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Abstract. Several recent studies demonstrate a real potential in taking
tubular structures as a base for image registration. In this paper, we
present a novel technique to conduct deformations on tubular structures.
Our approach aligns a pre-extracted tubular model, e.g. vessels inside an
organ or a set of bones, with an image by combining both rigid and elastic
transformations. The physical structure and properties of the tubes are
taken into account to drive the registration process. This model to image
registration shows sub-voxel accuracy as well as robustness to noise and
a convergence time of less than one minute.

1 Introduction

We present a novel technique to perform model-to-image registration using tubu-
lar structures as a model. Our approach uses both rigid and deformable transfor-
mations in a hierarchical manner. Our technique takes advantage of the typical
tree structure of blood vessels and uses branch points to constrain deforma-
tions. We perform three distinct steps to achieve final registration of the model
with the image: global rigid transformation, piece-wise rigid registration and
deformable registration. The first stage deals with the global rigid body regis-
tration and has been shown to be sub-voxel accurate, able to handle large initial
mis-registrations and converge in 2-10 seconds [1]. Such rigid registration is a
preliminary and necessary stage in order to be close enough to the deformed
structure. One could notice that the rigid registration algorithm does not take
advantage of the tree structure and, therefore, uses the set of tubes as a global
entity. The second stage uses the tree structure to perform a piece-wise rigid
alignment. First, the root of the tree is moved to the right position and then
rigid transformations are applied, in order, from root to leaves. Branch points
and physical parameters of the tubular structure have to be known to perform
this task. Local deformation is the concern of the third and last stage.

Mutual information and several related techniques register one image to an-
other and use, in most cases, a rigid or an affine transformation [4], although,
non-rigid versions also exist [5]. Aylward et al. [1] have demonstrated that rigid
registration of vessels with an image can be performed quickly and with rea-
sonable accuracy. However, due to the elastic properties of organs, rigid trans-
formation is often not enough. Fluid based registration approaches take into
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account the deformable aspect of the registration but do not take advantage of
the geometry of the objects in the images. On the other hand, model-to-model
registration techniques have been developed and exploit the geometric corre-
spondences in a powerful manner. Finite element modeling also shows excellent
results [3] by deforming a mesh given image forces. Our technique differs from
these approaches by combining both rigid and deformable transformations and
geometry and intensity information and falls into the model-to-image registra-
tion category.

2 Method

Blood vessels in the human body are organized as a tree structure. For instance,
in the liver, portal and hepatic vessels define two distinct trees; in the brain,
vessels are divided into several trees, among them, the right and left cerebral
group. Formally, a tree is composed of at least one root. Our technique relies on
this tree configuration to perform a global to local registration. The first step
is a global rigid body registration using a vessel-based metric and a gradient
descent optimization process [1]. The second step consists of a piece-wise rigid
registration from root to leaves. The third step is done via non-rigid deformation
of the vessels. These two last steps are described next.

2.1 Piece-wise rigid transformation via propagation

A rigid transformation is applied to each vessel in a hierarchical manner. First the
root of the tree is registered with the image using a rigid body transformation.
Second, the branches of the tree are registered rigidly with the image one branch
at a time using the parent-child hierarchy which gives anchor points, namely
branch points. We allow rotation around the branch point. The magnitude of
the rotation is given by the gradient v computed along the branch only (its
descendants do not contribute). The evaluation of the rotation is done using a
linear weighted factor A(¢) along the tube so that points at index i close to the
branch contribute more to the rotation. The image gradient is computed only
at centerline points = at a scale o proportional to the radius of the tube at that
point. N represents the number of centerline points that compose the vessel. For
each point the image gradient is projected onto the normal plane nq,15.

1L
V= ;/\(z)vm(cr) n (1)

Rotations and translations for the branch are solved iteratively via calcula-
tions of v. One could notice that A() is important to obtaining a good combi-
nation of translation and rotation.

To translate a branch, the elastic property of the parent has to be taken into
account. Specifically, the translation vector v of the child is projected onto the
tangent direction % of its parent at the specified branch point z and the amount
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of translation T allowed from the initial point x¢ is constrained by the elasticity
~ of the parent tube multiplied by the initial distance d between the two consec-
utive points near the branch. The translation is only permited in the direction
of t.

T =max(v-t,vd — |z — xo|) - ¢ (2)

2.2 Elastic registration

Elastic registration is also performed using first derivative information from the
target image. Our approach uses the image gradient computed at a scale pro-
portional to the radius of the tube and projected onto the normal of the tube
(like 2.1). Due to the potential complexity of the elastic deformations, i.e. fold-
ing, shrinking, expansion, etc., we must add constraints to drive the registration
process. The first constraint is the elasticity coefficient « of the tube which con-
strains the movement of points along a tube (as in 2.1). The second constraint
is the rigidity coefficient which defines the bending factor of the tube. There
are several ways to define such a coefficient and we use a local measure; rigidity
is defined as the maximum angle between the initial tangent tg and the actual
tangent t. The rigidity coefficient can be different for each point along the struc-
ture, or it can be constant. The rigidity of the tube is proportional to the radius
of the tube and depends also on the material. In our implementation we choose
to keep the rigidity constant and we use the sampling rate to accomodate the
coefficient as the radius is changing. In fact, as a pre-process, the tubular model
is sampled, for speed optimization purposes, in a non-uniform manner so that
the step size depends on the radius value at the previous centerline point.

An iterative optimization process uses these two coefficients, and the projected
gradient is computed for each point along the centerline to deform each branch
to the data. The process of rigid and deformable registration is then applied to
each of its leaves. This continues until the full hierarchy has been fit to the data.

3 Results

In order to evaluate the accuracy of our registration algorithm we extract blood
vessels from the target image. It is important to note that these vessels are not
used in the registration process, but only for validation purposes. We have run
our algorithm on pre and post surgery brain data in which a tumor has been
removed. An initial global rigid body registration is performed [1]. Fig.1-left
shows the result. Next we apply 40 piece-wise rigid transformation iterations
per branch, Fig.1-right. Fig.2 shows the final registration using both piece-wise
rigid and elastic transformations. Both stages of the elastic registration requires
less than 10 seconds to converge.
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Fig. 1. Original set of tubes registered with a global rigid transformation(left) and
the resulting set of tubes after the piece-wise rigid registration(right). Only the black
vasculature is moving. The light grey vasculature is shown here as an illustration but
is never used to drive the registration process. The data that produced those light grey
tubes is actually driving the registration process

Fig. 2. Set of tubes after the deformable registration process. Elastic deformations are
applied after the semi rigid registration. Again, the light grey vasculature is shown here
as an illustration but is never used to drive the registration process. Circles highlight
areas of larger non-rigid deformation
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The quantification of the registration is shown on Figure 3.
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Fig. 3. Percentile of points inside a given distance from the centerlines of the ves-
sels in the target image (cumulative graphs). Before registration(left), after semi-rigid
registration(middle) and after semi-rigid plus elastic registration(right)

Our method has also been tested on simulated data to perform noise sensitiv-
ity measurements. Figure 4 shows the three consecutive steps of the algorithm,
after rigid registration(left), after piece-wise rigid transformations(middle) and

after elastic registration(left).

Fig. 4. Simulated tubes used to test the robustness of our algorithm. Original sets of
tubes(left), After semi-rigid registration(middle) and after elastic registration(right).
Only the light grey tubes are moving and the dark ones are represented for illustration

Figure 5 shows the cumulated measures of the percentile of points inside a
given distance from the centerline without noise

Table 6 demonstrates the robstuness of our algorithm given different ranges
of additive noise level. Even when the noise is in the same range as the image,
the accuracy of the registration process shows a fall-off of 3.5% only.
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Fig. 5. Cumulative graphs representing the percentile of points of the whole vascula-
ture inside a certain distance from the centerline for the simulated data, before regis-
tration(left) and after rigid and elastic transformations(right)

Noise level range|% of points < 1 voxel|% of points < 2 voxels|% of points > 2 voxels
[0,0] 100 % 100 % 0%
[0,50] 100 % 100 % 0%
[0,100] 977 % 100 % 0%
[0,200] 96.8 % 9.7 % 03 %
[0,255] 96.5 % 99 % 1%

Fig. 6. Influence of different additive white noise levels on the registration process

Fig. 7. Simulated images, with no noise(left) and with a noise range [0,255](right),
used to test the robustness to noise of our algorithm.
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4 Discussion and Conclusions

We have developed a model to image registration technique that uses both rigid
and deformable transformations. Our model, a set of blood vessels, is registered
with a 3-dimensional image. Our method exploits the hierarchy of tubes and
consider their elasticity and flexibility. It is shown to operate with ~ 87% of
centerline points within 2 voxels on pre-post surgery MRI.

Portions of this work were implemented using the NLMs Insight Toolkit
(http://www.itk.org), UNC Contract NO1-LM-0-3501. Further demos at cadd-
lab.rad.unc.edu. This work was supported in-part by an equipment and software
grant from Microsoft Corporation. Supported in part by Whitaker Foundation
grant RG-01-0341
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