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Abstract. The finite element method (FEM) is well suited for use in the
non-rigid registration of magnetic resonance spectroscopy images (MRST)
with intraoperative ultrasound images of the prostate because FEM pro-
vides a principled method for modeling the physical deformation caused
when the MRSI intra-rectal imaging probe compresses the prostate. How-
ever, FEM requires significant labor and computational time to construct
a finite element model and solve the resulting large system of equations.
In particular, any finite element based registration method must address
the questions of how to generate a mesh from an image and how to solve
the system of finite element equations efficiently. This paper focuses on
how m-rep image segmentations can be used to generate high quality
multi-scale hexahedral meshes for use with FEM. Results from the ap-
plication of this method to the registration of CT images of a prostate
phantom with implanted brachytherapy seeds are presented.

1 Introduction

This paper considers finite element techniques for non-rigidly registering three-
dimensional prostate images acquired for the purpose of brachytherapy plan-
ning and guidance. Brachytherapy involves implanting radioactive seeds in the
prostate to treat prostate cancer. A magnetic resonance spectroscopy image
(MRSI) can be used to design a seed placement pattern that targets suspected
tumor deposits, but the process is complicated by the fact that the prostate
appears compressed in the MRSI due to pressure from the intra-rectal imag-
ing probe. Intra-operatively, the prostate is not deformed and seed placement is
guided using ultrasound. Therefore, a non-rigid image registration is required to
match points within the prostate shown in the MRSI planning image with the
corresponding points in the intra-operative ultrasound image.

Other researchers have approached prostate imaging problems using meth-
ods that incorporate finite element analysis, in particular [4] and [8]. The work
presented in [4] is most similar to the algorithm presented here, but differed from
ours in that it relied on manual segmentation and tetrahedral meshing, and a
membrane model of the boundary rather than a solid object model was used in
the computation of boundary conditions. The work presented in [8] employed a
combined statistical and biomechanical approach.

The registration process used in this work consists of the following steps.
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1. Fit an m-rep medial model to the prostate in both the undeformed and
deformed images.

2. Build a multiscale finite element mesh from one of the models.

3. Derive boundary conditions that produce the observed shape change and
minimize the energy of the deformation.

4. Assume the prostate is a linearly elastic body and compute its deformation
using finite element analysis.

5. Apply the computed deformation to the undeformed image to register it with
the deformed image.

Section 2 details how m-rep object models are used to automatically generate
a mesh from an image. The derivation of boundary conditions is explained in
section 3 and the solution algorithm is reviewed section 4. Registration results for
CT images of a prostate phantom are presented in section 5. Some aspects of the
registration algorithm are summarized in this paper due to space considerations.
Further algorithmic details can be found in [5] for sections 2.3, 3, and 4.

2 Meshing Algorithm

2.1 M-Rep Geometry Models

The novel meshing algorithm presented here relies on m-rep object models to
provide both global and local object shape information. M-reps are medially
based solid models particularly well suited for modeling anatomic objects and
segmenting medical images [9]. For this application, m-reps’ object based coor-
dinate system facilitates both the construction of the finite element mesh and
the efficient solution of the finite element system of equations.

The prostate’s shape can be well represented with a single figure m-rep, shown
in Fig. 1(b). A figure is composed of a lattice of medial atoms, the smallest
building blocks of an m-rep. Each atom stores a sample of object geometry,
including the coordinates of a point on the medial surface, the object radius, the
coordinates of at least two boundary points, and a frame that provides object
orientation information.

The lattice arrangement of medial atoms helps define an object based coor-
dinate system for m-reps. Any point in an object can be referenced by its m-rep
defined (u,v,t,7) coordinates. The v and v directions coincide with the rows
and columns of medial atoms in the lattice. 7 ranges between 0 at the medial
surface and +1 at the object surface, while ¢t measures the angle between a vec-
tor and the medial surface. This object based coordinate system provides spatial
and orientational correspondence between deformed versions of the same object.
This is advantageous in the meshing context because it means that a mesh de-
fined using an m-rep’s object based coordinates is automatically individualized
to fit any deformed version of the m-rep model. Another benefit of the object
based coordinate system is the ability to express distances as a fraction of object
width. This is convenient for mesh generation as it provides a natural way to
size elements according to the proportions of an object.
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Fig. 1. (a) A diagram of a single medial atom (b) An m-rep prostate model constructed
from 3x3 lattice of medial atoms. (c) The (u,v) parameter plane of the medial surface
with a 5x5 grid of sample points indicated. (d) Object with sample point interpolated
and drawn on the medial surface. (e) Base level prostate mesh (f) Sliced view of the
meshed volume of interest (g) Exterior view of the meshed volume of interest

2.2 Hexahedral Meshing Algorithm

Research has shown that for linear elastic problems and non-linear elasto-plastic
problems the error in a finite element solution is smaller for a mesh of linear
hexahedral elements than for a mesh of similarly sized linear tetrahedral elements
[3]. Current automatic meshing algorithms are more successful at constructing
quality tetrahedral meshes than quality hexahedral meshes, and the development
of general purpose automatic hexahedral meshing algorithms is a problem that
motivates current research efforts in the meshing community [11].

A quality hexahedral finite element mesh must have several characteristics.

— Compatibility — Interior faces must be shared by adjoining elements. This
assures monotonic convergence of the finite element equations [2].

— Good element shape — If an element is inverted or the mesh folds, a valid finite
element solution does not exist. Severely skewed elements negatively affect
the convergence characteristics of the finite element system of equations.

— Boundary fitted — The accuracy of the finite element solution is limited by
how closely the mesh approximates the object’s geometry.

Promising hexahedral meshing algorithms have employed information about
global object shape in the mesh design process. Price and Armstrong’s work
decomposed an object into a set of geometric primitives using the medial axis
[10]. A more recent introduction was whisker weaving, an algorithm that uses
the spatial twist continuum to design a three dimensional hexahedral mesh that
conforms to a specified quadrilateral surface mesh for an object [6] [12].

The m-rep based meshing algorithm uses a standardized meshing pattern
for each figure and assigns object coordinates to each node. The mapping from
object based coordinates to world space coordinates determines the nodes’ world
space positions.
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Fig.2. Three groups of nodes
are constructed from three corre-
sponding medial surface samples.
ap and by are samples on the cen-
ter portion of a medial surface and
give rise to nodes aop - a4 and by -
bs. co is a sample on the outer rim
of the medial surface, from which
nodes cg - ¢5 are constructed.

The first step in meshing an m-rep figure is the construction of a sampling
grid on the (u,v) parameter plane of the medial surface. The vertices of the
sampling grid are placed at regular intervals in (u,v) coordinates, and their
world space coordinates are calculated by interpolating a position on the medial
surface. The spacing is determined by the ratio of the average object thickness
to the average distance between medial atoms. Using this spacing, the average
hexahedral element will have roughly equal dimensions.

From the sampling grid on the medial surface, the coordinates of the other
layers of nodes can be derived. For every (u,v) sample point except those around
the outer rim of the medial lattice, five nodes are created at 7 = —1, —.5,0,.5, 1.
For sample points around the lattice edge, a set of six nodes is created, with the
sixth node sitting out on the object crest. The node and element patterns are
illustrated in Fig. 2.

Although the sample spacing is regular in medial coordinates, when the mesh
is mapped into world space (z,y, z) coordinates the elements in narrower regions
of the object tend to be smaller than the elements in wider areas. Typically this
is a desirable property, since a mesh usually needs to have smaller elements in
narrower parts of an object in order to sufficiently model the detail. Because
the mesh construction is guided entirely by information contained in the m-rep
model, the meshing process requires no user interaction.

2.3 Mesh Quality Optimization

The shape quality of the majority of elements generated by the m-rep meshing
algorithm is good, but elements created near the corners of the parameterized
medial surface or in areas of high curvature can be more skewed than elements in
the central portion of a model. To correct this, the positions of some of nodes are
adjusted in an optimization of an element quality measure. In this process, nodes
on the surface of an object have two degrees of freedom and are constrained to
remain on the surface. Nodes in the interior of an object have three degrees
of freedom. The optimization ensures that the mapping between the elements’
parameter space and world space is well defined and does not fold.

2.4 Mesh Subdivision

Mesh subdivision can be applied to increase solution accuracy. Subdividing pro-
duces a mesh with smaller elements that provide a finer representation of the
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Fig. 3. (a) M-rep model of male pelvis, including pubic bones, rectum, bladder, and
prostate (b) Mesh of male pelvis objects (c) Sliced view of object meshes with connect-
ing pyramid and tetrahedral elements filled in

Fig.4. Top Row: Element sub-
division patterns for hexahedra,
pyramid, and tetrahedra elements.

Bottom Row: Three subdivi-
sion levels of a prostate mesh.

solution. The subdivision algorithm involves creating new nodes at the centers
of each existing edge, quadrilateral face, and hexahedral volume in the mesh.
Fig. 4 shows the subdivision pattern for the three element types.

The hexahedral elements that represent the m-rep modeled objects have
nodes with both world space (z,y, z) coordinates and medial (u,v,t,7) coor-
dinates. By subdividing these elements using their medial node coordinates, an
improved, smoother approximation to the object geometry is achieved with sub-
division. In contrast, subdivision using world space coordinates would provide
improved resolution for representing the solution but would not reduce the geo-
metric error or blockiness of the mesh. The medial coordinate based subdivision
process allows for increased precision in both the geometry and the solution.

If adjacent faces of an element lie on the object surface, then the subdivision
process described would lead to increasingly distorted and flattened elements
since any surface patch is flat at a sufficiently small scale. The meshing pattern
presented here has no elements with more than one face lying on the object
boundary, thus allowing good element shape to be maintained through an arbi-
trary number of mesh subdivisions.

2.5 Meshing Space External to M-reps

By meshing the space outside and between m-rep modeled objects, a deforma-
tion can be interpolated into the surrounding space. External space meshing
begins by building a layer of non-intersecting pyramids on top of the exposed
quadrilateral faces of a hexahedral figure mesh. Tetrahedra are then built on
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top of the exposed triangular faces of the pyramids and used to mesh the re-
mainder of the volume of interest. The construction of the tetrahedral mesh is
performed using the tetrahedral meshing capability found in CUBIT [1]. Subdi-
vision of these pyramid and tetrahedral elements is performed using the nodes’
world space (x,y,z) coordinates and the pattern illustrated in Fig. 4.

3 Boundary Conditions

In order to compute a deformation with finite elements, boundary conditions
must be specified either in terms of forces applied to nodes or node displacements.
With an image registration problem, neither forces nor point displacements are
available directly from the images. What is visible is shifting and/or change in
boundary shape. M-reps provide a way to derive an initial approximation to
point displacements from observed boundary changes in an image.

In the prostate case, the m-rep model that was fit to the original image and
used to guide mesh construction is transferred onto the image of the deformed
prostate and adapted to fit it. The original and deformed m-rep models have the
same object based coordinate space so that a one to one mapping is defined be-
tween points in the original and deformed prostate. This correspondence defines
an initial set of boundary node displacements.

The boundary conditions are optimized by minimizing the physical energy
of the computed deformation. This approach is based on the assumption that
given the set of all possible boundary conditions that produce the observed shape
change, the one requiring the least energy is most likely. In the optimization
process the correspondence between points on the surface of the original m-rep
and points on the surface of the deformed m-rep is refined by allowing the points
on the deformed m-rep to slide along its surface.

4 Solution Algorithm

To compute a deformation, an NxN system of linear equation must be solved,
where N is the number of nodes in the mesh. An initial approximation to the
solution can be derived from the m-rep models by making use of the correspon-
dence that exists between deformed versions of an m-rep. A conjugate gradient
algorithm is used to improve the approximate solution to within a set tolerance.
The system of equations that results from a subdivided mesh is much larger
than the original system of equations, as seen in Table 1. The larger system of
equations can be efficiently solved by borrowing the idea from multigrid theory
of solving the problem using meshes at different scales. The approach taken here
is to solve the system of equations on the coarsest mesh, and then interpolate
that solution to the next mesh level and improve the solution iteratively with
a conjugate gradient algorithm. The number of iterations required to converge
to a solution on a high resolution mesh is reduced due to the good solution
approximation computed for a coarser mesh level. At subdivision level 3, the
solution prediction scheme reduces the number of solution iterations by half.
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Fig. 5. Left: Original mesh of

the prostate superimposed on
a slice of the uninflated CT r \ r \

image.

\ ’ \ ’
Right: Deformed mesh of 9. 9.
the prostate superimposed on
os o

the same slice.

5 Registration Experiment

The initial validation study of the registration methodology was performed using
CT images of a prostate phantom. The phantom prostate was implanted with
seeds, and images were acquired with an inflated and deflated MRSI probe in
place. The accuracy of the computed deformation can be evaluated by comparing
computed seed displacements with observed seed displacements. For this test, the
prostate was the only pelvic structure explicitly modeled with an m-rep, and the
surrounding area was represented as an elastic, homogeneous region. The linear
elastic model has two elastic constants that characterize a material’s stiffness:
FE, Young’s modulus, and v, Poisson’s ratio. In this experiment the prostate was
assigned £ = 60kPa and v = .495 based on the prostate tissue test results
published in [7]. The area exterior to the prostate was assigned E = 10kPa and
v = .495.

The locations of 75 seeds in the phantom prostate were identified manually
in both the uninflated and inflated CT images with .3 cm slice thickness and .07
cm within slice resolution. The computed deformation was applied to the seed
locations in the uninflated image to predict the seed locations in the inflated
image. The error estimates in Table 1 were derived by comparing predicted seed
locations with observed seed locations in the inflated probe image. The accuracy
of manual seed labelling was limited by the image resolution, and to the extent
that errors in seed coordinates contributed to the error estimates, the estimates
indicate a limitation of the validation procedure rather than a limitation of the
registration methodology.

Table 1. Error estimates for predicted seed locations in cm. x and y components lie
in a high resolution image plane, and the z component lies across the image planes.

mesh node |total| total X X y y z Z
subdivision level| count |error|std. dev.|error|std. dev.|error|std. dev.|error|std. dev.
1 254 [.2705| .0869 [.1308| .0785 |[.1026| .0776 |.1730| .1057
2 1,836 |.2054| .0799 |.0852| .0605 |.0679| .0547 |[.1485| .0900
3 14,068|.2000| .0807 |.0766| .0580 [.0761| .0598 |.1393| .0928
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Fig. 6. Left: original slice of uninflated probe image. Center: slice after computed
deformation was applied. Right: comparison slice from image with inflated probe
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