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Abstract. The shape of a population of geometric entities is characterized by both the common geometry of the
population and the variability among instances. In the deformable model approach, it is described by a probabilistic
model on the deformations that transform a common template into various instances. To capture shape features at
various scale levels, we have been developing an object-based multi-scale framework, in which a geometric entity is
represented by a series of deformations with different locations and degrees of locality. Each deformation describes a
residue from the information provided by previous steps. In this paper, we present how to build statistical shape models
of multi-object complexes with such properties based on medial representations and explain how this may lead to more
effective shape descriptions as well as more efficient statistical training procedures. We illustrate these ideas with a
statistical shape model for a pair of pubic bones and show some preliminary results on using it as a prior in medical
image segmentation.

Keywords: statistical shape models, multi-object shape models, deformable model, multi-scale shape analysis, medial
representation

1. Introduction

In many shape analysis areas, including deformable mod-
els (Grenander, 1995; Kass et al., 1987), it is desirable
to consider shape as a property of a population of geo-
metric entities, such as object sections (e.g., the left lobe
of livers), objects (e.g., livers), or groups of objects (e.g.,
liver-kidney complexes). As such, it describes both the
common geometric features and the geometric variability
among instances of the population. With the deformable
model approach, a representative instance S0, usually re-
ferred to as the model or template, is chosen for a given
shape, say S. The geometry of S0 is essentially spec-
ified by transformations on certain canonical geometric
primitives, for instance, the positions of boundary/surface
points or positions and boundary normal directions of
medial structures. The overall transformation is a “sum-
mary” of the shape geometry and captures the typical
geometric conformation of S at various levels of detail,
including the geometry of objects, parts, sections, and
their relative configurations. Any instance of S, say S,
is then defined via a further geometric deformation F
applied to S0, i.e. S = F(S0). The map

ψ : F → G
F �→ F(S0) (1)

establishes a correspondence between the space of all
such geometric transformations,F , and the set of all geo-
metric entities, G. We can regard an instance of the shape
S as a random sample from an underlying probability
measure ν on G. Intuitively, ν puts soft constraints on
“what an instance of the shape S should look like”. Be-
cause of the correspondence ψ , the geometric variability
among shape instances, which is captured by ν, can be
effectively described via variability in geometric trans-
formations applied to the template. One way to define
ν, then, is to introduce a probability measure μ on F
and to let ν be the probability measure induced by the
mapping ψ . This is the approach we will adopt in this
paper. The measure μ can be effectively used as shape
priors to make statistical inferences on what one observes
(Grenander et al., 1991; Zhu, 1999; Pizer et al., 2003a;
Gerig et al., 2001).

Existing geometric representations include representa-
tion by dense sample points, landmarks, diffeomorphisms
on displacement velocity fields (Joshi, 1997), distance
functions or their level sets (Tsai et al., 2003), skeletons
(Siddiqi et al., 2002), shocks (Kimia et al., 1995), multi-
grid and scale-space based methods (Lu et al., 2002), etc.
To develop statistical models, the geometric representa-
tion also needs a notion of correspondence among dif-
ferent shape instances. For example, if we use boundary
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points to describe the contour of a hand, then the thumbs
in different hands should be described by the same set
of points. Without such a correspondence the statisti-
cal model would not be robust. Examples of statisti-
cal shape models are deformable templates (Grenander
et al., 1991), point distribution models (Cootes et al.,
1998, 1995), spherical harmonic descriptors (Kelemen
et al., 1999) for 3D objects, to name a few. Most of these
methods do not respect object-based scale levels, so they
lack the ability to explicitly describe important geomet-
ric information such as locality, inter-object relations, etc.
The statistical models typically face the high-dimension-
low-sample-size (HDLSS) problem: on the one hand, the
number of parameters needed to accurately describe the
geometry is usually very large; on the other hand, the
available training samples are often limited, as is the case
in many medical imaging applications.

Many working with geometric probabilities in med-
ical image analysis have dealt with multi-object shape
statistics by concatenating the descriptors for all the ob-
jects and doing global statistics on the resulting tuple.
Examples are Cootes et al. (1999) and Tsai et al. (2003).
These do not have the locality of the object or smaller.
A few investigators have produced statistics that are hi-
erarchical by scale and include a scale describing the
individual objects making up the complex but not hav-
ing the smaller scale descriptions be residues from other
scales (Vaillant and Davatizikos, 1999; Kapur et al.,
1998), but Davatzikos et al. (2003) has taken this ap-
proach using residues. However, objects change not only
on their own but due to their neighbors, and yet when
describing an object statistically, few have attempted to
describe the inter-relationships between objects statis-
tically. Pohl et al. (2005) have attempted to describe
inter-relationships. They represent these via the distance
function to objects’ boundaries, to which, they agree,
linear statistical methods are not well-suited. Moreover,
they have not described inter-relationships in a hierarchi-
cal fashion, or they have used hierarchy but no statisti-
cal inter-relationships (Pohl et al., 2005). The approach
we attempt is simultaneously hierarchical by scale us-
ing inter-scale residues and describes objects not only by
themselves but also in terms of their inter-relationships
with other objects.

In order to efficiently characterize a population of ge-
ometric entities, it is important to realize that geometric
deformations have various localities and we believe they
should be incorporated in shape description (Yushkevich
et al., 2001). In our study of geometric entities such as
objects and boundaries, locality is relative to object scale
level and must be taken with respect to the components
of which an entity is formed. For example, at the object
complex level, a global deformation is one that applies
to all objects in it, while a local deformation applies only
to some of the objects (but as a whole); at the individual

object level, being a local deformation means it applies
only to certain natural sections making up the object.
The geometric features described by the deformations at
each object scale level thus have certain sizes and dis-
tances that are relevant to that level. The differences in
description between scale levels reflect different levels of
detail. Moreover, the relevant distance within a scale level
induces a notion of neighbors, i.e., nearby geometric en-
tities at that scale: nearby objects, nearby object sections,
etc. This neighbor relation, together with the spatial ex-
tent of features and levels of detail in description, realize
the notion of locality and form the basis of our repre-
sentation. In the context of describing a population of
entities, locality reflects the spatial correlation between
various geometric components of different scales among
the population.

This notion of locality suggests we use object-based
scale levels and describe residues within and between
scales similar to the wavelet approaches (Mallat, 1989;
Unser, 1996). We argue that it is more advantageous not to
describe a geometric entity S by a single transformation
F , bur rather represent it in a coarse to fine manner by
decomposing F into a series of, say K , deformations,
i.e., F = FK ◦ FK−1 ◦ · · · ◦ F1 (Pizer et al., 2005).
In this way geometric features at various object scale
levels can be explicitly described by the corresponding
transformations at that level. For each k = 1, . . . , K ,
Sk = Fk ◦ Fk−1 ◦ · · · ◦ F1(S0) is the representation of
S at step k, and the deformation Fk describes a residual
transformation relative to Sk−1, measured in terms of both
across-scale and within-scale primitive relationships. In
other words, the smaller scale features are described as
residues of larger scale features. At any particular ob-
ject scale level, we will assume that each residual fea-
ture tends to be more correlated with those that are close
by, compared to those that are further away. Any strong
correlation between entities that are not close to each
other is a global feature and is supposed to have already
been accounted for by the deformation at the (previous)
larger scale level. This is an important assumption that we
make in developing statistical shape models, an assump-
tion based on measurements we have made in certain
sample populations. Consider, for example, the shape of
a pair of pubic bones (see Fig. 1(b)). In this case F1 may
be a single global level deformation that is applied to the
both bones simultaneously, F2 may represent a further
deformation of the left bone, F3 may represent a collec-
tion of even further local deformations of the left bone,
each applied to a very small part of it, and so on.

In addition to providing more intuitive and accurate
geometric descriptions, the above multi-step approach
also has the potential of leading to more efficient prob-
abilistic models. We believe that by taking advantage of
locality one can effectively characterize each deforma-
tion by a much smaller number of parameters. Because
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the process of estimating these parameters suffers a lot
less from the HDLSS problem, it might be possible to
obtain more reliable and stable estimations of statistical
shape models from limited training samples.

A valid statistical shape model needs to have certain
generative and predictive power. It should be able to cap-
ture most of the variations in a object population and
produce instances that are similar to training samples and
are geometrically proper (Pizer et al., 2005), meaning that
these instances preserve topology, do not have geometric
singularities and have no or very little inter-penetration
among objects.

We have been developing a methodology for describ-
ing 3D entities using medial representations combined
with voxel scale displacements of the object interior and
boundary, which together form a representation called
m-reps (Pizer et al., 2003a; Joshi et al., 2002). In this
framework, a geometric entity is represented at discrete
scales and locations. At each scale it is described by a
set of geometric primitives and their relative transforma-
tions. For a population of geometric entities, we establish
correspondence among instances by fixing the topology
of our representation. As a result, what differs among
members of the population is the quantitative, geometric
parameters and not qualitative properties of structure or
topology. One method for determining the fixed topol-
ogy from a population is described in Styner and Gerig
(2001).

We describe shapes at multiple object scale levels to
provide locality and efficiency in statistical analysis. The
relationships between adjacent scale levels and among
intra-scale neighbors make Markov models the natural
choice. In this framework, we learn a series of probability
models, each of which can be effectively characterized
by a reasonably small number of parameters and thus can
be estimated with limited number of training cases.

In what follows, we briefly describe m-reps in
Section 2. Details of the multi-object m-rep models are
presented in Sections 3–5. Section 6 shows an example
of using statistical shape models to segment pubic bones.
We finish with some discussion in Section 7.

2. Multi-Scale Representation with M-reps

The approaches described in this paper may be used
with a variety of object representations, but the prop-
erties of medial representations are helpful for realizing
the approaches. Medial-based representations (Blum and
Nagel, 1978; Siddiqi et al., 2002; Pizer et al., 2003b)
provide a method of explicitly describing geometric de-
formations such as elongation, bending, and widening of
object interiors. To obtain stable medial and boundary
structures, it is important to build them in a multi-scale
fashion, including a voxel scale interior and boundary dis-

placement component. In our framework, called m-reps,
at all but the voxel scale level, an object is described by
a set of continuous medial manifolds, which are sampled
to yield discrete representations. Each sample point is
called a medial atom, which describes a through section
of an object (see Fig. 1(a)), and it is at this locality that the
geometric deformation can be applied. An internal atom
(i.e., one that is not on the mesh boundary) is represented
as a four-tuple A = (p, r, U+1, U−1) consisting of

• a translation p ∈ R3, specifying the position of the
medial point; we can consider this translation in units
of the medial width r (defined below);

• a magnification scalar r ∈ R+, defined as the distance
from the medial point to the implied boundary points
b+1, b−1 (the local width);

• U+1, U−1 ∈ S2 are two unit vectors pointing from the
medial position to the two implied boundary points
b+1, b−1. Equivalently, they are the surface normal vec-
tors at b+1 and b−1;

As such, in m-reps each internal medial atom can be
identified as an element of the eight-dimensional space
G = R3 × R+ × S2 × S2. For atoms on the boundary of
the mesh, there is an extra parameter (with value in R+.
See Pizer et al. (2003b)). For simplicity, in this paper we
assume all atoms are elements of G.

In our current scheme, an m-rep figure is a sheet of me-
dial atoms represented by a quadrilateral mesh of atoms
with spacing determined through the analysis of the train-
ing population (Styner and Gerig, 2001). It describes
a slab-like object or object part. The four-adjacency in
the mesh determines the atom neighbor relationship (see
Fig. 1(b)). A smooth boundary surface of a figure is
generated by an algorithm (we presently use a subdivi-
sion surface method (Thall, 2004)) that approximates the
boundary positions and normals implied by each atom.
An m-rep object corresponds to a geometric object and is
generally represented by a linked figural model: a main
figure describes the main section of an object; various
sub-figures, each of which described by a single medial
sheet, represent different branches, protrusions or inden-
tations. Finally, an object complex is made up of individ-
ual objects. With m-reps, the inter-object, inter-figure,
and inter-atom relations can be effectively described by
appropriate sets of atom transformations, which are in
turn describable by basic transformations such as trans-
lation, scaling, and rotation. Figure 1(b) illustrates an
example of this hierarchy of representations for a pair of
pubic bones.

The m-rep framework allows geometric features at dif-
ferent positions and scale levels to be explicitly described.
Furthermore, the medial structure, which is determined
by a training population, provides a multi-scale intrinsic
coordinate system (Pizer et al., 2003c). This establishes
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Figure 1. M-reps. (a) A medial atom with a cross-section of the boundary surface it implies; (b) The hierarchy made by the two-bone complex.

Each bone is represented by one m-rep figure. Each figure contains 36 atoms (only those in the right bone are shown).
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Figure 2. Hierarchical representation of an object ensemble consisting of single-figure objects.

correspondence among a population and makes m-reps
extremely well suited for statistical analysis of shapes.
The issue of how to choose the spacing of the medial
atoms so that all the members of a population are in op-
timal correspondence is beyond the scope of this paper.
The ideas in Merck et al. (2005) and Davies et al. (2002)
are certainly relevant.

In this paper, we consider object ensembles that con-
tain only single-figure objects. The hierarchy of repre-
sentation of such a geometric entity instance is obtained
by applying a series of deformations to the shape model
(template), illustrated in the diagram in Fig. 2. After the
atom level, there can be a separate boundary displace-
ment level where each medially implied boundary point
moves along its associated surface normal direction to
“fine tune” the representation. We will not discuss this
step in detail here. A Markov random field model for
boundary displacement fields can be found in Lu et al.
(2003).

Notice that in Fig. 2, the number of medial atoms used
at each level of representation does not change. For in-
stance, object 1 is described by the same number of atoms
at the ensemble, object, and atom level. In other words,
this is not a type of multi-grid representation. Instead, the
number of deformations that are applied increases as one
goes from coarse level to fine level. For example, suppose
for i = 1, 2, . . . , M , object i has ni atoms. Then at the
ensemble level, there is one transformation that acts on
all

∑M
i=1 ni atoms; at the object level, there are M differ-

ent deformations; and at the atom level, there are
∑M

i=1 ni

atom deformations. This set of deformations is what we
need to model in order to characterize a shape.

3. Probabilistic Models for Object Ensembles

Let S0 be the shape model for an object ensemble. The
underlying geometric entity, considered as a random
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quantity, is denoted by S. In the examples in this paper,
we assume it can be represented by a an m-rep model
consisting of single-figure objects. Let Ai denote the i-th
medial atom of S, assuming all the atoms are indexed by
an index set I. For any index set J , AJ := {Ai |i ∈ J }.
Therefore, the shape S is just AI . For simplicity, we iden-
tify Ai with A{i} when the index set has only one element,
namely i .

Let A0
I be the shape model. A random sample of the ge-

ometric entity AI can be obtained by applying a random
deformation F to A0

I . We describe this deformation by a
series of, say K , random deformations, F1, F2, . . . , FK .
The representation of AI at the k-th step is

Ak
I = Fk ◦ Fk−1 ◦ · · · ◦ F1

(
A0
I
) = Fk

(
Ak−1
I

)
,

for k = 1, 2, . . . , K .

The sequence A0
I , A1

I , . . . , AK
I are representations of AI

at different scale levels and provide a series of approxi-
mations to AI . Each representation Ak

I corresponds to a
node of the tree in Fig. 2. If step k is an atom deformation
step, Fk actually describes the net effect of a collection
of individual atom deformations.

Our goal is to describe the shape by defining a prob-
ability measure on AI , which is usually considered as
the shape prior. By virtue of our multi-step representa-
tion, we instead seek to define a joint probability distri-
bution Pr(A1

I , A2
I , . . . , AK

I ). The marginal distribution of
the final step, Pr(AK

I ), is an approximation to the “true”
distribution Pr(AI ) (Strictly speaking, these probability
distributions are defined on appropriate spaces of defor-
mations. The mapping Ak−1

I → Ak
I determines Fk .) No-

tice that we may equivalently define the joint distribution
as follows:

Pr
(

A1
I , A2

I , . . . , AK
I
)

= Pr
(

A1
I
) K∏

k=2

Pr
(

Ak
I
∣∣Ak−1

I , . . . , A1
I
)
. (2)

At a first glance, this joint distribution seems to be
more complicated than Pr(AI ) and thus harder to esti-
mate. However, there are several reasons why this alter-
native may be a better approach.

Firstly, because geometric features have intrinsic
scales associated with them, it is advantageous to de-
scribe a shape at multiple scale levels, so that features
with various degrees of locality can be revealed. This also
enables one to investigate and answer intuitive questions
such as “which part of the object tends to vary more”
or “how likely it is for one object to be bigger than a
neighboring object”. In many applications, especially in
medical image analysis, these kinds of questions are very
crucial for users. The series of probability distributions

on the right hand side of Eq. (2) allows one to explicitly
describe features at different scale levels.

Secondly, the multi-step description may be more ef-
fective in certain applications. One such example is the
image segmentation of prostates. Because of the variabil-
ity in prostate geometry and the lack of contrast in image
intensity from 3D CT images, experience of ours and
others suggests that the accuracy of a direct automatic
segmentation has so far been inadequate. To achieve bet-
ter results, we can exploit the geometric relationship be-
tween the prostate and the surrounding organs. For in-
stance, we may build a statistical model for an object
ensemble that contains two pubic bones and the prostate.
The bones have better image contrast and are easier to
segment. Once they are in place, the statistical inter-
object relations between the prostate and the bones can
be used to predict where the prostate should be, giving us
a better chance of locating it. Probabilistically, this multi-
step process is best characterized by a marginal proba-
bility measure of the bones and a conditional probability
measure of the prostate given the bones (ref. Eq. (2)).

Thirdly, to estimate Pr(AI ) directly, we are likely to
run into the HDLSS problem. On the other hand, we
can estimate Pr(A1

I , . . . , AK
I ) by estimating the set of

marginal and conditional distributions given by the right
hand side of Eq. (2). Under certain Markov assumptions
(explained in detail later), each conditional distribution
may be specified by a much smaller number of param-
eters and thus may be estimated more accurately and
efficiently.

In order to use Eq. (2), an explicit order in which differ-
ent objects and scales are described has to be chosen. In
other words, we need to decide how to index the objects in
the ensemble and how different nodes of the tree in Fig. 2
are traversed. Obviously, our estimation of the probabil-
ity distribution would depend on these decisions. In many
situations, such as in the earlier prostate example, the
geometric variability and/or image quality for some ob-
jects (e.g., the bones) are more stable than those of others
(e.g., the prostate). As some previous work has suggested
(Kapur et al., 1998; Davatzikos et al., 2003), since sta-
bility provides efficiency, we choose to describe objects
in the order of decreasing stability, i.e. objects with
less combined variation in geometry and image con-
trast should be described before those with more. In the
prostate example, since we have more confidence in de-
scribing and identifying bones, we may choose to first
describe them all the way through the atom level, then
go to the object level for the prostate—which ends up
in a depth-first order to traverse the tree in Fig. 2. It is
certainly possible that there is more than one sensible or-
der, and comparisons on the effects of choosing different
orders need to be carried out. We will not discuss the de-
tails of these aspects further here. In the rest of this paper,
we assume an appropriate order for the objects has been
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Figure 3. Depth-first representation of an object ensemble consisting of single-figure objects.

chosen, and we describe them in a depth-first manner, as
shown in Fig. 3.

As an example, the two-bone shape model (see
Fig. 1(b)) can be described in the following sequence of
steps: the two-bone ensemble, the right bone (object 1)
object level, the right bone atom level, the left bone (ob-
ject 2) object level, and the left bone atom level. Therefore
in this case, M = 2 and K = 5 (refer to Fig. 3.)

4. Markov Models for Object Ensembles

As we have seen, instances of a geometric entity S = AI
can be regarded as random samples drawn from an under-
lying population, according to certain probability distri-
bution defined on it. This probability can be characterized
by Pr(A0

I , . . . , AK
I ), where A0

I , . . . , AK
I are descriptions

of AI at different levels. The shape model A0
I is supposed

to be fixed, although it needs to be optimized. Thus in
essence we need to define Pr(A1

I , . . . , AK
I
∣∣A0

I ), which
for simplicity we will denote by Pr(A1

I , . . . , AK
I ).

4.1. Description of Inter-Object Relations

The deformation of one object usually has an effect on
other objects in the ensemble. Some of this effect is de-
scribed by the ensemble deformation. We will assume
that the residual deformations are more local, in the sense
that the residual change of one object is only strongly
correlated to changes of portions of some other neigh-
boring objects. Inter-object relations are described via
object-level residues from the ensemble level and neigh-
bor residues. Below we explain how this is done using
m-reps.

We represent inter-object relations by an augmentat-
ion-prediction mechanism that is described in more detail
in Pizer et al. (2005). The basic idea is that for each
object, say object k, we select from other objects a small
subset of the atoms whose residual deformations are most
correlated with those in object k. This group of selected
atoms are called the augmenting atoms for object k. When
describing the deformation on an object, we actually think
of it as a deformation applied on both the object and its
augmenting atoms. The rest of the atoms on other objects
are deformed by a so-called predicted deformation which
is intended to lower the overall shape change of these
objects.

Suppose the shape template A0
I is fixed. For k ≥ 1, let

Fk : Ak−1
I → Ak

I be the k-th step deformation. At the first
step, a global deformation F1 is applied to all the atoms
in A0

I to yield A1
I . At each of the following steps (k ≥ 2),

there is a deformation fk that is either an object-level
deformation or a collection of atom-level deformations
on the atoms of a particular object, say object mk (refer
to Fig. 3), plus its augmenting atoms. Since we describe
objects in sequential order, we can assume the atoms of
object 1 through object mk −1 do not change at this step.
Therefore, the augmenting atoms are in objects mk + 1
through object M . Fk thus has three different types of
effects on Ak−1

I :

– object 1 through object mk − 1 do not deform;
– object mk and its augmenting atoms are deformed by

fk ;
– the rest of the atoms in object mk +1 through object M

deform according to the predicted deformation Predk ,
as a result of fk .
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If we define the index sets for these three sets of atoms
by

Lk :=
mk−1⋃
m=1

Im,

Mk := Imk

⋃
{indices of augmenting atoms},

N k := I \ (
Lk ∪ Mk

)
,

where “\” denotes set difference, then in step k, ALk do
not change, AMk deform according to fk , and AN k deform
according to Predk , which is based on (a) the previous-
step relationship between Ak−1

Mk and Ak−1
N k and (b) the

current-step deformation on the augmenting atoms.
For a concrete example, consider the two-bone exam-

ple. In this case F1 is a deformation on atoms of both
bones. When k = 2, mk = m2 = 1. This is the the
right bone (object 1) object step. We choose a subset
of atoms on the left bone whose residual deformations
are most highly correlated with those of the right bone
atoms. These are the augmenting atoms at step k = 2.
By modeling the correlation between the right bone and
the left bone augmented atoms, we can predict where the
latter should be when the right bone is deformed. The
remaining atoms of the left bone are then deformed by
an appropriate transformation so that the overall shape
change of the left bone is minimized. In other words, the
prediction function (a) reflects the effect of right bone
deformation through the deformations of the augmented
atoms, and (b) propagates this effect to all other atoms
of the left bone in a way such that the overall geometry
(modulo rigid or similarity transforms) of the left bone
has minimal change. The advantage of m-reps for these
purposes is that it provides the inter-relation among atoms
not only in terms of local translations, but also in terms
of local differences in orientation.

In summary, the k-th step deformation Fk : Ak−1
I →

Ak
I is characterized as follows:

F1 : A0
I �→ A1

I , for k = 1,

Fk :

⎧⎪⎨⎪⎩
Ak−1
Lk �→ Ak−1

Lk ,

Ak−1
Mk �→ fk

(
Ak−1
Mk

)
,

Ak−1
N k �→ Predk

(
Ak−1
N k , Ak−1

Mk , fk
(

Ak−1
Mk

))
,

for k ≥ 2.
(3)

Because of the way we define each Fk , the sequence
A1
I , A2

I , . . . , AK
I has the following Markov property:

given the geometry of an object ensemble at all previ-
ous steps, the geometric description at any particular step
only depends on that of the immediate previous step. In
other words,

Pr
(

Ak
I
∣∣Ak−1

I , . . . , A1
I
) = Pr

(
Ak
I
∣∣Ak−1

I
)
, for k ≥ 2,

and therefore

Pr
(

A1
I , A2

I , . . . , AK
I
)

= Pr
(

A1
I
) K∏

k=2

Pr
(

Ak
I
∣∣Ak−1

I , . . . , A1
I
)

= Pr
(

A1
I
) K∏

k=2

Pr
(

Ak
I
∣∣Ak−1

I
)
. (4)

In light of Eq. (4), we will focus on defining Pr(A1
I ) and

Pr(Ak
I
∣∣Ak−1

I ) for k ≥ 2. This set of probabilities describe
(a) the geometric variability of each object at different
scale levels; and (b) the inter-object relations, using aug-
mentation and prediction discussed earlier.

4.2. Residues and Residue Deformations

Our approach is to define Pr(Ak
I
∣∣Ak−1

I ) in terms of the dif-

ference between Ak
I and Ak−1

I . Recall that a medial atom
is an element of the space G = R3 × R+ × S2 × S2. In
fact, the space G is a symmetric space. A more thorough
discussion about symmetric spaces and their properties
can be found in Fletcher and Joshi (2004) and the refer-
ences therein. Given any two medial atoms A1, A2 ∈ G,
their difference can be described by using the following
operator:

� : G × G → G,

(A1, A2) �→
(

x1 − x2,
r1

r2

, Ru2
(u1), Rv2

(v1)
)
,

(5)

where Ai = (xi , ri , ui , vi ), i = 1, 2, and for any
w = (w1, w2, w3) ∈ S2, Rw ∈ SO(3) denotes the
rotation around the axis that passes through (0, 0, 0)
and (w2, −w1, 0), with the rotation angle θ being the
spherical distance between p = (0, 0, 1) and w, i.e.,
θ = arccos(w3). Also, Let R−1

w be the inverse of Rw.
It is easy to see that Rw(w) = p and that Rw maps a
neighborhood of w to a neighborhood of p. R−1

w does
just the opposite.

Let �A = A1 � A2. It is also an element of G and
is called the residue of A1 relative to A2. It is a measure
of the difference between A1 and A2, relative to A2’s
coordinates. When A1 = A2, we get �A = (0, 1, p, p),
which is the identity of G (if we choose p to be the identity
of S2). On the other hand, given an atom A = (x, r, u, v)
and a residue �A = (�x, �r, �u, �v), we can obtain
the atom that has residue �A relative to A using the
operator ⊕ defined as

⊕ : G × G → G,

(A, �A) �→ (
x + �x, r · �r, R−1

u (�u), R−1
v (�v)

)
.

(6)
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Table 1. Multi-step representation of the two-bone shape.

Step Representation Residue Residue deformation

Shape template A0
I R0

I —

Two-bone ensemble A1
I R1

I �A1
I : global deformation of both bones

Right bone object A2
I R2

I �A2
I : right bone object level deformation,

plus prediction of left bone

Right bone atom A3
I R3

I �A3
I : right bone atom level deformation,

plus prediction of left bone

Left bone object A4
I R4

I �A4
I : left bone object level deformation

Left bone atom A5
I R5

I �A5
I : left bone atom level deformation

Notice that this operator is neither commutable nor as-
sociative. The second operand is always understood as a
residue measured relative to the coordinates of the first
operand.

For two sets of corresponding atoms with a common
index setJ , say A1

J and A2
J , the difference between them

is defined to be

A1
J � A2

J := {
A1

j � A2
j : j ∈ J

}
.

In our multi-scale representation, the k-th step repre-
sentation Ak

I is an approximation to the “true” represen-
tation AI . The residue at the k-th step is defined to be

Rk
I := AI � Ak

I , k ≥ 1. (7)

It represents the residual geometric information that
needs to be described at later steps. On the other hand,
the effect of the k-th step deformation Fk is given by the
difference

�Ak
I := Ak

I � Ak−1
I , k ≥ 1. (8)

Therefore, �Ak
I can be regarded as an approximation to

Rk−1
I . We will call Fk (or equivalently, �Ak

I ) the residue
deformation at step k.

In the two-bone shape example, let AI be a random
two-bone shape, and A0

I be the shape template. At each
step k(1 ≤ k ≤ 5), the residue is Rk

I = AI � Ak
I , and

the residue deformation is given by �Ak
I = Ak

I � Ak−1
I .

We emphasize again that each residue deformation is de-
scribed relative to the geometry of the previous step, not
relative to the shape template. For instance, at step 4, the
residue deformation is a further object level deformation
of the left bone after step 3.

In general, the conditional distribution Pr(Ak
I
∣∣Ak−1

I )
describes the residual transformation �Ak

I , which is an
approximation to the residue Rk

I . We can construct the se-
quence A1

I , A2
I , . . . , AK

I in such a way that Pr(Ak
I
∣∣Ak−1

I )

only depends on �Ak
I and not explicitly on Ak−1

I , so
long as we can capture most of the variation among
the population. As a result, the original joint distribu-
tion Pr(A1

I , A2
I , . . . , AK

I ) can be induced by A0
I and the

product

K∏
k=1

Pr
(
�Ak

I
)
. (9)

In stochastic process terminology, we have designed
our approach so that the sequence of representations
A0
I , A1

I , A2
I , . . . , AK

I has “independent increments”. The
multi-step representation of the two-bone shape AI is
summarized in Table 1. In this case, we need to es-
timate A0

I as well as the (independent) probabilities
Pr(�A1

I ), . . . , Pr(�A5
I ).

4.3. Atom Level Residue Deformations

As mentioned earlier, if �Ak
I corresponds to an atom

residue transformation step (e.g., if k = 3 or k = 5
in the previous example), it actually represents a col-
lection of individual atom residue deformations, each of
which characterizes the deformation of an atom given
those of all other atoms and is described by the prob-
ability Pr(�Ak

i

∣∣�Ak
Mk\{i}), where AMk contains (a) the

atoms that are subject to atom residue deformations at
step k, and (b) the augmenting atoms (on neighboring ob-
jects). At this finer scale level, we assume that the direct
long range dependency among AMk have already been
described at the (larger) object level, so that the atom
residue deformations can be described by the following
Markov random field (MRF) model:

Pr
(
�Ak

i

∣∣�Ak
Mk\{i}

) = Pr
(
�Ak

i

∣∣�Ak
N (i)

)
, i ∈ Mk,

(10)

where N (i) denotes the index set of the atoms that are
neighbors of atom i and is relatively small. Because
the medial sheet is sampled by a quadrilateral array of
atoms, we use the neighborhood structure induced by the
4-adjacency graph of the quad-mesh (see Fig. 5.)

We can define these MRF models by specifying poten-
tials on the cliques in the 4-adjacency graph and estimat-
ing parameters using standard MRF techniques such as
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Figure 4. Multi-step representation of the two-bone shape. The deformation at each stage is applied to highlighted atoms. (a) The template. (b) The

ensemble stage deformation is applied to all atoms. (c) The right bone deformation is applied to atoms on the right bone and the augmenting atoms

on the left bone (highlighted). The rest of the atoms on the left bone are deformed by the prediction function. (d) The left bone deformation is applied

to all atoms on the left bone. The right bone does not change.

i

i i

Figure 5. The 4-neighbor structure for quad-mesh. A typical atom i has 4 neighbors (shaded), whereas an atom on an edge or at a corner has fewer

neighbors.

Monte Carlo Markov Chain (MCMC) methods. An ex-
ample of this approach can be found in Lu et al. (2003).
In many situations, this type of models still yield a large
number of parameters that need to be estimated simul-
taneously. An alternative approach is to select an order
in which we go through the atoms one by one and de-
compose the joint distribution Pr(�AMk ) into a prod-
uct of marginal and conditional distributions, similar to
Eq. (2). However, the quadrilateral structure of the atom
mesh does not provide a natural traversing order, mak-
ing this method somewhat ad hoc and hard to analyze.
A third method, which we adopt here, is to estimate
the conditional distributions Pr(�Ak

i

∣∣�Ak
N (i)) directly. To

deal with the low sample size problem, we assume that
the conditional probability distribution Pr(�Ak

i

∣∣�Ak
N (i))

does not explicitly depend on �Ak
N (i), but rather is in-

duced by a probability distribution on the difference
�Ak

i � �Ak
i,p, where for each i , the term �Ak

i,p rep-
resents a residue deformations of atom i that is predicted
by the deformations of its neighbors and is calculated as
a weighted average of �Ak

N (i). The problem then is to
estimate the probabilities

Pr
(
�Ak

i � �Ak
i,p

)
, i ∈ Mk . (11)

From (9) and (11), we see that the probability distribu-
tion of the object ensemble is induced from a product of
inter-scale and intra-scale residue distributions, each of
which can be estimated separately. In the next section we

discuss how to learn these distributions from a training
set.

5. Estimation of the Probabilistic Model

Suppose the training set {A1,I , A2,I , . . . , AN ,I} contains
N instances of the random object ensemble AI . Let
T = {1, 2, . . . , N }. We use An,I to denote an instance.
The first subscript n denotes the index in the training set,
i.e., n ∈ T , and the second one denotes the index for me-
dial atoms as before. Therefore, the whole training set can
be denoted by AT ,I . We assume that the m-rep represen-
tation provides correspondence atom-to-atom among the
training set. In particular, the corresponding atoms across
the population have the same index in I. As before, we
assume that the object ensemble has K single-figure ob-
jects, and that we use the depth-first order to traverse the
objects as shown in Fig. 3.

5.1. M-rep Alignment and Principal Geodesic
Analysis (PGA)

The first step in training is to align the shape instances.
We do this by an m-rep alignment procedure that is sim-
ilar to Procrustes analysis (Goodall, 1991). In the stan-
dard Procrustes analysis, a rigid or similarity transfor-
mation is applied to each instance so that the total sum-
of-squared Euclidean distances between corresponding
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(a) PCA (b) PGA

Figure 6. Comparison of PCA in linear spaces and PGA in curved spaces. Each small dot represents a sample point. The big dot indicates the

Fréchet mean. The thick lines/curves represent principal components/geodesics. Both surfaces represent n-dimensional spaces.

points is minimized. In contrast, in the m-rep alignment,
described in Fletcher et al. (2004), the sum-of-squared
geodesic distances between corresponding medial atoms
is minimized. In what follows we assume the shape in-
stances are aligned.

The probabilities Pr(�A1
I ), . . . , Pr(�AK

I ) are de-
fined on m-rep parameter spaces, which are nonlinear
Riemannian symmetric spaces. In these spaces, one can
define the so-called exponential map, Expx , and log map,
Logx , which establish correspondence between tangent
vectors and geodesics at any given point x (Fletcher et al.,
2003). Based on the properties of these maps, Fletcher
et al. have developed a method called principal geodesic
analysis (PGA), which is a generalization of principal
component analysis to nonlinear Lie groups and sym-
metric spaces. The details are laid out in Fletcher et al.
(2004, 2003). Here we briefly summarize the basic ideas.

Suppose M is a symmetric space or Lie group. Given a
set of samples x1, . . . , xN ∈ M , we want to estimate the
underlying probability distribution from which they are
drawn. The PGA of {xi }N

i=1 essentially involves finding
the mean μ of {xi }N

i=1, projecting {xi }N
i=1 to TμM (the tan-

gent space at μ) by the log map, and doing a standard prin-
cipal component analysis (PCA) in that tangent space,
which yields a set of principal directions {vk} and cor-
responding eigenvalues {λk}. The “principal geodesics”
are determined by applying the exponential map to the
principal components obtained from PCA. Analogous to
principal components, the principal geodesics describe
the major modes of variation among {xi }N

i=1 in the curved
space M (see Fig. 6).

The space M can be approximated by a submanifold
H ⊂ M that is generated by the first, say h, principal
geodesics. Elements in H can be represented as

Expμ

( h∑
k=1

αkvk

)
, (12)

where αk ∈ R. ∀x ∈ M , the projection of x onto H is

πH (x) = arg min
y∈H

dist2(x, y)

≈ Expμ

( h∑
k=1

〈Logμ(x), vk〉 · vk

)
,

where 〈·, ·〉 denotes inner product in TμM .
The density

1

Z
exp

(
− 1

2

h∑
k=1

〈vk, y〉2

λk

)
, y ∈ N (μ) ⊂ TμM,

(13)

where Z is a normalizing constant and N (μ) is a neigh-
borhood of μ in the tangent plane, defines a probability
distribution on N (μ). It induces a probability distribution
on M by the exponential map Expμ. This induced distri-
bution is an approximation to the probability distribution
on M from which {xi }N

i=1 are drawn.
In what follows we describe the process for estimat-

ing Pr(�A1
I ), . . . , Pr(�AK

I ). The two-bone shape will be
used as an example. The ensemble has a total of 72 medial
atoms, with 36 atoms on each bone.

5.2. Estimation of the Shape Model

The shape model A0
I is set to be the centroid of the train-

ing population AT ,I . This is obtained by computing the
Fréchet mean of each atom. In other words,

A0
I = mean

T
(AT ,I ) =

{
mean

T
(AT , i ) : i ∈ I

}
. (14)
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The Fréchet mean of the set of atoms AT , i is defined to
be an atom A0

i that satisfies

A0
i = arg min

A∈G

∑
n∈T

dist2(A, An, i ),

where dist(·, ·) is the geodesic distance on G, the atom pa-
rameter space. The Fréchet mean can be computed using
a gradient descent method. For details refer to Fletcher
et al. (2003, 2004).

The residues at this step are the differences between
the instances and the model, i.e.,

R0
n,I := An,I � A0

I , n ∈ T .

5.3. Object Ensemble Residue Statistics

The ensemble deformation �A1
I is an approximation to

R0
n,I . We estimate Pr(�A1

I ) by doing a principal geodesic

analysis (PGA) on R0
T ,I . In the two-bone example, this

amounts to a PGA of a population of tuples consisting of
72 atoms, or equivalently, a 576-dimensional PGA since
each atom has 8 parameters.

Let H be the m-rep parameter space (in fact, if there
are a total of d medial atoms in the object ensemble, then
H = Gd . Recall that G = R3 ×R+ × S2 × S2.) Pr(�A1

I )
is approximated by the first h1 principal geodesics, which
generate a sub-manifold H 1 ⊂ H . The ensemble defor-
mation for each instance is described by the projection
of R0

T ,I onto H 1, i.e.,

�A1
n,I := ProjH 1

(
R0

n,I

)
, n ∈ T .

The representations and residues at this step are

A1
n,I := A0

I ⊕ �A1
n,I ,

R1
n,I := An,I � A1

n,I ,
n ∈ T ,

where ⊕ is defined by Eq. (6). The above procedure is
described by Algorithm 1.

Input: AT ,I , A0
I

Output: P 1 =estimates of Pr ΔA1
J , as well as A1

T ,J
R0

T ,J ← AT ,J A0
I

P 1 ← PGA results on R0
T ,I (principal geodesics and eigenvalues)

H1 ← sub-manifold generated by a chosen number of principal geodesics of R0
T ,I

ΔA1
T ,I ← ProjH1 R0

T ,I , A1
T ,I ← A0

I ⊕ ΔA1
T ,I

Output P 1, A1
T ,I

Algorithm 1. Object ensemble statistics.

As with PCA, we need to decide the value for h1, which
is the number of principal geodesics to use for approxi-
mation. While too few geodesics might not be adequate,
too many may be unstable due to the small sample size.
In principle, we want to choose the smallest value such
that the residues possess certain Markov properties at the
(next) object level. In practice, this is not always easy to
verify, and we use some heuristics to determine h1. For
example, we can choose h1 to be the smallest number
such that (a) the percentage of variance explained by the
first h1 principal geodesics is above a certain threshold,
and/or (b) the inter-object correlations among residues
are below a certain threshold.

5.4. Object Residue Statistics for Object 1

First, suppose object 1’s residue deformation does not
have an effect on neighboring objects. Let the index set
for the atoms in object 1 be I1. Then at this step, the
probability Pr(�A2

I ) actually describes the object residue
deformation �A2

I1
. We estimate this probability by per-

forming a PGA on R1
T ,I1

and using the first h2 principal
geodesics to approximate it. The procedure is similar to
Algorithm 1 and is summarized in Algorithm 2. For the
two-bone case, this corresponds to a 36 ∗ 8 = 288 di-
mensional PGA on the right bone.

To capture the effect of object 1’s deformation on other
objects, we need to update all other objects so that the
inter-object relationship is reflected. This is achieved with
an augmentation-prediction mechanism. We use the two-
bone shape to illustrate how it works. In this case object 1
is the right bone, and object 2 is the left bone. The index
set for the atoms of these objects are I1, I2, respectively.
We pick a subset of object 2 (left bone)’s atoms that are
most highly correlated with the atoms in object 1 (right
bone); these typically correspond to the section of object
2 that is closest to object 1 (see Fig. 4). Let U2 be the
index set for the augmenting atoms and M2 denote the
union of I1 and U2. We can then perform an augmented
PGA analysis on R1

T ,M2 instead of R1
T ,I1

, using Algo-

rithm 2 with J = M2. In the two-bone example, if there
are 5 augmented atoms on the left bone, then this leads
to a (36 + 5) · 8 = 328 dimensional PGA.
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Input: AT ,J , Ak−1
T ,J , where J is the index set for the atoms in the object

Output: P k = estimates of Pr ΔAk
J , as well as Ak

T ,J
Rk−1

T ,J ← AT ,J Ak−1
T ,J

P k ← PGA results on Rk−1
T ,J (Fréchet mean μk

J , principal geodesics and eigenvalues)
Hk ← sub-manifold generated by the principal geodesics of Rk−1

T ,J μk
J

ΔAk
T ,J ← ProjHk Rk−1

T ,J , Ak
T ,J ← Ak−1

T ,J ⊕ μk
J ⊕ ΔAk

T ,J
Output P k , Ak

T ,J

Algorithm 2. Object residue statistics for a single-figure object at step k.

The deformation of the augmenting atoms �A2′
U2 :

A1
U2 → A2′

U2 also predict how the rest of the atoms on
object 2 will deform. Our approach is as follows. We find
that member of the principal geodesic shape space of
the remaining objects that agrees best on the augmenting
atoms, and we remove that member from the remain-
ing objects’ atoms. In detail, first, we perform a PGA on
R1
T ,I2

, the residue of object 2, and denote the mean and

PGA submanifold by ρ2 and H2, respectively. The pre-
dicted residual deformation of object 2 is then defined to
be

Pred2

(
�A2

I2
; �A2′

U2

)
= ProjH2

(
�A2′

U2

) = expρ2

( h∑
j=1

〈
Logρ2

(
�A2′

U2

)
, v j

〉 · v j

)
,

(15)

where {v j }h
j=1 are principal directions in the tangent space

of ρ2 corresponding to the principal geodesics in H2 and
the dimension of Logρ2 (�A2′

U2 ) is adjusted to match with

that of v j by adding zeros to Logρ2 (�A2′
U2 ) for parameters

corresponding to AI2\U2 .
It is straightforward to adapt these procedures to situ-

ations where the object ensemble has more than two ob-
jects. The net effect of these predictions is summarized
by a prediction function Pred2()1, which is determined
using statistics from a training set. The general algorithm
is described in Alorithm 3.

Input: AT ,J , Ak−1
T ,J , Ak

T ,U , where J is the index set for atoms in objects that need to be predicted and
U ⊂ J is the index set for augmenting atoms at step k

Output: Ak
T ,J = predicted objects

Rk−1
T ,J ← AT ,J Ak−1

T ,J
Pk ← PGA results on Rk−1

T ,J (Fréchet mean ρkJ , principal geodesics and eigenvalues)
Hk ← sub-manifold generated by the principal geodesics of Rk−1

T ,J ρkJ
Ak

T ,J ← Ak−1
T ,J ⊕ ρkJ ⊕ ProjHk ΔAk

T ,U
Output Pk, Ak

T ,J

Algorithm 3. Statistical prediction at step k.

In the two-bone example, after the object 1 (right bone)
deformation step the we have

A2
T ,I1

= A1
T ,I1

⊕ μ2
I1

⊕ ProjH 2

(
R1
T ,I1

)
,

A2
T ,I2

= A1
T ,I2

⊕ ρ2
I2

⊕ ProjH2

(
�A2′

T ,U2

)
, (16)

R2
T ,I = AT ,I � A2

T ,I .

5.5. Atom Residue Statistics for Object 1

The probabilities to be estimated at this step are Pr(�A3
i �

�A3
i,p), i ∈ J 3,1. Recall that �A3

i,p is the residue defor-
mation of atom i that is predicted by those of its neigh-
bors. For each i , we estimate Pr(�A3

i ��A3
i,p) by doing a

PGA on R2
T ,i � R2

T , i,p, where R2
T , i,p denotes the residue

of atom i that is predicted by those of its neighbors. Let
H 3

i be the submanifold generated by a chosen number of
stable principal geodesics. Then

A3
T ,i = A2

T ,i ⊕ R2
T , i,p ⊕ μ3

i ⊕ ProjH 3
i

(
R2
T ,i � R2

T , i,p

)
.

(17)

This process is summarized in Algorithm 4 (withJ being
the augmented set). For the two-bone model, this step
corresponds to estimating atom residue deformations for
the 36 atoms on the right bone and 5 augmenting atoms on
the left bone. Each estimation involves an 8-dimensional
PGA.
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Input: AT ,J ,Ak−1
T ,J , where J is the index set for the atoms in the current object

Output: P k = estimates of Pr ΔAk
i ΔAk

i,p
i∈I

, as well as Ak
T ,J

Rk−1
T ,J ← AT ,J Ak−1

T ,J , Rk−1
T ,J ,p ← AT ,J ,p Ak−1

T ,J ,p

for all i ∈ J do
P k
i ← PGA results on Rk−1

T ,i Rk−1
T , i,p (mean μk

i , principal geodesics and eigenvalues)
Hk

i ← sub-manifold generated by the first few principal geodesics
Ak

T ,i ← Ak−1
T ,i ⊕Rk−1

T , i,p ⊕ μk
i ⊕ ProjHk

i
Rk−1

T ↪i Rk−1
T , i,p

end for
Output P k := {P k

i }i∈J ,Ak
T ,J

Algorithm 4. Atom residue statistics for a single-figure object at step k.

The atom residue deformations for object 1 will have
an effect on other objects. This can be described by the
augmentation-prediction scheme similar to the one de-
scribed in the previous step. For the two-bone example
we have

A3
T ,i = A2

T ,i ⊕ R2
T , i,p ⊕ μ3

i ⊕ ProjH 3
i

(
R2
T ,i � R2

T , i,p

)
,

i ∈ I1

A3
T ,I2

= A2
T ,I2

⊕ ρ3
I2

⊕ ProjH3

(
�A2′

T ,U3

)
= A2

T ,I2
⊕ ρ3

I2
⊕ Pred3

(
�A3

I2
; �A3′

U3

)
(18)

R3
T ,I = AT ,I � A3

T ,I

5.6. Object and Atom Residue Statistics for Other
Objects

Suppose we describe object 2 next. Let I2 be the index set
for its atoms. The object residue statistics can be obtained
using Algorithm 2, with k = 4 and J = I2 ∪ U4, where
U4 is the index set for augmenting atoms. The difference
is that in this step, there is no deformation on object 1.
Therefore

A4
T ,I1

= A3
T ,I1

A4
T ,I2

= results from Algorithm 2

(with k = 4 and J = I2 ∪ U4) (19)

A4
T ,I ′ = results from Algorithm 3

(with k = 4 and J = I ′ = I \ (I1 ∪ I2))

R4
T ,I = AT ,I � A4

T ,I .

For the two-bone example, the left bone object residue
deformation is estimated by a 36 ∗ 8 = 288 dimen-
sional PGA. Since there are only two objects, there is
no augmentation-prediction at this step (U4 and I ′ are
empty).

The atom residue statistics for object 2 is computed
by Algorithm 4, with k = 5 and J = I2 ∪ U5. The
prediction works the same way as in the previous step.

Therefore,

A5
T ,I1

= A4
T ,I1

A5
T ,i = A4

T ,i ⊕ R4
T , i,p ⊕ μ5

i � ProjH 5
i

(
R4
T ,i � R4

T , i,p

)
,

i ∈ I2

A5
T ,I ′ = A4

T ,I ′ ⊕ ρ5
I ′ ⊕ ProjH5

(
�A4′

T ,U5

)
,

where I ′ = I \ (I1 ∪ I2)

R5
T ,I = AT ,I � A5

T ,I . (20)

Again, in the two-bone case, the left bone atom
residue deformations are described by 36 individual 8-
dimensional PGA’s. There is no augmentation-prediction
at this step (U5 and I ′ are empty).

If there are more than two objects in the object com-
plex, we can perform the same procedures and go through
each of them one by one to generate the statistics we need.

5.7. Summary

The entire estimation process is summarized in the Al-
gorithm 5.

5.8. Examples of Multi-Object Statistics

We now present some statistics of a pair of pubic bones
using the training procedure just described. The training
population has 15 shape instances from different patients.
For this illustration, we omit the atom residue stages and
describe each instance at the ensemble, right bone object,
and left bone object stages. Each bone is represented by
36 medial atoms on a 3 × 12 grid. The results are shown
in Fig. 7.

At each stage, the base shape is the shape obtained by
applying the mean residue at this stage to the shape tem-
plate. In other words, the base shape at step k is A0

I ⊕μk .
The principal modes are shown relative to the correspond-
ing base shape. These modes typically have intuitive in-
terpretations. For instance, Fig. 7(b) shows the first three
PGA modes for the ensemble residues. The first mode
is mainly a size variation; the second mode reflects a
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Input: A training set AT ,I , where I is the index set for all atoms in the object ensemble, and T is the
index set for the training samples

Output: estimates of mean A0
I and Pr ΔAk

J , k = 1,. . . ,K
Determine an order to traverse the objects (see Fig. 3). K ← number of steps
A0

I ← mean(AT ,I)
{P 1,A1

T ,I} ←Algorithm 1
for k = 2 to K do
Mk ← index set for atoms in the current object and its augmenting atoms
N k ← index set for atoms in the rest of the objects that have not been visited
if step k is an object residue step then

{P k,Ak
T ,Mk } ←Algorithm 2

else {step k is an atom residue step}
{P k,Ak

T ,Mk } ←Algorithm 4
end if
{Pk,Ak

T ,N k } ←Algorithm 3
end for
Output A0

I and {P k : k = 1, . . . ,K}

Algorithm 5. Statistical training for multi-object ensemble.

(a) Template and training samples (b) Ensemble residue statistics

(c) Right bone object residue statistics (d) Left bone object residue statistics

Figure 7. Statistics of the two-bone ensemble. (a) Some training samples (right) and the estimated shape template (left). (b)–(d) The first three

PGA modes of variation for the different stages. In each picture, from top to bottom: the first, second, and the third mode. From left to right, PGA

deformations corresponding to −2, −1, +1, and +2 standard deviations.

simultaneous bending of the two bones; and the third
mode corresponds to a twisting of the lower part of the
two bones. In Fig. 7(c), the residual deformation of the
right bone takes place mostly at both ends, especially at
the one that is closer to the left bone. In contrary, the
left bone deformation mostly happens at the end that is
further from the right bone. This is to be expected be-
cause the deformation at the other end has been mostly
described in the previous stage through the augmenting
atoms.

In the second example, we show statistics for a bladder-
prostate-rectum complex across different days within a
particular patient. The medial atom grids used to fit the

organs are: 4 × 6 for the bladder, 3 × 4 for the prostate,
and 3 × 7 for the rectum, and we described the objects in
the above order. The training set consists of 12 cases of
one patient at different days. Figure 8 shows the ensemble
statistics of the complex (a) and the residue statistics for
each object (b–d).

The statistics can be used to generate random samples
of the shape. We assume each principal mode follows the
standard Gaussian distribution after we scale each prin-
cipal direction by the square root of the corresponding
eigenvalue in the tangent space. Although this is not ex-
actly true, it is a reasonable approximation which gives
us a way of quickly generating samples (refer to Section
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(a) Ensemble statistics (b) Bladder residue statistics

(c) Prostate residue statistics (d) Rectum residue statistics

Figure 8. Statistics of the bladder-rectum-prostate complex. (a)–(d) The first three PGA modes of variation for the different stages. In each picture,

from top to bottom: the first, second, and the third mode. From left to right, PGA deformations corresponding to −2, −1, +1, and +2 standard

deviations.

5.1). Thus, random shape samples can be obtained by
starting from the template and successively going through
each stage as follows: at step k, generate multivariate nor-
mal samples on the tangent space about the correspond-
ing mean μk , take the exponential map to produce m-reps
residues, and concatenate them to the previous-step m-
reps using the ⊕ operation. Figure 9 shows a few samples
for the two-bone shape. We have found that when we stay
within [−2, +2] standard deviations most of the samples
preserve topology, do not have geometric singularities
and have very little inter-penetration among objects. In
other words, with high likelihood the samples are geo-
metrically proper (Pizer et al., 2005). Some quantitative
evidence of this can be found in Pizer et al. (2006).

6. Segmentation Using the Multi-Object Statistics

The above framework can be use in image segmentation,
where we seek an m-rep model that best fits a given im-
age I . In the Bayesian framework, this can be done by

maximizing the log-posterior

log p(A|I ) ∝ log p(I |A) + log p(A).

The prior distribution p(A) is given by Eq. (9), and we
use PGA statistics {Pk : k = 1, . . . , K } generated by
the training process to approximate this prior. Here we as-
sume a likelihood distribution p(I |A) is available. For de-
tails on estimating this probability refer to Ho and Gerig
(2004) and Stough et al. (2004).

To segment an image, we first apply a similarity trans-
formation on A0

I so that it roughly fits the image. Then we
go through the object complex in the same order as when
we obtained the statistics. At the object ensemble step,
the ensemble geometry is deformed simultaneously by
an overall similarity transformation and a transformation
in the ensemble principal geodesic space H 1. At each
subsequent step, we deform a particular object either at
the object level or at the atom level, using the appropri-
ate PGA statistics as prior, until all objects have been
deformed.
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Figure 9. Random samples of the two-bone shape.

(a) ensemble stage (b) right bone stage (c) left bone stage

Figure 10. Segmentation of the two-bone shape.

Since each atom residue step is described by a set of
conditional distributions{

Pr
(
�Ak

i

∣∣�Ak
N (i)

)} ∼ {
Pr

(
�Ak

i � �Ak
i,p

)}
,

the optimization process at this step uses an Iterative Con-
ditional Modes (ICM) algorithm (Besag, 1986).

Figure 10 shows an example of segmenting a two-bone
shape from a CT image. Although this is a relatively sim-
ple application, it does illustrate how the method works
and provides us with a basic test case. Our methodol-
ogy has also been applied to some other more challeng-
ing problems, in particular segmentation of male pelvis,
and have produced promising results (Pizer et al., 2005;
Chaney et al., 2004).

7. Discussion

We illustrated a new method of describing shapes that
consist of multiple geometric objects. Based on our m-
reps representation, the geometric features of various
scales and inter-object relationships are characterized by
a multi-scale probabilistic model, which is in turn charac-
terized by a series of probability distributions on residues.
This method has the advantage of being able to provide
accurate, intuitive geometric information and efficiency
in statistical training. The shape model can be effec-
tively used in a variety of image analysis applications,
such as segmentation, shape discrimination, and atlas
building.

As we have mentioned, the method described in the
previous sections depends on the order we choose to tra-
verse the multi-object complex. Now we briefly describe
an alternative that does not specifically requires a pre-
determined order.

To explain, let us consider how we might use the
probability model for segmentation. The idea is to max-
imize the joint posterior distribution of all objects,
Pr(O1, O2, . . . , OM |I ). In the method described earlier,
we break this distribution into a product of distributions
(see Eq. (4)). An alternative approach is to use the it-
erative conditional mode (ICM) method (Besag, 1986),
where one iteratively maximizes the conditional distribu-
tions Pr(Oi |{O j �=i }). It has been shown that under suitable
conditions, the solution to this approach provides a good
approximation to the maximizer of the original joint dis-
tribution. A method based on such iteration and methods
of augmentation and prediction is described in Jeong et al.
(2006).

Therefore, we can focus on learning the conditional
distributions Pr(Oi |{O j �=i }), which can be described by
the difference between the actual deformation of object i
and the predicted deformation of it based on those of its
neighbors. Clearly, this approach does not depend on the
order in which we choose to traverse the objects.

The basic assumptions in our methodology are that ge-
ometric entities can be described by a series of successive
residual deformations from a common template and that
these residual deformations can be treated as condition-
ally independent. Ultimately, the questions of in which
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order we describe objects and how many PGA modes
to use at each step come down to whether our choices
make those assumptions valid. Depending on the situa-
tion, it may make sense to have schemes that have only
global deformations or only local deformations, or have
schemes going back and forth between scale levels.

The ideas of residual deformation and prediction can
also be applied to objects made up of multiple m-reps
figures, in which case the hinge atoms on the subfigures
are the natural choices for augmenting atoms. For details
refer to Han et al. (2004).

The methods described in this paper are applicable to
any shape representation of objects (Pizer et al., 2005).
In particular, boundary-based representations and atlas
diffeomorphism representations can be used. However,
the primitives of these representations typically directly
describe position or displacements only, and thus inter-
scale residues describe displacements only. Probability
distributions on the primitives or their residues can ac-
cess local orientational and size relations indirectly but
not directly. It remains to be determined if the benefits of
m-reps that they do access such relations directly provide
more stable estimation of the probability distributions de-
scribed in this paper, given the limited number of training
samples that are frequently available.

Our tests have suggested that the statistical shape
models learned from training sets produce visually valid
samples. However, we need more rigorous ways of evalu-
ating these probability models and comparing them with
other shape models. This is still work in progress. Other
questions that require further investigation include the
following: method for determining augmenting atoms,
prediction algorithms, and object-based image match
models.
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Notes

1 The subscript 2 here corresponds to the step number, not the object

index.
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