6;, ¢,), one for each dimension, and describes

. the mapping between shape description space and object space
Organ geometry represents only a part of the full infogsgordinates.

mation provided by the original volumetric image data sets. g, every surface pointin each data sef, we can extract a

In addition to organ shape, radiological interpretation hea"ilyrofile w;; of n, sample points. The distance between sample

relies on local brightness and contrast information. PreViOH%ints is the length of one voxel. The profiles are oriented

work clearly demonstrated that augmenting geometric model§rmally to the object surface and centered at the surface

with information about the gray-level environment of th?)oints x;;, as illustrated in Fig. 10. For each sample point

model surface significantly improves the robustness of th&ye can obtain a mean profile by averaging over the sample
segmentation [6]. Therefore, we examine the statistics SBjects N

the image intensity along one-dimensional (1-D) profiles,

VI. MODELING GRAY-LEVEL ENVIRONMENT

orthogonal to the object surface at a discrete set of sampling o 1 <

points. Wi = > wi. (16)
j=1

A. Sampling of Model Surface We calculate a,, x n,, covariance matrix,,,, which gives us

Equal processing of each part of the model surface sStatistical description of the expected profiles at each sample
ensured by choosing a homogeneous distribution of saRfiNt

pling points and profiles over the surface parameter space. 1 N
A perfectly regular sampling of a spherical surface does not S, = —— Z (wi; — ;) (wi; — ;)% a7
exist, but we can find a good approximation by icosahedron N-1 j=1

subdivision, a technique often used in computer graphicsC teset al.in 16 lized derivati il
to triangulate and display spheres at different scales. The-O0teset al.in [6] propose normafized derivative profiies
ing invariance to uniform scaling of gray levels and con-

algorithm takes an icosahedron inscribed in a sphere Ay . o :
nt shift. For our applications, however, we achieved best

subdivides its faces, as shown in Fig. 9. The newly introducé ; . ) )
vertices lie slightly inside the sphere, so we push them to tﬁ%sults using unnormalized original gray-level profiles, as all
! r data sets have been acquired under the same imaging

ts;rzici:g/.by properly normalizing their distance to the Cent(gi‘:nditions. Thi; aII_ows us to avoid the information loss caused
The necessary level of subdivision depends, of course, l3¥| any normalization procedure.

the size of the object. For the hippocampus structures analyzed i

in this paper, a subdivision df = 10 resulted in a sampling B- Dual Surface Representation

distance of about one voxel on the surface. This subdivisionThe points of the sampled surface can be considered as a

results inn = 124 30(k — 1) +20((k — 1)(k — 2)/2) = 1002 new representation of the same object, which can be obtained
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P, in this case describes real eigenmodes. Thus, the ob-
tained statistical shape representation is identical to point
distribution models introduced by Cootex al. [6] with
the exception that in our case point-to-point correspondence
has been automatically approximated, rather than manually
determined.

Contrary to the special 2-D case, in 3-D mattk is
nonorthogonal because of the not perfectly regular sampling
of the spherical surface. In our application, it is more ben-
eficial that corresponding deformation modes describe the
same alteration in object and parameter space than their exact
orthogonality, hence, we introduce quasi-eigenvectdys

The shape statistics, as described in Section V, can be
expressed by (9). Multiplying both sides of this equationdy
we get the dual surface description by a set of surface points

Fig. 10. lllustration of an individual left hippocampal shape with its profile Ac=Ac+ AP.b (24)
vectors shown from the left side of the brain. =T+ P;b (25)

n\é/_hereP’l, denotes the producd P. which represents the ma-

from the spherical harmonic descriptors by the linear tra S5 of mod fsh iati d'in obiect dinat
formation described by (15). The deformation modes hayeX Of Mmodes ol Shape variation expressed In object coordinate
ace. Recall thaP, is the matrix of eigenvectors in the shape

been previously derived, based on the spherical harmo pace ¢ defined by th ts of the ellipti
coefficients (referred as parameter space). To examine how gerptor ;pac_e,t € m'el'h yPle_ com;t)onen SI 0 t(_e € f'p Ic
modes can be converted to the description of the surface bagggnonlc escriptors. 1hus, 17, 1S ot a real matrix o

on sample points (referred as object space), we investigate ?ﬂ%envectors since its column vectors are also nonorthogonal,

covariance matrix. In parameter space it is defined by a!t ough they_st|ll repre sent _th(_a same shape deformat|ons as
eigenvectors inP.. This deviation from orthogonality can

3. = CoVide] = E[dedc”]. (18) be characterized by the ratio between the average of the
nondiagonal and diagonal elements Bf P’*, which was

x

Writing the same equation in object space and substituting §i& 5556 in our case. Therefore, weight vectigrsf individual
transformation matrix4, we obtain shapes, which express the deviation from the mean model,
3, = CoV[dz] = E[dz dz’| = E[Adede AT] =AY A" remain the same in both shape representation schemes.
(19)
where dz denotes the deviation of an individual from the VII. | TERATIVE SEGMENTATION SCHEME
averageZ over the whole population. Performing principal

. Until now we have only described the creation of a flexible
component analysis ol

3-D model, including geometric shape, gray-level environment
. P, =A.P, (20) and statistics about normal shape variability. We now perform

_ . L the segmentation step by elastically fitting this model to new
and substituting (15) and (19) into (20) and multiplying both_p qata sets. This is achieved with the following two steps,

sides byA”, we obtain « Initialization is done by transforming the model’s coordi-
ATAS ATAP, = A AT AP,. (21) nate system into that of the new data set.
« The elastic deformation of the surface until it best matches

Comparing (21) with (7), it can be seen th&. and the new gray-value environment.

P, describe the same deformation modes if and only if
ATA = oI, wherea is a scalar and the identity matrix.

This requirement is fulfilled ifA is an orthogonal matrix.
Furthermore, ifA is orthonormal, themx = 1. Since the model has been built based on a normalization

In the 2-D case, columns oft are regularly sampled to the Talairach coordinate system, the determination of the
versions ofcos(kt) andsin(kt) functions (withk = 0 .. K, Symmetry plane of the brain, and the position of the AC/PC
and 0 < t < 27) which are known to be orthogonalline becomes an integral part of the initialization. Currently
since they also build the orthogonal basis vectors of t@is is done manually, but the determination of the symmetry
discrete Fourier transformation. It follows that eigenvec#ys Plane and the AC/PC line by can be replaced in the future
and eigenvalued\, in object space can be easily computelY an automatic method [11], [12], [14], [30]. To derive the

from those defined in parameter space using the followifgsition of the midsagittal plane, the user specifies the position
equations: of three or more points lying on the interhemispheric plane.

The program computes parameters of a plane which have the
P, =AP, (22)  pest least squares fit to the given points. The more points are
A, =aA.. (23) specified, the more robust is the fit. Having determined the

A. Initialization of Segmentation
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plane, the user finally marks the location of the AC and PC ___ S —
A translation vector and a rotation matrix are computed 1<~ % v <= EEEEETTTT] —
transform the model's coordinate system into the image spe =
of the new data set.

AWANLS
B. Elastic Deformation of Model Shape ' f ILL\\ .
(b)

We introduced two different representations of a surface, one @)
based on the Spher,lc,al harmonlc descriptors and a second |9|rg1.611. lllustration of the surface matching process. (a) Part of the model's
based on the subdivided icosahedron. We attempt to use tﬂ%ﬁgulated surface with longer extracted (in black) and shorter model profiles
advantages of both representations in our procedure. Spherialray). (b) The computation of a suggested movement for a single surface
harmonic descriptors were necessary to find a corresponde?ﬂf%t'
between similar surfaces and they also allow the exact analyt-
ical computation of surface normals by the object. In order to keep their resulting shape consistent

K gym gy with tIZe _statistilcatlhmonel,fwe restdrict p?ssit?l(et_defc_)lf:atiqlr;sbby
o m 0¥ m Y considering only the first few modes of variation. This will be

= Z Z “ "o % Z Z “ ¢ (26) solved by minimizing a sum of squares of differences between
actual model point locations and the suggested new positions.
However, they only represent a global description of an objectThe shape statistics, as described by (25), represent the ma-
shape. The surface points, on the other hand, give a lot@ of modes of shape variation expressed in object coordinate
representation, which is essential to carry out an iteratigpace. We seek an adjustmelbtto b, which causes a defor-
refinement of the model, as will be described in the nextation in eigenspace which matches the optimal deformation
section. Thus, we decided to keep both representations durin@s closely as possible
the matching process, the relation between the two bein _
tractable viagthF:e matrixA. ) (& + dz) = T + P (b + db). (29)

=0 m=-—1 =0 m=-—1

Subtracting (25) from (29) we get

C. Calculating Displacements for Surface Points dz = P, db, (30)
After initialization of the surface model, we calculate the

displacement vector at each surface sample point which wodlbiis is an over-determined set of linear equations where the
move that point to a new position closer to the sought obje@imber of equations3) is much larger than the number
Since there is a model of a gray-level profile for each point, ti§$ variables (the number of modes is usually restricted from
search tries to find an adjacent region which better matches tfgund five to ten). Therefore, a least squares approximation
profile. A profilew of length! (>n,,) normal to the surface is to the solution can be obtained using standard methods of
extracted at each model point. This new profile is shifted alofigear algebra. Because of the orthogonalityfdf in 2-D, the

the model profile in discrete stepgo find the position of the least squares solution could be obtaineddby= P dz. In

best match. This is given as the square of the MahalanoBi®, the nonorthogonality oF, does not allow solving (30)
distance this simple way. With this object, the general purpose least
squares routine FO4JAF from the NAG Fortran library has
Btara(s) = (w(s) —w) 2, (w(s) —w)T (27) been applied to obtaidb.
. . The entire procedure is repeated iteratively and starts with
wherew(s) r_epresents the subinterval o_f the extracted prpfllﬂe average model such thiat, = 0. At each iteration step,
at steps havmg a Ie_ngth Of,,. The location of th.e best f'.t 'S we compute a new set of displacements from the match of
thus the one with minimaf3;; . (s). SUPPOSEs},.s; is the shift

b h fil i he best fi h profiles and update the shape deviation vediouantil the
gtween the two profiles providing the ,ESt ',t' We CNOOSe A jation of the shape remains below a threshold value for
displacement vectaiz for each model point which is parallel : : :

o L ) . certain number of iterations.
to the profile in the direction of the best fit and has magnitude

spest- Fig. 11 illustrates this process. E. Shape Constraints

There are two different kind of constraints we apply to keep
) ) the resulting shape consistent with the shape model. On the
Having generated 3-D displacement vectors for each of {8fe hand, there is a limited number of eigenmodes due to the

n model points small number of individuals and the restriction of the number

D. Adjusting Shape Parameters

dz = (dzy, dyy, dz, -+, den) (28) of modes. On the other hand, after the weights have been
TR T updated by
we then adjust the shape parameters to move the model surface biss = by + db, (31)

toward a new position. Since rotation, translation, and scale are

already incorporated in the model statistics, we do not havewe constrain the components of b, using the standard
deal with them separately. Of more concern are the calculageliation defined by the statistical model which is given by
displacementsiz, as these could freely deform the shape dhe eigenvalues/\; (see Fig. 7). Thus, each component of
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(@) (b)

Fig. 13. Overlap measutednB)/(AUB) in percentage calculated between
manually and automatic segmented left hippocampi of 21 individuals. Bars
in light gray illustrate the measure at initialization and in dark gray after
deformation. In image (a) segmentations have been carried out with the
leave-one-out method while in (b), all shapes have been included to build
the model.

(b) relating the energy of the 1-D continuous sigrfdt) to its

Fig. 12. Segmentation result of a left hippocampus on sagittal 3-D slices drourier coefficienta,,, b,,):
3-D views from the left hand side. (a) Image has been taken after initialization.

b) Image illustrates the final result after about 100 iterations. T 2 o
(b) Imag 1 / @R dt =20+ 37 (a2 +12). (32)
T ) 1 2 4
b; ++1 lying outside of the intervatta +/X; will be truncated
where the constani is set to 2. The equation also applies to other orthogonal basis functions,
such as spherical harmonics, and to higher dimensions as well.
VIIl. RESULTS AND VALIDATION OF SEGMENTATION This way, the average distance of a closed surfeleg from

Fig. 12(a) shows the initial placement of the left hippocarr%he coordinate origin can be described as

pus model (white line) together with the hand-segmented oo 1

contour (gray line) on a sagittal 3-D slice and as a 3-D j{Hiﬂ(u)HQdu: > 3 |g')P=4r-MSD  (33)
scene viewed from the right side of the head. After about 100 =0 m=—1

iterations, the model gives a sufficiently close fit to the datyhere MSD stands for mean squared distance measured from
The model used in this example had five degrees of freedofe origin of the coordinate system. Similarly, the average

and model profiles had a total length of 11 sample pointgistance between two surfaces given dyu) and z,(u) or
while the extracted profiles a length of 19 sample points. Tb?zef and ¢ can be written as

whole segmentation process takes about 2 min on a Sun Ultra l
tlhgvcr)rzgzztl\?vr;{hagdn;lc\?sd;ltglys;lljtomatlcalIy after initializing () — ()2 s = Z Z e — 2 (34)

The above procedure has been applied to all 21 data sets =0 m==l
where the hippocampus had been manually segmented. pfoviding an elegant way to calculate an error measure based
make optimal use of the relatively small data set, 21 modeia average surface distance from the spherical harmonic
have been built, leaving out one shape each time and applyoagfficients of the model and the segmentation result.
the technique to this specific shape. The performance of therig. 14(a) nicely illustrates how the mean distance of sur-
automatic segmentation has been tested by comparisons vdites is reduced by the iterative elastic deformation of the
manually segmented object shapes which were used asnadel. Again, we take the human expert's segmentation as
widely accepted standard, given the lack of ground truth. ground truth and compare its surface with the result of the
represents the model shape obtained by human ex@ettse automatic segmentation. The bars in light gray illustrate the
result of the new model-based segmentation. mean distance of the initialization of the model in a new data

The overlap measureAnN B)/(AU B) shown in Fig. 13(a) set and the dark bars, the final mean distance of surfaces to the
is calculated on binary voxel maps created by intersection miodel surface. The horizontal axis lists the series of 21 normal
the object surfaces with the voxel grid. We therefore avoitbntrols and schizophrenics that were used in this study.
the discretization errors by projecting the surfaces back to aTo illustrate the performance drop caused by using sta-
voxel grid. The resulting measure is very sensitive to eveistically suboptimal models obtained from a training set
small differences in overlap, both inside and outside of theo small to represent the entire class of shapes, we also
object model, and is therefore a strong test for segmentatisimow segmentation results in Fig. 13(b) and Fig. 14(b) which
accuracy. For example, two voxel cubes of a volume of ave been computed with a model including all 21 shapes.
x 10 x 10 shifted by one voxel along the space diagon&xperiments with the statistically optimal 2-D model of the
direction results in only a 57% overlap (72271), although corpus callosum showed that including a shape into a saturated
the mean distance of surfaces is roughly one voxel. model does not significantly influence the quality of the

The calculation of the mean distance of surfaces can begmentation. However, the restricted size of our training set
determined in an elegant way directly from the coefficientid not allow us to generate such saturated shape models,
of the spherical harmonic expansion using Parseval’'s theoreren after including all available samples, leading to a slight
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of objects with respect to this coordinate system are part of
the statistical model. Therefore, we do not separate a similarity
transform for alignment and an elastic transform for remaining
shape deformations as in [5].

4) Dual Shape RepresentationQur approach makes use
of two shape representations which are used in a vice versa
fashion, taking advantage of shape descriptors holding a
compact global object characterization and of a set of surface
Fig. 14. Average distances in millimeters, calculated between manually ahdints giving access to local shape properties.
aray flusirate the mean distance of the intialization of the model i a new SIIIAr to_the experience of Cootest al. [5], we t00
data set and the dark bars the final mean distance of surfaces to the mé@eind that the modeling of gray-level information near the
surface. The length of the hippocampus is about 40 mm. (a) Segmentatigitsject boundaries provides valuable additional information for
22‘6"3 ?nifﬂdgg”tfdb&fc} m';hnzgze'fa"e'one'c’“t method. (b) All shapes ha::\’emode_l placement and improves the robustness and stability

of the iterative optimization scheme. An early version of

our segmentation [26] used an energy minimization concept

degradation of the segmentation results. In other words, Qfsijar to standard snake techniques. This method was very
statistical 3-D models does not contain enough information {Qsitive to the quality of the initialization and prone to be

represent all possible shapes of a certain organ calling for W&pped by local energy minima. The additional use of gray-

compilation of a larger training set. level profile information represents a strong restriction to the
number of possible solutions and was demonstrated to be
IX. CONCLUSIONS robust, even in the presence of considerable mismatch between
We present a new model-based 3-D segmentation technidfiigalization and a new object.
that provides automatic segmentation of objects from volumet-Validation has been done by defining shape distance metrics
ric image data. Tests with a large series of volumetric imag@d comparing the results of interactive outlining by experts,
data taken from different patient studies demonstrated that wibich is a common gold standard for comparisons, with the
method was robust and provides reproducible results. shapes obtained by model-based segmentation (see Fig. 14).
The new technique uses elastic deformation of surfaceWe noticed that the convergence is faster if only a small
models, which carry statistical information of normal geoaumber of modes (usually five) are involved, while a larger
metric shape variation and statistics about gray levels neamber of modes (usually ten) is required to find the exact
the object surface. Our models has been derived fromcantour. Thus, we plan to apply a relaxation method which
series of interactively segmented training data set. Therelgyadually increases the number of modes. The convergence
the model represents a real anatomical shape rather thaeriteria is set by the size of the deformation of a surface.
simple geometric 3-D figure, as obtained by CAD modeling, The fundamental difficulty of the application of parametric
for example. Furthermore, information about the statistics efatistical models for 3-D organ segmentation remains the
a normal shape deformation helps to constrain the elasgiicient establishment of correspondence between the single
deformations. This is an important advantage since 3-D snakgjects of the training set. This is a major research area at
and balloon techniques are known to be prone to elasticallye moment and different approaches are under investigation
deform to any smooth object shape and to be trapped Ky, [10], [27]. The method proposed by Kotcheff [10] is
disturbing attractors not part of the sought shape. of particular interest, as it addresses not only the problem
Our approach has been significantly influenced by thld correspondence but, at the same time, the question of
research work of Cootes, Taylet al. [5], [6]. However, the the underlying distribution model for the shape parameters
extension of their original 2-D method to a true 3-D volumetrionder investigation. This is another basic matter of concern
segmentation technique required various new solutions itgrinciple component analysis applied. Using PCA implies a
single steps of the procedure. Gaussian noise model on the parametrization, which cannot be
1) Parametric Shape Representatiofhe most prominent expected in general. The idea of using reparametrization for
distinction from [6] is that we use a parametric 3-D objeatorrespondence establishment in order to change the underly-
shape representation, rather than a point distribution modaly parameter error distribution would offer an fundamentally
and that shape statistics are calculated in the space of theee way for estimating correspondence in a whole shape
shape parameters, rather than point coordinates. population and is currently investigated. As an alternative,
2) Statistical Shape ModelsTo overcome the problem of independent component analysis, looking for higher order
getting a reproducible interactive definition of a set of hazorrelations in the data, can also be applied to cope with the
mologous points in 3-D space, the approach presented heggioblem of non-Gaussian distribution of the analyzed shape
proposes an automatic definition of surface meshes with honp@rameters. The application of more sophisticated methods
geneous distribution of nodes defined in a standard canoniegll, however, be limited by the relatively small number of
position. individual samples, as compared to the degrees of freedom of
3) Object Alignment:We define the position and orienta-the model.
tion of objects in a global coordinate system which is defined The set of statistical models and the automatic and efficient
by the type of application. Small translations and rotatiorsegmentation technique (only a few minutes per data set) open




KELEMEN et al: ELASTIC MODEL-BASED SEGMENTATION

new possibilities for the processing of a large number of data
sets as they are collected in clinical studies, for example2
in schizophrenia research. This will provide new statisticgf ]
models with increased number of samples for normal controls
and for different patient categories. These statistical modéls!
represent the first step in building an anatomical atlas based
on a set of surfaces of anatomical shapes. Whereas the curfefitS. Minoshima, R. A. Koeppe, M. A. Mintun, K. L. Berger, S. F.
segmentation technique would segment a series of objects
independently, a future development could provide a combined
modeling of several anatomical structures. The representatjosi
of anatomical objects by normalized shape descriptors further

exploits its access to morphometric parameters. After segs

menting a new set of image data, morphological properties

of objects are available for comparative studies.
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