
828 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 10, OCTOBER 1999

Elastic Model-Based Segmentation
of 3-D Neuroradiological Data Sets

András Kelemen, Ǵabor Sźekely,* and Guido Gerig

Abstract—This paper presents a new technique for the au-
tomatic model-based segmentation of three-dimensional (3-D)
objects from volumetric image data. The development closely
follows the seminal work of Taylor and Cootes on active shape
models, but is based on a hierarchical parametric object descrip-
tion rather than a point distribution model. The segmentation
system includes both the building of statistical models and the
automatic segmentation of new image data sets via a restricted
elastic deformation of shape models. Geometric models are de-
rived from a sample set of image data which have been segmented
by experts. The surfaces of these binary objects are converted
into parametric surface representations, which are normalized
to get an invariant object-centered coordinate system. Surface
representations are expanded into series of spherical harmonics
which provide parametric descriptions of object shapes. It is
shown that invariant object surface parametrization provides a
good approximation to automatically determine object homology
in terms of sets of corresponding sets of surface points. Gray-
level information near object boundaries is represented by 1-D
intensity profiles normal to the surface. Considering automatic
segmentation of brain structures as our driving application, our
choice of coordinates for object alignment was the well-accepted
stereotactic coordinate system. Major variation of object shapes
around the mean shape, also referred to as shape eigenmodes,
are calculated in shape parameter space rather than the feature
space of point coordinates. Segmentation makes use of the ob-
ject shape statistics by restricting possible elastic deformations
into the range of the training shapes. The mean shapes are
initialized in a new data set by specifying the landmarks of the
stereotactic coordinate system. The model elastically deforms,
driven by the displacement forces across the object’s surface,
which are generated by matching local intensity profiles. Elastical
deformations are limited by setting bounds for the maximum
variations in eigenmode space. The technique has been applied
to automatically segment left and right hippocampus, thalamus,
putamen, and globus pallidus from volumetric magnetic reso-
nance scans taken from schizophrenia studies. The results have
been validated by comparison of automatic segmentation with the
results obtained by interactive expert segmentation.

Index Terms— Automatic 3-D segmentation, elastically de-
formable surface models, statistical shape models.
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I. INTRODUCTION

SEGMENTATION of anatomical objects from large three-
dimensional (3-D) medical data sets, obtained from routine

magnetic resonance imaging (MRI) examinations, for exam-
ple, represents a necessary yet difficult issue in medical image
analysis. With the steady increase of routine use of 3-D
imaging methods such as MRI, computer tomography (CT),
and 3-D ultrasound in radiological diagnosis, monitoring, ra-
diotherapy, and surgical planning, for example, there is a clear
need for improved and efficient methods for the extraction of
anatomical structures and for a description by morphometric
analysis. In some limited applications, segmentation can be
achieved with minimal user interaction by applying simple
and efficient image processing methods, which can be applied
routinely [8].

In many clinical applications, such as computer assisted
neurosurgery or radiotherapy planning, a large number of
organs must be identified in the radiological data sets. While
a careful and time-consuming analysis may be acceptable for
outlining complex pathological objects, no real justification for
such a procedure can be found for the delineation of normal
healthy organs at risk.

Delineation of organ boundaries is also necessary in various
types of clinical studies, where the correlation between mor-
phological changes and therapeutical actions or clinical diag-
nosis must be analyzed. In order to get statistically significant
results, a large number of data sets must be segmented. For
such applications manual segmentation becomes questionable,
not only because of the amount of work, but also with
regard to the poor reproducibility of the results. The necessity
of obtaining high reproducibility and the need to increase
efficiency motivates the development of computer-assisted
automated procedures.

II. M ODEL-BASED SEGMENTATION

OF 3-D RADIOLOGICAL DATA

Elastically deformable contour and surface models, so-
called snakes [9], have been proposed as tools for supporting
manual object delineation. While such procedures can be
extended to 3-D [4], [29], their initialization is a critical issue.
Most often, the initial guess must be very close to the sought
contour to guarantee a satisfying result [16]. An excellent
overview of elastically deformable models can be found in
[13]. The primary reason for the need of a precise snake
initialization is the presence of disturbing attractors in the
image. These attractors do not belong to the object contour,
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but force the snake into undesired local energy minima. The
procedure could become more robust if the deformation of a
snake would be limited to shapes within the normal variation
of a class of object boundaries.

Elastically deformable parametric models offer a straight-
forward way for the inclusion of prior knowledge in the
image segmentation process. This is done by incorporating
prior statistics to constrain the variation of the parameters of
the elastic model. Such procedures have been developed by
Vemuri and Radisavljevic [31], using a hybrid primitive called
deformable superquadrics constructed in a multiresolution
wavelet base, or by Staib and Duncan [23] for deformable
Fourier models.

For complex shapes described by a large number of often
highly correlated parameters, the use of such priors may
become tedious. The modal analysis as proposed by Pentland
and Sclaroff [17] offers a promising alternative by chang-
ing the basis from the original modeling functions to the
eigenmodes of the deformation matrix. The dominant part
of the deformations can thus be characterized by only a
few eigenmodes, substantially reducing the dimensionality of
the object descriptor space. Methods using modal analysis
have been successfully applied to medical image analysis by
Sclaroff and Pentland [20] and Nastar and Ayache [15], for
example.

Cooteset al. [5] combined the power of parametric de-
formable shape descriptors with statistical modal analysis.
They use active shape models, which restrict the possible
deformations using the statistics of training samples. Object
shapes are described by the point distribution model (PDM)
[6], [7], which represents the object outline by a subset of
boundary points. There must be a one-to-one correspondence
between these points in the different outlines of the training
set. After normalization to size, orientation, and position, they
provide the basis for the statistical analysis of the object shape
deformations. The mean point positions and their modes of
variation (i.e., the eigenvectors corresponding to the largest
eigenvalues of their covariance matrix) are used for limiting
the object deformations to a reasonable linear subspace of the
complete parameter space. Principal component analysis has
also been used for the characterization of anatomical shape
variability, using other shape parametrization schemes such as
invariant moments [18], [19], for example.

For a large training set containing several anatomical struc-
tures, the generation of the PDM parametrization becomes
very tedious and, because of the lack of a reasonable au-
tomatization, can be a source of errors, suggesting alterna-
tive approaches for form parametrization. Staib and Duncan
have already demonstrated segmentation by parametrically
deformable elastic models for two-dimensional (2-D) outlines
[23] and 3-D object surfaces [22], [24] using Fourier descrip-
tors. In our previous work [26] we combined the statistical
modal analysis with parametrization based on 2-D Fourier-
descriptors. Using spatial normalization based on the generally
accepted Talairach coordinate system [28], we demonstrated
that fully automatic segmentation of organ contours on 2-D
image slices can be achieved. In this previous paper, the
feasibility of a 3-D extension of this method has already

been investigated. We have demonstrated that, based on a
general surface parametrization scheme [3], the concept can
be generalized for 3-D organ surfaces with spherical topology,
using spherical harmonics as shape descriptors. This paper
summarizes the basic concepts of the newly developed 3-D
segmentation system and also presents evaluation results, using
a collection of 22 volumetric MR brain data sets.

The 3-D segmentation discussed here is based on statistical
shape models generated from a collection of manually seg-
mented MR image data sets of different subjects. The process
can be divided into two major phases: a model-building stage
and the automatic segmentation of large series of data sets.

• In the training phase, the results of interactive segmen-
tation of sample data sets are used to create a statistical
shape model which describes the average as well as the
major linear variation modes.

• The model is placed into new unknown data sets and is
elastically deformed to optimally fit the measured data.

The generation of the statistical model will be discussed
in detail in the following sections. The purely geometrical
statistical model proposed in our earlier paper [26] has been
extended by incorporating gray-valued profiles across the
organ surface, implementing the concept proposed by Cootes
and Taylor [5], [6] for 3-D models.

The matching process is initialized using the average geo-
metrical model resulting from this training phase. A two-stage
algorithm, described in Section VII, is used to deform this
model to optimally fit the features of a new data set, while
still restricting the deformations to the variability allowed by
the statistical model. This algorithm makes full use of the
gray-value profiles normal to the surface, which is efficiently
calculated by using a dual representation of the object both as
a collection of sample points and as a parametrized surface.

III. 3-D OBJECT MODEL

A. Training Set

Today’s routine practice for 3-D segmentation involves
slice-by-slice manual processing of high-resolution volume
data. Working on a large series of similar scans, human
observers knowlegeable in anatomy become experts and pro-
duce reliable segmentation results, although at the cost of a
considerable amount of time per data set. Realistic figures are
several hours to one day per volume data set, for only a small
set of structures. Regions in 2-D image slices corresponding
to cross sections of 3-D objects are outlined and painted
by different interactive tools, performing delineation purely
manually [25] or partially supported by image data using
energy minimization schemes discussed above. The series
of binary regions segmented from consecutive slices form
volumetric voxel objects. Fig. 1(a) illustrates the result of an
expert segmentation of the left hippocampus from a magnetic
resonance head dataset.

Our initial training set, consisting of 30 male brain MR vol-
umes, a courtesy of the Harvard Medical School in Boston, has
been processed this way. These datasets have been acquired
and deep gray-matter structures have been processed in the
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(a) (b)

(c) (d)

Fig. 1. Model building. (a) Interactive segmentation of a left hippocampus.
(b) Reconstruction from surface shape descriptor up to degree one. (c)
Reconstruction up to degree ten. (d) Normalization of the shape pose in
object space.

frame of a comparative psychiatric study [21]. In each volume,
six brain regions have been manually labeled in both hemi-
spheres. These regions include the amygdala/hippocampus
complex, the parahippocampal gyrus, thalamus, caudate nu-
cleus, putamen, and globus pallidus. Fig. 6 compares the
segmented four different brain objects for an individual case
with the average models.

In order to demonstrate some model building aspects which
require a larger training set, we will also refer to a set of
71 corpus callosum outlines, a courtesy of the European
BIOMORPH project.

B. Parametric Shape Representation

In the following, the term parametrization will be used in
two different ways. On the one hand, the process which maps
two parameter values ( ) to each point on a surface is called
surface parametrization. These surface mappings parametrize
an object shape with respect to surface coordinates :

(1)

To make a clear distinction, surface parametrization will
refer to this mapping procedure. In the following, we will
consider only surfaces with spherical topology, which is true
for a broad class of anatomically interesting organ boundaries,
in particular for all studied structures of the basal ganglia. Such
surfaces can be parametrized by two polar variables (and )
and therefore defined by three explicit functions over them

(2)

Second, shape parametrization denotes the computation
of object shape descriptors parametrizing these coordinate
functions. One possibility is an expansion over a complete
set of basis functions. With respect to computing elastic
shape deformations, the choice of basis functions is not

Fig. 2. Stereotactic coordinate system used for object space normalization.

critical. B-splines or wavelets could be used, as well as other
local representations. As discussed later, shape correspondence
among multiple individuals is obtained by rotating a
parameter net over the object surface to a canonical position
based on global surface parametrization. We therefore make
use of the hierarchical shape representation offered by spher-
ical harmonics, resulting in the following (truncated) series
expansion:

(3)

where

(4)

The coefficients are 3-D vectors with components , ,
and with degree and order . A detailed description can
be found in Brechb̈uhleret al. [3]. All the with components

define the shape description vector

Fig. 1(b) and (c) illustrates the hierarchical property of spher-
ical harmonics: reconstructing the shape from coefficients
up to degree one results in an ellipsoid. Incorporating more
descriptors [up to degree ten in Fig. 1(c)] increases the level
of details and more closely approximates the original shape.

C. Anatomic Reference Coordinate System

Our driving application is the automatic segmentation of
deep gray-matter structures of the human brain. We begin by
choosing the standard stereotactic coordinate system proposed
by Talairach for global alignment of the head image data
sets. Basic features used for alignment are the approximation
of the interhemispheric fissure by a midsagittal plane and
the definition of the anterior and posterior commissure (AC-
PC) (see Fig. 2). The identification of the symmetry plane of
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the brain and the position of the AC-PC line is performed
manually by selecting reference points on 2-D slices of the
volumetric images. Each data set is transformed into canonical
coordinates by 3-D rotation and scaling as illustrated in
Fig. 1(d).

In comparison to a fully object-centered spatial normal-
ization the segmentation method described in this paper can
incorporate small deviations of translation and orientation into
the shape statistics. This allows us to reproducibly define a
global coordinate system, based on a small set of significant
external landmarks for initializing shape models at their most
likely positions.

In our earlier work [26] we found that in medical im-
ages there is no real justification for separating similarity
transformation from shape deformation because of the strong
correlation between the position and shape of organs. Accord-
ingly, for images representing anatomy the relative position,
rotation, and size of healthy organs is restricted in a similar
and correlated way to their elastic deformation. We therefore
introduced models incorporating this full biological variability
with respect to a natural reference system, which resulted in a
much more robust segmentation process in 3-D. The Talairach
reference used here is a straightforward extension to our earlier
AC-PC based 2-D coordinate system.

IV. CORRESPONDENCE BYPARAMETRIZATION

During the present study we established surface correspon-
dence between the items of the training set by an area-
preserving parametrization followed by the object-oriented
normalization of its starting point. This fully automatic proce-
dure, which will be described in more detail in this section,
has certain strong limitations and provides only a first step
in establishing correspondence. However, preliminary 3-D
studies have revealed that corrections resulting from feature-
based correspondence search based on curvature [27], e.g., are
minor and arc-length based parametrization provides a good
first approximation.

The shape representation proposed in this paper results in
a continuous mapping function between similar objects. This
is done using a uniform parametrization of closed surfaces
and by calculating an invariant object-centered description
(Brechb̈uhler et al. [2], [3]). By sampling of the spherical
reference surface, this method can also be used to generate
corresponding pairs of surface points.

A key step in the shape description of a surface is its
mapping to the parameter space, the sphere. Any point on the
surface must map to exactly one point on the sphere and vice
versa. The location on the sphere corresponding to a surface
point defines the surface parameters of the point. It can be
represented as two polar or three Cartesian coordinates, related
through the bijection

Mapping a surface to the sphere assigns parameters to every
surface point. The mapping must be continuous, i.e., neigh-

(a) (b)

(c) (d)

Fig. 3. (a) Corresponding parameter values for� = �=2, � = 0; �, and
� = �=2; 3�=2 (thick lines) illustrated on an ellipsoid. (b)–(c) On three
individual left hippocampal structures.

boring points in one space must map to neighbors in the other
space. Our approach is to achieve a correspondence between
different objects by constructing a mapping that preserves
areas. Based on the voxel representation, such a mapping
assigns the square facets on the object surface to a portion
of the surface of the unit sphere. It is not possible, in general,
to map every surface facet to a spherical square. Distortions
cannot be avoided, but they should be minimal.

The surface parametrization, i.e., the embedding of the
object surface graph into the surface of the unit sphere, is
solved as a constrained optimization problem, looking for
the optimal coordinates of all vertices [3]. However, the
resulting representation of the surface by a parameter net with
homogeneous cells is so far only determined up to a 3-D
rotation in parameter space. Point-to-point correspondence of
surfaces of different objects would require parameters which
do not depend on the relative position of the parameter net.
The object can be rotated to a canonical position in parameter
space by making use of the hierarchical shape description
provided by spherical harmonic descriptors. The coefficients of
the spherical harmonic function of different degrees provide a
measure of the spatial frequency constituents that compose the
structure. As higher frequency components are included, more
detailed features of the object appear. To define a standard
position, we only consider the contribution of the spherical
harmonics of degree one, which is an ellipsoid representing
the coarse elongation of the object in 3-D space. We rotate
the parameter space so that the north pole ( ) will be
at one end of the shortest main axis, and the point where the
zero meridian ( ) crosses the equator ( ) is at one
end of the longest main axis. Fig. 1(b) and (c) illustrates the
location of the middle main axis on the reconstruction up to
degree one and ten, respectively.

Objects of similar shape will get a standard parametrization
which becomes comparable, i.e., parameter coordinates
are located in similar regions of the object shape across the
set of objects (see Fig. 3). Corresponding points on different
object surfaces are therefore found by calculating a canonical
parametrization, rather than by interactive selection of labeled
sets of 3-D points.
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The normalization techniques described here require the
precondition that coefficients of degree one represent a real
ellipsoid. If, however, the ellipsoid degenerates to an ellipsoid
of revolution or a sphere, the technique will fail to derive
stable main axes. Objects of higher symmetries, such as regular
polygons and polyhedra, are a good example for the limitations
of the normalization technique.

V. CAPTURING STATISTICAL INFORMATION OF SHAPE

After transformation to canonical coordinates, the object
descriptors are related to the same reference system and can be
directly compared. An existing procedure for describing a class
of objects follows our 2-D method as described in Székely et
al. [26], where the calculations are carried out in the domain
of shape descriptors, rather than the Cartesian coordinates of
points in object space.

A. Principal Component Analysis of a Set of Shapes

The mean model is determined by averaging the descriptors
of the individual shapes (see Fig. 4)

(5)

Eigenanalysis of the covariance matrix results in eigen-
values and eigenvectors representing the significant modes of
shape variation

(6)

(7)

where the columns of hold the eigenvectors and the
diagonal matrix the eigenvalues of . Vectors describe
the deviation of individual shapes from the mean shape,
using weights in eigenvector space, and are given below

(8)

Fig. 5 illustrates the largest two eigenmodes of the hip-
pocampus training set, while Fig. 7 depicts the square root
of eigenvalues sorted by size (dotted line) together with
components of one individual vector. As after the first few
eigenvectors the variance becomes very small, the firstlargest
eigenmodes have been taken for building a flexible model
that explains the biological variability of the hippocampal
shape. Any shape in this linear subspace is approximated
by combining the mean shape and a weighted sum of the
deviations obtained from the first few modes

(9)

where is a vector of weights, one for each eigenvector and,
since eigenvectors are orthogonal, , of a given
shape can be computed using

(10)

The vector can also be thought of as a new and more compact
representation of the shape in the new basis of the deformation

Fig. 4. Illustration of all 22 left hippocampal structures of the training sets,
normalized and reconstructed from their descriptors.

Fig. 5. Largest two modes of variation forbj = �2 �j � � � 2 �j . In
the middle column,bj = 0 represents the mean model.

modes, instead of the spherical harmonics. Equation (10)
describes how to generate new examples of the shapes by
varying the parameterswithin suitable limits, so that the new
shapes remain similar to those in the training set. The limits for
each element of are derived by examining the distributions
of the parameter values required to generate the training set.
If Gaussian distributions are assumed, the variances of the
elements of are given by the corresponding eigenvalues.

To choose the appropriate number of eigenmodes for the
shape representation, the following has to be taken into consid-
eration. Supposing Fourier harmonics up to degreehas been
used, there will be free parameters describing the shape.
This results in a covariance matrix of the size
and theoretically in different eigenmodes. However, if the
training set only consists of samples, there will be
only linearly independent columns or rows in and
also that many eigenmodes in . It follows that the number
of modes should be smaller than both and

(11)

One method for calculatingis to choose the smallest number
of modes such that the sum of their variances explain a
sufficiently large proportion of , the total variance of all
the independent variables, where

(12)

and is the th diagonal element of .
Neglecting eigenmodes corresponding to small eigenvalues

is only reasonable if the shape variation is globally distributed
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(a)

(b)

Fig. 6. (a) Left and right thalamus, globus pallidus, putamen, and hippocam-
pus in one individual case. (b) Their average models computed from all
cases.

Fig. 7. Statistics of shape deformation. The dotted line represents the square
root of eigenvalues �j sorted by decreasing size. The continuous line
illustrates the components of an individual vectorbj , which describes the
deviation of the shapecccj from the mean shapeccc.

along the whole object surface. Some diseases are thought
to be correlated with very small localized anatomical dif-
ferences. Eigenmodes describing highly localized (but still
significant) variations should not therefore be discarded, even
if the corresponding eigenvalue is small. Thus, choosing
eigenmodes related to maximal local deformations results in
a better representation of the training set. To investigate the
influence of local deformations on the selected eigenmodes, we

have resampled the surface of our models and characterized
each deformation mode by the surface point with the largest
deviation . For our models, both sorting criteria and
produced identical ordering of deformation modes.

B. Validation of Statistical Models

In the example above, 22 samples of hippocampi have been
used to derive a statistical model. Applying (12) we find
that the ten largest eigenvalues express 99% of the variation
represented in the training set. It is important to note that this
does not correspond to the true anatomical variability of the
organ shape, only that of the limited representation provided
by the selected parametric shape descriptors. Accordingly, the
parametrized 22 shapes of the training set can be described
with minor error using the model, but no information is
provided for shapes not included in the initial population.

The description error of a shape not included in the training
set can be computed by first projecting its descriptorsinto the
subspace of the major eigenvectors (10), then approximating
coefficients from the projection (9), and finally comparing
and . The difference betweenand is given by the Euclidean
distance of the two vectors

(13)

It must be mentioned that the value ofis an absolute measure
of shape similarity in an abstract, object-dependent parameter
space and, consequently, only allows comparisons between
representations of the same organs.

To demonstrate the predictive ability of the statistical model,
we investigated how the quality of the model increases while
incorporating more individuals in the training set. We first
have built a statistical model using 11 arbitrarily chosen
shapes out of the entire set, as needed, to be able to compute
ten deformation modes and determine the above measure of
segmentation error for the remaining shapes not included in
the training set. Repeating the computations for a statistically
significant subset of the [22 choose 11] combinations of the
entire set and finally averaging the errors, we obtain a measure
for the 11-shape model, as shown in Fig. 8(a) and (b), by the
first data points. The size of the training set is then increased
one by one and the average error is computed, based on
segmentation results using the largest ten eigenmodes to obtain
the rest of the data points in the same figure. One can observe
that the average error decreases as the model grows.

While this decrease of the error is significant in practically
all cases, for our 3-D training sets even the insertion of the
last item leads to a significant improvement of the model. As
a comparison, a similar experiment for the statistical model
generated from 71 2-D outlines of the corpus callosum on
midsaggital brain slices has been performed. The result is
shown in Fig. 8(c). One can clearly see that, in this case,
the model becomes saturated and the addition of a certain
number of new shapes to the training set does not increase
the model’s information content. On the other hand, adding
new individuals to our 3-D models could further increase
their ability to describe unseen shapes of the same kind.
This apparent deficiency of our 3-D models also explains the
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(a) (b)

(c)

Fig. 8. Predictive ability of the models derived from the training sets of 22
hippocampi in the (a) left and (b) right hemisphere. (c) The same performance
curve computed for the training set containing 71 corpora callosa. It displays
the average representation error� for shapes not included in the training set
when using the ten largest eigenmodes, while increasing the number of shapes
used for the generation of the statistical model fromn = 11 to n = N � 1,
whereN is the number of available shapes for the organ in question.

difference in segmentation quality we only experience in 3-D,
between shapes included and not included in the training set,
as discussed later in Section VIII.

VI. M ODELING GRAY-LEVEL ENVIRONMENT

Organ geometry represents only a part of the full infor-
mation provided by the original volumetric image data sets.
In addition to organ shape, radiological interpretation heavily
relies on local brightness and contrast information. Previous
work clearly demonstrated that augmenting geometric models
with information about the gray-level environment of the
model surface significantly improves the robustness of the
segmentation [6]. Therefore, we examine the statistics of
the image intensity along one-dimensional (1-D) profiles,
orthogonal to the object surface at a discrete set of sampling
points.

A. Sampling of Model Surface

Equal processing of each part of the model surface is
ensured by choosing a homogeneous distribution of sam-
pling points and profiles over the surface parameter space.
A perfectly regular sampling of a spherical surface does not
exist, but we can find a good approximation by icosahedron
subdivision, a technique often used in computer graphics
to triangulate and display spheres at different scales. The
algorithm takes an icosahedron inscribed in a sphere and
subdivides its faces, as shown in Fig. 9. The newly introduced
vertices lie slightly inside the sphere, so we push them to the
surface by properly normalizing their distance to the center
to unity.

The necessary level of subdivision depends, of course, on
the size of the object. For the hippocampus structures analyzed
in this paper, a subdivision of resulted in a sampling
distance of about one voxel on the surface. This subdivision
results in

Fig. 9. Nearly regular sampling of spherical surfaces by icosahedron sub-
division.

vertices. Computing the and values at each vertex
coordinate of the subdivided icosahedron and substituting
them into

(14)

we obtain a dual description of the object surface by the
coordinates of a set of surface points. The equation above
can be written in a more compact matrix form as

(15)

where represents the coordinates in object space andthe
spherical harmonics descriptors. consists of the function
values of , one for each dimension, and describes
the mapping between shape description space and object space
coordinates.

For every surface pointin each data set, we can extract a
profile of sample points. The distance between sample
points is the length of one voxel. The profiles are oriented
normally to the object surface and centered at the surface
points , as illustrated in Fig. 10. For each sample point

we can obtain a mean profile by averaging over the sample
objects

(16)

We calculate a covariance matrix , which gives us
a statistical description of the expected profiles at each sample
point

(17)

Cooteset al. in [6] propose normalized derivative profiles
giving invariance to uniform scaling of gray levels and con-
stant shift. For our applications, however, we achieved best
results using unnormalized original gray-level profiles, as all
our data sets have been acquired under the same imaging
conditions. This allows us to avoid the information loss caused
by any normalization procedure.

B. Dual Surface Representation

The points of the sampled surface can be considered as a
new representation of the same object, which can be obtained
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Fig. 10. Illustration of an individual left hippocampal shape with its profile
vectors shown from the left side of the brain.

from the spherical harmonic descriptors by the linear trans-
formation described by (15). The deformation modes have
been previously derived, based on the spherical harmonic
coefficients (referred as parameter space). To examine how the
modes can be converted to the description of the surface based
on sample points (referred as object space), we investigate the
covariance matrix. In parameter space it is defined by

Cov E (18)

Writing the same equation in object space and substituting the
transformation matrix , we obtain

Cov E E
(19)

where denotes the deviation of an individual from the
average over the whole population. Performing principal
component analysis on

(20)

and substituting (15) and (19) into (20) and multiplying both
sides by , we obtain

(21)

Comparing (21) with (7), it can be seen that and
describe the same deformation modes if and only if

, where is a scalar and the identity matrix.
This requirement is fulfilled if is an orthogonal matrix.
Furthermore, if is orthonormal, then .

In the 2-D case, columns of are regularly sampled
versions of and functions (with ,
and ) which are known to be orthogonal
since they also build the orthogonal basis vectors of the
discrete Fourier transformation. It follows that eigenvectors
and eigenvalues in object space can be easily computed
from those defined in parameter space using the following
equations:

(22)

(23)

in this case describes real eigenmodes. Thus, the ob-
tained statistical shape representation is identical to point
distribution models introduced by Cooteset al. [6] with
the exception that in our case point-to-point correspondence
has been automatically approximated, rather than manually
determined.

Contrary to the special 2-D case, in 3-D matrix is
nonorthogonal because of the not perfectly regular sampling
of the spherical surface. In our application, it is more ben-
eficial that corresponding deformation modes describe the
same alteration in object and parameter space than their exact
orthogonality, hence, we introduce quasi-eigenvectors.

The shape statistics, as described in Section V, can be
expressed by (9). Multiplying both sides of this equation by
we get the dual surface description by a set of surface points

(24)

(25)

where denotes the product which represents the ma-
trix of modes of shape variation expressed in object coordinate
space. Recall that is the matrix of eigenvectors in the shape
descriptor space, defined by the components of the elliptic
harmonic descriptors . Thus, is not a real matrix of
eigenvectors since its column vectors are also nonorthogonal,
although they still represent the same shape deformations as
eigenvectors in . This deviation from orthogonality can
be characterized by the ratio between the average of the
nondiagonal and diagonal elements of , which was
15.2626 in our case. Therefore, weight vectorsof individual
shapes, which express the deviation from the mean model,
remain the same in both shape representation schemes.

VII. I TERATIVE SEGMENTATION SCHEME

Until now we have only described the creation of a flexible
3-D model, including geometric shape, gray-level environment
and statistics about normal shape variability. We now perform
the segmentation step by elastically fitting this model to new
3-D data sets. This is achieved with the following two steps,

• Initialization is done by transforming the model’s coordi-
nate system into that of the new data set.

• The elastic deformation of the surface until it best matches
the new gray-value environment.

A. Initialization of Segmentation

Since the model has been built based on a normalization
to the Talairach coordinate system, the determination of the
symmetry plane of the brain, and the position of the AC/PC
line becomes an integral part of the initialization. Currently
this is done manually, but the determination of the symmetry
plane and the AC/PC line by can be replaced in the future
by an automatic method [11], [12], [14], [30]. To derive the
position of the midsagittal plane, the user specifies the position
of three or more points lying on the interhemispheric plane.
The program computes parameters of a plane which have the
best least squares fit to the given points. The more points are
specified, the more robust is the fit. Having determined the
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plane, the user finally marks the location of the AC and PC.
A translation vector and a rotation matrix are computed to
transform the model’s coordinate system into the image space
of the new data set.

B. Elastic Deformation of Model Shape

We introduced two different representations of a surface, one
based on the spherical harmonic descriptors and a second one
based on the subdivided icosahedron. We attempt to use the
advantages of both representations in our procedure. Spherical
harmonic descriptors were necessary to find a correspondence
between similar surfaces and they also allow the exact analyt-
ical computation of surface normals by

(26)

However, they only represent a global description of an object
shape. The surface points, on the other hand, give a local
representation, which is essential to carry out an iterative
refinement of the model, as will be described in the next
section. Thus, we decided to keep both representations during
the matching process, the relation between the two being
tractable via the matrix .

C. Calculating Displacements for Surface Points

After initialization of the surface model, we calculate the
displacement vector at each surface sample point which would
move that point to a new position closer to the sought object.
Since there is a model of a gray-level profile for each point, the
search tries to find an adjacent region which better matches this
profile. A profile of length normal to the surface is
extracted at each model point. This new profile is shifted along
the model profile in discrete stepsto find the position of the
best match. This is given as the square of the Mahalanobis
distance

(27)

where represents the subinterval of the extracted profile
at step having a length of . The location of the best fit is
thus the one with minimal . Suppose is the shift
between the two profiles providing the best fit. We choose a
displacement vector for each model point which is parallel
to the profile in the direction of the best fit and has magnitude

. Fig. 11 illustrates this process.

D. Adjusting Shape Parameters

Having generated 3-D displacement vectors for each of the
model points

(28)

we then adjust the shape parameters to move the model surface
toward a new position. Since rotation, translation, and scale are
already incorporated in the model statistics, we do not have to
deal with them separately. Of more concern are the calculated
displacements , as these could freely deform the shape of

(a) (b)

Fig. 11. Illustration of the surface matching process. (a) Part of the model’s
triangulated surface with longer extracted (in black) and shorter model profiles
(in gray). (b) The computation of a suggested movement for a single surface
point.

the object. In order to keep their resulting shape consistent
with the statistical model, we restrict possible deformations by
considering only the first few modes of variation. This will be
solved by minimizing a sum of squares of differences between
actual model point locations and the suggested new positions.

The shape statistics, as described by (25), represent the ma-
trix of modes of shape variation expressed in object coordinate
space. We seek an adjustmentto , which causes a defor-
mation in eigenspace which matches the optimal deformation

as closely as possible

(29)

Subtracting (25) from (29) we get

(30)

This is an over-determined set of linear equations where the
number of equations ( ) is much larger than the number
of variables (the number of modes is usually restricted from
around five to ten). Therefore, a least squares approximation
to the solution can be obtained using standard methods of
linear algebra. Because of the orthogonality of in 2-D, the
least squares solution could be obtained by . In
3-D, the nonorthogonality of does not allow solving (30)
this simple way. With this object, the general purpose least
squares routine F04JAF from the NAG Fortran library has
been applied to obtain .

The entire procedure is repeated iteratively and starts with
the average model such that . At each iteration step,
we compute a new set of displacements from the match of
profiles and update the shape deviation vectoruntil the
variation of the shape remains below a threshold value for
a certain number of iterations.

E. Shape Constraints

There are two different kind of constraints we apply to keep
the resulting shape consistent with the shape model. On the
one hand, there is a limited number of eigenmodes due to the
small number of individuals and the restriction of the number
of modes. On the other hand, after the weights have been
updated by

(31)

we constrain the components of , using the standard
deviation defined by the statistical model which is given by
the eigenvalues (see Fig. 7). Thus, each component of
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(a)

(b)

Fig. 12. Segmentation result of a left hippocampus on sagittal 3-D slices and
3-D views from the left hand side. (a) Image has been taken after initialization.
(b) Image illustrates the final result after about 100 iterations.

lying outside of the interval will be truncated
where the constant is set to 2.

VIII. R ESULTS AND VALIDATION OF SEGMENTATION

Fig. 12(a) shows the initial placement of the left hippocam-
pus model (white line) together with the hand-segmented
contour (gray line) on a sagittal 3-D slice and as a 3-D
scene viewed from the right side of the head. After about 100
iterations, the model gives a sufficiently close fit to the data.
The model used in this example had five degrees of freedom,
and model profiles had a total length of 11 sample points,
while the extracted profiles a length of 19 sample points. The
whole segmentation process takes about 2 min on a Sun Ultra
1 workstation and runs fully automatically after initializing
the model with a new data set.

The above procedure has been applied to all 21 data sets
where the hippocampus had been manually segmented. To
make optimal use of the relatively small data set, 21 models
have been built, leaving out one shape each time and applying
the technique to this specific shape. The performance of the
automatic segmentation has been tested by comparisons with
manually segmented object shapes which were used as a
widely accepted standard, given the lack of ground truth.
represents the model shape obtained by human experts,the
result of the new model-based segmentation.

The overlap measure shown in Fig. 13(a)
is calculated on binary voxel maps created by intersection of
the object surfaces with the voxel grid. We therefore avoid
the discretization errors by projecting the surfaces back to a
voxel grid. The resulting measure is very sensitive to even
small differences in overlap, both inside and outside of the
object model, and is therefore a strong test for segmentation
accuracy. For example, two voxel cubes of a volume of 10

10 10 shifted by one voxel along the space diagonal
direction results in only a 57% overlap (7291271), although
the mean distance of surfaces is roughly one voxel.

The calculation of the mean distance of surfaces can be
determined in an elegant way directly from the coefficients
of the spherical harmonic expansion using Parseval’s theorem

(a) (b)

Fig. 13. Overlap measure(AAA\BBB)=(AAA[BBB) in percentage calculated between
manually and automatic segmented left hippocampi of 21 individuals. Bars
in light gray illustrate the measure at initialization and in dark gray after
deformation. In image (a) segmentations have been carried out with the
leave-one-out method while in (b), all shapes have been included to build
the model.

relating the energy of the 1-D continuous signal to its
Fourier coefficients :

(32)

The equation also applies to other orthogonal basis functions,
such as spherical harmonics, and to higher dimensions as well.
This way, the average distance of a closed surface from
the coordinate origin can be described as

MSD (33)

where MSD stands for mean squared distance measured from
the origin of the coordinate system. Similarly, the average
distance between two surfaces given by and or

and can be written as

(34)

providing an elegant way to calculate an error measure based
on average surface distance from the spherical harmonic
coefficients of the model and the segmentation result.

Fig. 14(a) nicely illustrates how the mean distance of sur-
faces is reduced by the iterative elastic deformation of the
model. Again, we take the human expert’s segmentation as
ground truth and compare its surface with the result of the
automatic segmentation. The bars in light gray illustrate the
mean distance of the initialization of the model in a new data
set and the dark bars, the final mean distance of surfaces to the
model surface. The horizontal axis lists the series of 21 normal
controls and schizophrenics that were used in this study.

To illustrate the performance drop caused by using sta-
tistically suboptimal models obtained from a training set
too small to represent the entire class of shapes, we also
show segmentation results in Fig. 13(b) and Fig. 14(b) which
have been computed with a model including all 21 shapes.
Experiments with the statistically optimal 2-D model of the
corpus callosum showed that including a shape into a saturated
model does not significantly influence the quality of the
segmentation. However, the restricted size of our training set
did not allow us to generate such saturated shape models,
even after including all available samples, leading to a slight
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(a) (b)

Fig. 14. Average distances in millimeters, calculated between manually and
automatically segmented left hippocampi of 21 individuals. The bars in light
gray illustrate the mean distance of the initialization of the model in a new
data set and the dark bars the final mean distance of surfaces to the model
surface. The length of the hippocampus is about 40 mm. (a) Segmentations
have been carried out with the leave-one-out method. (b) All shapes have
been included to build the model.

degradation of the segmentation results. In other words, our
statistical 3-D models does not contain enough information to
represent all possible shapes of a certain organ calling for the
compilation of a larger training set.

IX. CONCLUSIONS

We present a new model-based 3-D segmentation technique
that provides automatic segmentation of objects from volumet-
ric image data. Tests with a large series of volumetric image
data taken from different patient studies demonstrated that the
method was robust and provides reproducible results.

The new technique uses elastic deformation of surface
models, which carry statistical information of normal geo-
metric shape variation and statistics about gray levels near
the object surface. Our models has been derived from a
series of interactively segmented training data set. Thereby,
the model represents a real anatomical shape rather than a
simple geometric 3-D figure, as obtained by CAD modeling,
for example. Furthermore, information about the statistics of
a normal shape deformation helps to constrain the elastic
deformations. This is an important advantage since 3-D snake
and balloon techniques are known to be prone to elastically
deform to any smooth object shape and to be trapped by
disturbing attractors not part of the sought shape.

Our approach has been significantly influenced by the
research work of Cootes, Tayloret al. [5], [6]. However, the
extension of their original 2-D method to a true 3-D volumetric
segmentation technique required various new solutions to
single steps of the procedure.

1) Parametric Shape Representation:The most prominent
distinction from [6] is that we use a parametric 3-D object
shape representation, rather than a point distribution model,
and that shape statistics are calculated in the space of these
shape parameters, rather than point coordinates.

2) Statistical Shape Models:To overcome the problem of
getting a reproducible interactive definition of a set of ho-
mologous points in 3-D space, the approach presented herein
proposes an automatic definition of surface meshes with homo-
geneous distribution of nodes defined in a standard canonical
position.

3) Object Alignment:We define the position and orienta-
tion of objects in a global coordinate system which is defined
by the type of application. Small translations and rotations

of objects with respect to this coordinate system are part of
the statistical model. Therefore, we do not separate a similarity
transform for alignment and an elastic transform for remaining
shape deformations as in [5].

4) Dual Shape Representations:Our approach makes use
of two shape representations which are used in a vice versa
fashion, taking advantage of shape descriptors holding a
compact global object characterization and of a set of surface
points giving access to local shape properties.

Similar to the experience of Cooteset al. [5], we too
found that the modeling of gray-level information near the
object boundaries provides valuable additional information for
a model placement and improves the robustness and stability
of the iterative optimization scheme. An early version of
our segmentation [26] used an energy minimization concept
similar to standard snake techniques. This method was very
sensitive to the quality of the initialization and prone to be
trapped by local energy minima. The additional use of gray-
level profile information represents a strong restriction to the
number of possible solutions and was demonstrated to be
robust, even in the presence of considerable mismatch between
initialization and a new object.

Validation has been done by defining shape distance metrics
and comparing the results of interactive outlining by experts,
which is a common gold standard for comparisons, with the
shapes obtained by model-based segmentation (see Fig. 14).

We noticed that the convergence is faster if only a small
number of modes (usually five) are involved, while a larger
number of modes (usually ten) is required to find the exact
contour. Thus, we plan to apply a relaxation method which
gradually increases the number of modes. The convergence
criteria is set by the size of the deformation of a surface.

The fundamental difficulty of the application of parametric
statistical models for 3-D organ segmentation remains the
efficient establishment of correspondence between the single
objects of the training set. This is a major research area at
the moment and different approaches are under investigation
[1], [10], [27]. The method proposed by Kotcheff [10] is
of particular interest, as it addresses not only the problem
of correspondence but, at the same time, the question of
the underlying distribution model for the shape parameters
under investigation. This is another basic matter of concern
if principle component analysis applied. Using PCA implies a
Gaussian noise model on the parametrization, which cannot be
expected in general. The idea of using reparametrization for
correspondence establishment in order to change the underly-
ing parameter error distribution would offer an fundamentally
new way for estimating correspondence in a whole shape
population and is currently investigated. As an alternative,
independent component analysis, looking for higher order
correlations in the data, can also be applied to cope with the
problem of non-Gaussian distribution of the analyzed shape
parameters. The application of more sophisticated methods
will, however, be limited by the relatively small number of
individual samples, as compared to the degrees of freedom of
the model.

The set of statistical models and the automatic and efficient
segmentation technique (only a few minutes per data set) open
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new possibilities for the processing of a large number of data
sets as they are collected in clinical studies, for example,
in schizophrenia research. This will provide new statistical
models with increased number of samples for normal controls
and for different patient categories. These statistical models
represent the first step in building an anatomical atlas based
on a set of surfaces of anatomical shapes. Whereas the current
segmentation technique would segment a series of objects
independently, a future development could provide a combined
modeling of several anatomical structures. The representation
of anatomical objects by normalized shape descriptors further
exploits its access to morphometric parameters. After seg-
menting a new set of image data, morphological properties
of objects are available for comparative studies.

ACKNOWLEDGMENT

The authors thank R. Kikinis and M. Shenton, Brigham
and Women’s Hospital, Harvard Medical School, Boston, for
kindly provided the original MR and segmented data sets. The
authors are thankful to C. Brechbühler of the Image Science
Laboratory for providing the software for surface parametriza-
tion and shape description. They further acknowledge MR
datasets provided by the European BIOMORPH consortium
(BIOMED 2 95-0845). Finally, the authors would like to thank
the anonymous reviewers for their comments and suggestions.

REFERENCES

[1] F. L. Bookstein, “Shape and the information in medical images: A
decade of the morphometric synthesis,”Comp. Vision Image Under-
standing,vol. 66, no. 2, pp. 97–118, May 1997.

[2] C. Brechb̈uhler, G. Gerig, and O. K̈ubler, “Surface parametrization and
shape description,”Visualization Biomed. Comput.,pp. 80–89, 1992.

[3] , “Parametrization of closed surfaces for 3D shape description,”
CVGIP: Image Understanding,vol. 61, pp. 154–170, 1995.

[4] I. Cohen, L. D. Cohen, and N. Ayache, “Using deformable surfaces to
segment 3-D images and infer differential structures,”CVGIP: Image
Understanding,vol. 56, no. 2, pp. 242–263, 1992.

[5] T. F. Cootes, A. Hill, C. J. Taylor, and J. Haslam, “The use of
active shape models for locating structures in medical images,”Im-
age Vision Comput.,vol. 12, no. 6, pp. 355–366, 1994. Available:
http://s10d.smb.man.ac.uk/publications/index.htm

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models—Their training and application,”Comput. Vision Image
Understanding,vol. 61, no. 1, pp. 38–59, 1995.

[7] T. F. Cootes and C. J. Taylor, “Active shape models—Smart snakes,” in
Proc. British Machine Vision Conf. Berlin, Germany: Springer-Verlag,
1992, pp. 266–275.

[8] G. Gerig, J. Martin, R. Kikinis, O. K̈ubler, M. Shenton, and F.
Jolesz, “Automatic segmentation of dual-echo MR head data,” inProc.
IPMI’91, Wye, U.K., 1991, pp. 175–187.

[9] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comp. Vision,vol. 1, no. 4, pp. 321–331, 1988.

[10] A. C. W. Kotcheff and C. J. Taylor, “Automatic construction of
eigenshape models by genetic algorithm,” inInformation Processing in
Medical Imaging. Berlin, Germany: Springer-Verlag, 1997, pp. 1–14.

[11] F. Kruggel and G. Lohmann, “Automatical adaption of the steretactical
coordinate system in brain MRI datasets,” inInformation Processing

in Medical Imaging. Berlin, Germany: Springer-Verlag, 1997, pp.
471–476.

[12] P. Marais, R. Guillemaud, M. Sakuma, A. Zisserman, and M. Brady,
“Visual cerebral asymmetry,”Visualization Biomed. Comput.,pp.
411–416, 1996.

[13] T. McInerney and D. Terzopoulos, “Deformable models in medical
image analysis: A survey,”Med. Image Anal.,vol. 1, no. 2, pp. 91–108,
1996.

[14] S. Minoshima, R. A. Koeppe, M. A. Mintun, K. L. Berger, S. F.
Taylor, K. A. Frey, and D. E. Kuhl, “Automated detection of the
intercommissural line for stereotactic localization of functional brain
images,”J. Nucl. Med.,vol. 34, no. 2, pp. 322–329, 1993.

[15] Ch. Nastar and N. Ayache, “Frequency-based nonrigid motion analysis:
Application to four dimensional medical images,”IEEE Trans. Pattern
Anal. Machine Intell.,vol. 18, pp. 1067–1079, Nov. 1996.

[16] W. Neuenschwander, P. Fua, G. Székely, and O. K̈ubler, “Initializing
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