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Abstract
This paper presents a new method for the automatic segmentation and characterization of object
changes in time series of three-dimensional data sets. The technique was inspired by procedures
developed for analysis of functional MRI data sets. After precise registration of serial volume
data sets to 4-D data, we applied a time series analysis taking into account the characteristic
time function of variable lesions. The images were preprocessed with a correction of image
field inhomogeneities and a normalization of the brightness over the whole time series. Thus,
static regions remain unchanged over time, whereas changes in tissue characteristics produce
typical intensity variations in the voxel’s time series. A set of features was derived from the time
series, expressing probabilities for membership to the sought structures. These multiple sources
of uncertain evidence were combined to a single evidence value using Dempster Shafer’s theory.
The project was driven by the objective of improving the segmentation and characterization of
white matter lesions in serial MR data of multiple sclerosis patients. Pharmaceutical research
and patient follow-up requires efficient and robust methods with high degree of automation. The
new approach replaces conventional segmentation of series of 3-D data sets by a 1-D processing
of the temporal change at each voxel in the 4-D image data set. The new method has been applied
to a total of 11 time series from different patient studies, covering time resolutions of 12 and 24
data sets over a period of about one year. The results demonstrate that time evolution is a highly
sensitive feature for detection of fluctuating structures.
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1. INTRODUCTION

Serial magnetic resonance imaging of patients has become
increasingly attractive due to the non-invasive image acqui-
sition, the shorter scanning and therefore decreased patient
time, and the high spatial and tissue resolution. Time series
scans reveal information about significant changes in diseased
anatomical regions, about the effects of a drug or radiotherapy
treatment, or about subtle morphological changes caused by
neurological disease. The temporal sampling provides infor-
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mation about both morphological and functional changes.

A typical analysis of this type, which is routinely applied,
is the analysis of functional MRI (fMRI) data sets. A patient
is stimulated with a visual, auditory or motor activity for a
specific time period. Brightness changes due to local changes
in the oxygenation state of blood are expected to show a
similar time pattern and can be detected by a correlation of
the stimulus with each pixel over time. Here, the signal
processing aims at finding the best discrimination between
noisy steady-state signals and signals correlated with the
stimulus (Bandettiniet al., 1993). The processing most often
assumes that a patient does not move during the examination,
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although slight object motion due to breathing, pulsation of
the heart or swallowing is unavoidable. It has been shown that
a sub-voxel correction of 3-D motion (Hillet al., 1995) can
considerably improve the voxel-based time-series analysis.

Pharmacological studies and patient follow-up and mon-
itoring differ from fMRI because time frequency is not in
the range of seconds, but can be days, months or even years.
The study of a tumor change in relation to chemotherapy or
radiotherapy, for example, typically requires time intervals
of weeks to months. In schizophrenia, temporal changes are
studied by imaging a patient with yearly scans.

The development of a new segmentation technique is
driven by the motivation of getting a better understanding
of the disease process in multiple sclerosis (MS). Research
in MS has already demonstrated the power of using serial
imaging (Guttmanet al., 1995). Drug development for
multiple sclerosis uses serial MRI as one of several diagnostic
features to study temporal changes of white matter lesions in
the central nervous system. A series of patients is divided into
two groups getting either placebo or the new drug. Patients
are scanned in intervals of 1, 2, or 4 weeks over a period
of about one year. The significance of tests is increased
by multi-center studies, collecting image data from various
hospitals by using a standardized MR protocol. Image data
are examined by radiologists, evaluating each scan in relation
to the previous one to identify any new lesions. Quantitative
analyses of total lesion load and of single lesions are per-
formed by using interactive user-operated segmentation tools.
A typical study may consist of a thousand 3-D data sets. The
manual outlining of lesions in a large number of series of 2-D
slices is not only time consuming but also tedious and error
prone. Errors for the segmentation of small structures are
often in the range of the volume of the observed structures.

Automated image-segmentation systems have been pro-
posed by several groups (Kikiniset al., 1992, Evanset al.,
1996, Zijdenboset al., 1996, Kamberet al., 1995). These
systems consist of well-designed sequences of processing
steps, including preprocessing, bias-field correction, feature-
space clustering of multi-echo MRI data (Geriget al., 1992),
and matching of a statistical anatomical atlas (Warfieldet
al., 1996, Johnstonet al., 1996) to solve the ambiguities of
statistical classification. The result is a significantly improved
reproducibility with reduced inter- and intra-rater variabilities
allowing efficient processing of a large amount of data.

Previous segmentation methods mostly intend to segment
lesions from single data sets, not taking into account the
significance of correlation over time. In radiological exam-
ination on the light-box, however, experts use previous scans
of patients to decide about significant changes. An early
attempt to consider the correlation over time was presented
by (Metcalfet al., 1992, Kikiniset al., 1993) by proposing a

4-D connected component labeling on registered segmented
images. The procedure serves as a filter applied after individ-
ually segmenting the data sets, removing insignificant lesion
candidates (which appear only at one time point) or elimi-
nating 4-D lesion patterns with volume below a predefined
threshold. The main aim was to improve lesion segmentation
although the 4-D connectivity additionally could give access
to time domain information.

So far, temporal changes in signal intensity patterns of
multiple sclerosis lesions have not been used to improve and
simplify the processing of time series. (Guttmanet al., 1995)
presented a seminal paper on characterizing the evolution of
lesions in serial MR data, suggesting the use of this valuable
information for image processing. The present paperexplores
the time domain informationinherently provided by serial
MR data sets. The major question in research into disease
mechanisms or drug studies is most often not a segmentation
of static tissue or static lesions but of temporal changes. We
claim that dynamic changes in lesion voxels can be detected
by analyzing the time series of each voxel, assuming perfectly
registered and normalized data sets. Although the ultimate
goal is a spatio-temporal analysis of the 4-D data sets, this
paper only focuses on evaluating the discrimination power of
time.

Besides exploring time as a new feature for segmentation,
we are working toward extracting a rich set of morphometric
parameters. These include temporal information to analyze
the time course of the disease, to understand time correlations
of lesion groups and lesion patterns, to determine the lesion
load versus time, and finally to combine the results with
anatomic atlas information to describe major spatial cate-
gories (periventricular, deep white matter, cortical) of lesions.
Scientific visualisation of dynamic changes will be important
to visually assess the disease course of individual patients.

The paper is organized as follows. Section two briefly de-
scribes the preprocessing including bias correction and image
brightness normalization, and the combination of serial 3-D
to 4-D data sets. The new time series analysis is explained
in section three. Section four presents results obtained with
data sets from different pharmaceutical studies. Details about
the combination of multiple uncertain evidence sources are
explained in the appendix.

2. COMBINATION OF SERIAL 3-D DATA TO 4-D
DATA

Individual magnetic resonance volume data sets acquired in
weekly to monthly time intervals can be combined to 4-D
(x,y,z; t) data sets that allow the application of time-series
analysis of single voxels.



Time series analysis of registered MR datasets 3

Registration: The serial data sets obtained from Brigham
and Women’s Hospital in Boston (cf. section 4.1) have
been registered by the INRIA research group using crest-
line extraction and matching (Thirion, 1996). A second
serial data set presented in this paper is processed by the
KUL research group using the MIRIT registration software
package (Maeset al., 1997), which maximizes the mutual
information between corresponding voxel intensities. Both
registration methods perform a rigid transformation and work
fully automatically after appropriate initialization. The trans-
formation matrices are input to a geometric transformation
which performs trilinear interpolation. The first 3-D image
of each time series is declared as the reference image and all
the other volumetric images are rigidly registered into this
coordinate system.

Image brightness normalization and bias correction:
Corruption of the image brightness values by a low-frequency
bias field often occurs in MR imaging and impedes visual
inspection and intensity-based segmentation. A mathematical
model for bias correction using parametric bias field estima-
tion was proposed in (Brechbühleret al., 1996). We assume
the original scene to be composed of tissue regions with ho-
mogeneous brightness only degraded by noise. Estimation of
the parametric bias field is formulated as a non-linear energy
minimization problem. Input parameters are the statistics
(mean, standard deviation) of expected categories. Using the
same set of input parameters for each data set from a series of
volume images results in a combination of bias correction and
brightness normalization. The marked artifactual changes in
brightness on alternate slices in one of the data sets required a
two step procedure by first correcting for brightness changes
between individual slices as a 2-D processing and second
for the 3-D bias field (Styneret al., 1997) as a fully 3-D
procedure. The brightness normalization and bias correction
was calculated for each scan due to considerable differences
over the observation period of one year.

Brain mask: MS lesion were analyzed only within brain
white and gray matter. Brain tissue and fluid has been seg-
mented by a well-established, highly automated segmentation
system (Geriget al., 1992) which consists of supervised
classification, erosion, connected component labeling and
dilation. The mask has to be determined for only one dataset
in the time series and takes about 10 minutes on a standard
workstation.

Result of Preprocessing: Normalization of brightness
and correction of inhomogeneity artifacts results in sets of
corrected 3-D data sets. After registration, they are combined
to form 4-D data sets. Picking a voxel and assessing its
time course give a good impression of the quality of the
preprocessing. We assume that the signal intensity of normal
white matter should remain constant (figure 1b), whereas

active lesions would show considerable changes (figure 1c-e).

3. TIME SERIES ANALYSIS TO DETECT
FLUCTUATING LESIONS

Bias correction, image brightness normalization and spatial
registration of serial 3-D image data result in 4-D[x,y,z; t]
data sets. The preprocessing yields a spatial and intensity-
based normalization of the time series. Therefore, we can
assume that static tissue will not change brightness over time,
whereas voxels, which are part of fluctuating lesions, will
depict typical variations. Each voxel can be considered as a
time series, suggesting the application of methods for one-
dimensional signal processing. The signal analysis shows
similarities to the postprocessing of functional magnetic res-
onance data (fMRI), but there is one significant difference.
Functional MRI is measured by repetitive stimulation of a
certain task, which allows a comparison of the stimulation
function with the time series of each image pixel, most often
using correlation techniques. The time course of MS lesion
voxels, on the other hand, does not follow a fixed pattern and
can only be characterized by a dynamic fluctuation of image
brightness.

3.1. Visualization of brightness changes
The time course of lesion voxels can be studied by providing
two-dimensional images of arbitrary profiles through 3-D
image data versus time. The displays illustrate fluctuations of
profiles over a typical time period of one year (Fig. 2). Tissue
boundaries in general show very small spatial displacements
that can be explained by elastic tissue deformations, whereas
some boundaries in the vicinity of lesions can demonstrate
significant deformations due to a mass effect (see Fig. 2b
lower middle). This effect has been recently explored by (Rey
et al, 1999) between two rigidly registered 3-D data sets. A
characteristic feature for lesion time series is a continuous
fluctuation with time, presenting increasing and decreasing
time changes or both.

Based on observations of typical time series of lesion
voxels we developed features that describe fluctuations. The
set of features are used for discriminating between static
tissue and active lesions.

Brightness Difference: The minimum and maximum
brightness for each time series is obtained and the
absolute difference4I = |Imax− Imin| calculated. This
feature measures the maximum contrast change of a
time series within the observed time period (Fig. 4a).

Statistical measures:Mean and variance of the time series
at each voxel form a set of statistical features expressing
the temporal variation of brightness around the mean
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value. We expect much higher variance for lesion voxels
than for static tissue. Figures 4b,c,d display the standard
deviation and variance to illustrate the lesion discrimi-
nation power of this feature but only the variance is used
for evidence accumulation and classification.

Signs of fluctuation around mean: The features discussed
so far do not consider the temporal pattern or the
frequency of fluctuations. We therefore determine the
number of zero-crossings of the zero-mean time series
and evaluate the time length of positive and negative
segments. A noisy static signal will generate a large
number of sign changes with small segments, whereas
large fluctuations will generate a small number of long
segments (3,4e,f,g).

Time derivatives: The gradient of the time function for each
voxel provides information about the rate of change,
both for decreasing and increasing events. Fig. 2 illus-
trates that lesions often appear with a large brightness
change. We used the minimum and maximum gradient
as features for our lesion analysis (4h). The attributed
time will be further used for displaying temporal evolu-
tion (see results).

3.2. Evidence accumulation by combining uncertain
measurements

The multiple features derived by signal processing provide
probabilistic maps of the likelihood of the specific feature
(Fig. 4a-h). Each of feature is inherently uncertain, and
they must somehow be combined to derive a measurement
which incorporates different properties of the typical tem-
poral pattern of a lesion. A pooling of evidence from
different knowledge sources will strengthen beliefs in some
cases and erode beliefs in others, even handling contradictory
evidence. The following analysis assumes that the features
are independent, although this might not be strictly true. A
combination of probability measures can be accomplished
by using Dempster-Shafer’s theory. The original Dempster-
Shafer formalism (Shaferet al., 1976, Gordonet al., 1985)
was computationally complex, but we obviated this by us-
ing binary frames of discernment (BFOD) as proposed by
(Safraneket al., 1990). More information about the choice
of confidence factor functions (cf), basic probability assign-
ments (cfa) and the combination rules can be found in the
appendix. The design of these functions and probabilities (see
Table 3) represents a crucial step. However, our tests with the
analysis of very different serial data sets showed that only mi-
nor parameter adjustments were necessary. The initial design
and training of these functions were based on a comparison of
the resulting feature maps with segmentation results produced

by statistical classification followed by manual corrections,
which was considered as a golden standard.

The Dempster’s combination rule is associative and com-
mutative, so that the final probability does not depend on the
order in which evidence is combined (Fig. 5a).

The combined 3-D data set is again probabilistic, with a
value range of[0, · · · ,1] (Fig. 5b). A binary segmentation,
for example for three-dimensional graphical visualization
(Fig. 5c), is obtained by choosing an appropriate threshold
either by visual inspection of overlay images or by comparing
the segmentation output to hand-segmented training data.
Tests with multiple data sets and visual inspection showed
that the choice of the final threshold was not critical and
revealed very similar results within a range of thresholds,
provided that a careful design of the cf-functions and bpa
assignments had been carried out.

4. RESULTS

The new segmentation system has been applied to two time
series from different patient studies. The first study was car-
ried out at Brigham and Women’s Hospital covers 40 patients
with 24 brain scans and a fixed sequence of scanning intervals
of one, two and 4 weeks. The second study was acquired
at Guy’s Hospital in London and analyzed in the European
BIOMORPH project (BIOMORPH, 1996-1999), comprising
12 serial imaging sessions of 40 patients, each imaging
session delivering multiple MR protocols (PD,T1,T2). The
data sets are preprocessed as described in section 2 and
analyzed by using the signal processing methods described
in section 3.

4.1. Brigham and Women’s Hospital data sets
The image data sets were acquired on a GE Signa 1.5 Tesla
using a double echo spin echo pulse sequence (TR 3000ms,
TE 30/80ms) and half Fourier sampling (0.5 NEX), providing
54 slices, 3mm slice distance and thickness and 256x256
pixels, resulting in voxel dimensions of 0.96x0.96x3mm3.
The time series includes 24 data sets acquired over a period
of 50 weeks with a specific time protocol: weekly scans
for 10 weeks followed by every other week scans for 16
weeks and monthly scans for 24 weeks. We could use 23
out of the 24 scans for our analysis. The unequally spaced
time image series was converted into a regularly sampled
sequence by linear interpolation. The MS study covers the
serial scanning of 40 patients, and we selected one typical
case for the temporal analysis. The study did not include the
serial scanning of normal controls.

The 3-D visualizations (Fig. 9) display the time course of
lesion evolution, coded as a color map ranging from 1 to
23. Additionally, the processing results in a quantification
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of the temporal evolution of the total lesion load, measured
relative to the first image data set. It is important to note
that the procedureonly records the volume of tissue showing
significant time changesand excludes voxels that remain
unchanged, thus providing information that is different from
the conventional total lesion load over time.

4.2. BIOMORPH data sets
Image data were acquired on a Philips T5 magnetic resonance
scanner, 1.5 Tesla, using a double echo spin-echo pulse
sequence with TR 2816ms and TE 30/80ms). Each scan
consisted of 24 axial slices 256x256, with voxel dimensions
0.9x0.9x5.5mm3. 12 scans were acquired over a period of 56
weeks: 11 scans with 4 weeks intervals and one scan with a
13 week interval. This unequally spaced time image series
was converted into a regularly sampled sequence by linear
interpolation. Totally, 40 patients have been scanned with 12
MRI each. The study did not include the serial scanning of
normal controls. The processing described in this paper has
been applied to 10 complete series of datasets.

Figures 10 and 11 illustrate the segmentation result,
again color coding the time of appearance of the segmented
lestions.

5. VALIDATION

Validation of the time series analysis method is not straight-
forward as it measures temporal changes rather than absolute
lesion volumes. We decided to validate the method using
simulated lesion patterns in 4-D data sets. We used a 3-
D magnetic resonance data set of a healthy volunteer which
was replicated by the number of time steps, here 12. The
limitations of the clinical 4-D data sets due to errors in spatial
registration and the bias correction were therefore not subject
to this validation. We confirmed visually that the dataset did
not contain white matter lesions.

Lesions of varying size, contrast and lifetime (time be-
tween appearance and disappearance) were generated using
a non-linear diffusion process with a source and a sink
term. This decision was influenced by the visual analysis
of realistic temporal patterns (Fig. 2). Lesions in magnetic
resonance image data were always diffuse and most often
showed a sharp increase and a smooth decrease of the size
and brightness function.

∂u(~x, t)
∂t

= div(c(u(~x, t))∇(u(~x, t)))+q(~x, t)+ r(u(~x, t))(1)

Equation 1 produces time series of diffuse lesions with
quick appearance and slightly slower disappearance (Fig-
ure 6a). The time series of the artificial lesions were merged

with the time series of the head. Lesions were inserted in both
the white matter and in the grey matter of the brain.

This 4-D data set, simulating lesion evolution, has then
been corrupted by Gaussian noise with a variance equal to
the variance of white matter (Fig 6b). The parameters for the
temporal analysis were chosen to be exactly the same as for
the other segmentations. As a result, the number of detected
lesion voxels per lesion and their time point of appearance
and disappearance have been obtained. The 4D test data set
consists of 12 time points and 18 lesions were implanted. All
inserted lesions were detected (Fig 6c). No false positive
lesions were detected which can be explained by the nature
of the simulated 4-D dataset being composed of identical 3-D
volumes.

Table 1 lists the maximal number of implanted/detected
voxels during the time course for each lesion. For most gener-
ated lesions about 80% of the implanted voxels are detected,
since very diffuse lesion voxels have been discarded by the
time series analysis. For very small or low contrast lesions,
the ratio of very diffuse lesion voxels to well contrasted lesion
voxels is large and thus the detection rate in percent becomes
worse.

Table 2 compares the number of implanted and detected
voxels for different lesions at each time point. In addition
to the problems with the diffuse contours of the lesions it
can also be seen that the estimate of the lifetime of the
detected lesion voxels is often too short. The lifetime of
a voxel is determined by calculating the time difference
between the minimal and maximal gradients of the time
course of this voxel and does not exactly match with the
time points of appearance and disappearance of low-contrast
lesion portions.

6. SUMMARY AND CONCLUSIONS

We present a new image processing system for time sequence
analysis of serial data sets. The purpose of this project was to
explore the discrimination power of time, which is usually
not directly used for the segmentation of structures. We
deliberately excluded any absolute scalar or multi-spectral
information about structures as usually used for the voxel-
wise segmentation of lesions from MRI by multi-dimensional
thresholding and statistical clustering. Here, we exclusively
analyzed each voxel over time to demonstrate the additional
information obtained by taking into account the temporal
evolution of brightness.

The paper describes the development of an image analysis
technique for segmentation of fluctuating structures from 4-D
data sets. Analyzing the time series of each voxel, we derive
a set of statistical and structural features which discriminate
static tissue from changes over time. The extraction of
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each feature creates a probability map for the presence of
the sought structure. The multiple probabilities from the
different evidence sources are combined using the Dempster-
Shafer theory. We selected this technique because it allows
combination of different sources of evidence by considering
the probability not only of the occurrence of a feature, but
also the absence and the ignorance about the measurements.
The design of confidence factor functions and the transfor-
mation of confidence factors into basic probabilities represent
decisive steps comparable to supervised training in statistical
classification. Tests showed that once trained, these settings
can be used for other data sets as well since measurements
do not directly depend on absolute intensity values. Further,
brightness and contrast of our data sets are normalized in the
preprocessing step.

The analysis of normalized 4-D data sets is automatic and
takes about 10 minutes of processing time (SUN Ultra 1 with
128Mb). The results, visually compared with results from
alternative segmentation methods, revealed a surprisingly
good sensitivity and specifity to MS lesions. We so far
applied the procedure to one serial dataset (23 MRI) from the
Brigham and Women’s Hospital and to 10 datasets (with 12
MRI each) from the European BIOMORPH study. However,
our analysis so far isonly based on information of one MR
echo over time. We can expect an even higher sensitivity
if multi-echo information could be embedded, and if we
combined the time series analysis with the segmentation of
spatial structures. So far, data was inspected by clinical
experts by evaluating overlays of the segmented lesions with
the original MR scans (Fig. 5). The quantitative validation
and tests with simulated lesions show that all the lesions
could be detected but that the lifetime of the detected lesion
voxels is consistently shorter than that of the implanted lesion
voxels. Our lesions were not binary blobs, however, but were
generated by a nonlinear diffusion process, which starts with
a very low contrast. Thereby, we tried to simulate lesions
in real images that are often nearly invisible at early stages
and which are not labeled as significant lesions by a manual
observer.

We conclude that temporal changes represent a highly
significant feature for the identification of active lesions and
should be considered for future analysis. Further, temporal
evolution and the detection of time changes are the most
important features for pharmaceutical studies and research
because the goal is commonly evaluation of changes due to
the disease process or a drug treatment. Besides detection
of lesion voxels, our method reveals the time of appearance
and disappearance as attributes of each voxel. A dynamic
visualization of this temporal information allows the detec-
tion of groups and patterns of lesions which show a similar
time course. If additionally combined with anatomical atlas

information to link lesion positions to anatomy, we would get
a new insight in the MS disease process and possibly a new
understanding of the disease mechanism.

Currently, we are extending the time-series analysis to
spatial analysis in order to develop a spatio-temporal de-
scription of fluctuating lesion patterns. We will also include
information from multiple spectral MR channels (PD, T1,
T2, FLAIR) to replace the scalar image brightness by vector-
valued measurements. Confidence factor functions will be
designed similarly to the single contrast application presented
herein by including manual segmentation as a gold standard.
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A. DEMPSTER SHAFER (DS) THEORY

The DS theory (Shaferet al., 1976, Gordonet al., 1985)
makes inferences from incomplete and uncertain knowledge,
provided by different independent knowledge sources. The
theory allows the strengthening or erosion of beliefs by com-
bining additional sources of evidence, even in the presence of
partly contradictory evidence. The Dempster-Shafer theory
contains the Bayesian theory of partial belief as a special case.

The problem of lesion detection allows a simplification, as
the set of admitted answers, the so calledframe of discern-
ment, is simply the setΘ = {lesion,¬lesion} of mutually
exclusive elements and represents the special case of abinary
frame of discernment(BFOD) (Safraneket al., 1990). The set
of all subsets ofΘ is called the power set 2|Θ| of Θ with the
focal elements({ /0},{lesion},{¬lesion},{Θ}), where{Θ}
stands for{lesion,¬lesion} or ignorance.

Basic probability assignment (bpa):A basic probability
assignment represents a belief in an elementary proposition
or in a disjunction of several of them. Formally, a bpa
is a function m : 2Θ → [0,1] with 0 ≤ m(.) ≤ 1,m( /0) =
0,and∑A⊆Θ m(A) = 1, where /0 is the null proposition. A
belief function Bel(A) over Θ is defined by a sum of the
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bpa’s of all proper subsets of A,Bel(A) = ∑B⊆Am(B), and
calculates our total belief in a propositionA.

Combination of evidence: Dempster’s rule calculates a
new evidence from two basic probability assignments (bpa)
m1 and m2, designated asm1⊕m2. The products of the
assignments, with focal elements with non-empty intersection
are normalized with 1

1−κ , whereκ is the sum of the products
with empty intersection.κ can be expressed as a measure for
thecontradictionor inconsistencyof the combined evidence.

m1⊕m2{x}= (2)

m1{x}m2{x}+m1{x,¬x}m2{x}+m1{x}m1{x,¬x}
1− (m1{¬x}m2{x}+m1{x}m2{¬x})

m1⊕m2{¬x}= (3)
m1{¬x}m2{¬x}+m1{x,¬x}m2{¬x}+m1{¬x}m1{x,¬x}

1− (m1{¬x}m2{x}+m1{x}m2{¬x})
m1⊕m2({x,¬x}) = 1−m1⊕m2({x})−m1⊕m2({¬x})(4)

Confidence factor functions:There remains the problem
of transforming the output of a source (measurement) to
an appropriate input for the bpa’s. (Safraneket al., 1990)
introduced a confidence factor functionc f(v) : ℜ → [0,1]
that produces a confidence factor for the measurementv if
it satisfies the following:

1. c f(v) is an increasing function

2. c f(v) = 1.0 if the measurementv implies {x} with
certainty

3. c f(v) = 0.0 if the measurementv implies {¬x} with
certainty

4. c f(v) = 0.5 if the measurementv favors neither{x} nor
{¬x}

Once a confidence value is obtained, the transformation
into a basic probability (bpa) can be accomplished by defin-
ing appropriate transfer functions with parametersA and
B (Eq. 5). Figure 7 displays typical functions for belief,
disbelief and ignorance.

belief in{x} : m({x}) = ;
B

1−A
∗c f(v)− AB

1−A

belief in{¬x} : m({¬x}) =
−B

1−A
∗c f(v)+B

ignorance :m(Θ) = 1−m({x})−m({¬x})

Tests with different confidence factor functions showed
that the sigmoid function and the one-sided Gaussian were
the most appropriate functionsc f(v) for the combination of
measurements in our application.

Sigmoid function: y = 1
1+e−k(x−θ) with k = 1 andθ = 0, k

describes the steepness andθ determines the offset on
the x-axis (Fig. 8 left).

One-sided Gaussian function:y= e(x−θ)2σ, σ is the scaling
andθ a shift in x-direction (Fig. 8 right).

A.1. Example of combination of evidence using Demp-
ster Shafer’s rule

A test example (Table 4 illustrates the narrowing of the
hypothesis by accumulation of evidence. Source 1, although
with high ignorance 0.5, strengthens the bpa for{x} if
combined with source 2. Source 3, although with higher
belief in{¬x} than in{x}, only slightly erodes the bpa for{x}
if combined with source 2, whereas the the belief in{¬x} is
somewhat increased. The combination of all the three sources
demonstrate the low ignoranceΘ = 0.03 and the high belief
in {x}. The combination rule is associative and commutative
and consequently the belief function does not depend on the
order in which the evidence was gathered (see Fig. 5a).
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Figure 1. Time series of voxels for healthy white matter (b) and typical lesions (c-e). Horizontal axis: time, vertical axis: MR intensity.
Image (a) illustrates a typical MR slice presenting white matter lesions. The positions of the voxel generating the constant time series
(b) is marked with a thin cross, the lesion time series (c) with the thick cross. Plots d and e represent time series of other lesions voxels.
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Figure 2. Visualization of spatiotemporal lesion evolution. a Original image at timeti with profile, b space-time display (horizontal:
spatial axis, vertical: time axis) and c sketch of typical time series at locationsxi and x j . Other typical lesion evolutions are displayed
in d,e and f.
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Figure 3. Evaluation of sign changes of zero-mean time series: Analysis of the sequence of signs: Number of “segments” (7), length of
maximum segment (5), length of minimum segment (1) and average segment length (2.86). Observation: Low-frequency variations (lesions)
result in large differences from the mean and generate small # of sign changes with large segments.
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Figure 4. 2-D cuts of 3-D feature maps: Difference Max-Min (a), Mean (b), standard deviation (c) and variance (d), Nr. of zero-crossing
segments (e), length of minimum segment (f), length of maximum segment (g), and maximum absolute time gradient (h)
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Figure 5. Combination of fuzzy features by Dempster’s rule (a), segmented active lesions on 2-D slice (b) and as 3-D rendering (c).
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Figure 6. Simulated lesions in 4-D MR data sets. Imagea illustrates the non-linear diffusion with the one-dimensional profile as the horizontal
axis time varying from front to back. Imageb represents a cut through the 4-D data set with simulated lesions, and imagec represents a 3-D
display of the segmented lesions color coded by the time of appearance.
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Figure 7. Transfer of confidence factors into basic probability values.
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Figure 8. Choice of confidence functions: Sigmoid (left) and one-sided Gaussian (right).
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Table 1. Simulation experiment: Number of implanted versus detected voxels per 4-D lesion
lesion implanted detected percentage of

number voxels voxels detected voxels
1 226 178 79%
2 600 463 77%
3 85 67 79%
4 450 352 78%
5 256 217 85%
6 31 15 48%
7 100 79 79%
8 67 48 72%
9 31 15 48%
10 31 18 58%
11 770 641 83%
12 797 649 81%
13 905 771 85%
14 254 133 52%
15 142 89 63%
16 69 44 64%
17 15 12 80%
18 160 113 70%
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Table 2. Simulation experiment: Time course of implanted versus detected voxels per lesion. The intensity ranges of the MR image was≈
500-610 for WM,≈ 650-800 for GM and≈ 1000-1300 for CSF.

lesion maximal implanted/ number of detected/implanted lesion voxels at each time point
number intensity detected 1 2 3 4 5 6 7 8 9 10 11 12

1 1300 implanted 39 192 226 78 6
detected 3 178 178 1 1 1 2

2 900 implanted 119 600 565 134 1
detected 2 10 463 394 1 1 1 1 1 1

3 1000 implanted 4 28 79 85 37 5
detected 6 67 61 1 1

4 1100 implanted 97 387 450 176 26
detected 1 1 1 4 352 352 1

5 1200 implanted 1 38 79 192 256 114 44
detected 1 35 177 217 7 1 1

6 1000 implanted 1 9 18 31 11
detected 1 15 15

7 1100 implanted 4 28 80 100 61 16 4
detected 14 79 79 1 1 1 1 1 1

8 900 implanted 7 29 64 67 33 12 4
detected 11 48 42 1

9 1200 implanted 1 5 9 31
detected 5 9 15

10 1200 implanted 5 31 31 9 1
detected 1 16 18

11 1200 implanted 163 671 770 375 79
detected 1 1 2 2 2 8 641 641 7 2

12 1200 implanted 52 232 666 797 474 198 36
detected 1 1 2 2 55 631 649 20 17 1

13 1300 implanted 18 120 301 681 905 731 456 249 84 9
detected 3 3 120 639 771 310 24 2 2 1

14 900 implanted 60 254 196 38
detected 15 133 95 2 2 1 1 1 1

15 1000 implanted 20 142 88 1
detected 3 89 31

16 800 implanted 4 25 69
detected 4 18 44

17 900 implanted 5 15 14 5
detected 12 11

18 900 implanted 3 50 160
detected 1 36 113
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Table 3. Choice of confidence factor functions for evidence sources. The columnsinvert, greatest lower bound, andsigmoid transientdefine
the function parameters

Evidence source Confidence factor function invert greatest lower bound sigmoid transient

standard deviation One-sided Gaussian no 0.3 -
nr. of segments Sigmoid yes 0.01 10.5
maximal length of segment Sigmoid no 0.01 13
maximum of gradient Sigmoid no 0.01 4.5
Minimum of Gradient Sigmoid yes 0.01 -6.4
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Table 4. Example of combination of evidence using Dempster Shafer’s rule.
bpa source 1 source 2 source 3
mi {x} 0.4 0.8 0.3
mi {¬x} 0.1 0.0 0.5
mi (Θ) 0.5 0.2 0.2

combination bpa combination bpa combination bpa
m1⊕m2 {x} 0.87 m1⊕m3 {x} 0.26 m2⊕m3 {x} 0.77
m1⊕m2 {¬x} 0.02 m1⊕m3 {¬x} 0.36 m2⊕m3 {¬x} 0.17
m1⊕m2 (Θ) 0.11 m1⊕m3 (Θ) 0.38 m2⊕m3 (Θ) 0.06
contradictionκ 0.08 contradictionκ 0.18 contradictionκ 0.4

combination bpa
m1⊕m2⊕m3 {x} 0.84
m1⊕m2⊕m3 {¬x} 0.13
m1⊕m2⊕m3 (Θ) 0.03
contradictionκ 0.145
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Figure 9. Three-dimensional display of lesions segmented from the Brigham and Women’s data set. (a) Side-view with transparent intracranial
cavity. (b) Time of appearance. (c) Time of disappearance. (d) Plot of total volume estimates versus time. Remember that the method analyzes
only fluctuations and excludes static portions of lesions. The color represents the time of appearance or disappearance, respectively, coded
from 1 to 23.

a b c d

Figure 10. Three-dimensional renderings of time evolution resulting from the 4-D analysis of the BIOMORPH data set. Images (a-d) represent
weeks 0, 28, 36 and 40.

1 12

Figure 11. Three-dimensional displays of lesions segmented from the BIOMORPH data set, top and side view of lesions and intracranial
cavity. The color represents the time of appearance, coded from 1 to 12.


