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Abstract. Several recent studies demonstrate the potential of using
tubular structures such as vessels as a basis for image registration. In
this paper, we present a novel technique for the deformable registration
of tubular structures. Our approach aligns tubular models, e.g. vessels of
an organ, with an image by combining both rigid and non-rigid transfor-
mations in a hierarchical manner. The physical structure and properties
of the vessels are taken into account to drive the registration process. Our
model-to-image registration method shows sub-voxel accuracy as well as
robustness to noise and a convergence time of less than one minute.

1 Introduction

Most popular registration methods such as mutual information and related tech-
niques register one image to another and use, in most cases, a rigid or an affine
transformation [7]. Non-rigid versions of these methods also exist [9]. Aylward et
al. [1] have demonstrated the rigid registration of vessels with an image. However
its extension to deformable registration has not been shown.

A variety of deformation field estimation methods exist. Fluid based regis-
tration approaches [5] handle arbitrary deformations but do not take advantage
of the object’s geometry in images. On the other hand, model-to-model regis-
tration techniques that fully exploit the geometric correspondences have been
developed. Finite element modeling also shows excellent results [4] by deform-
ing a mesh given image forces. Our technique differs from these approaches by
(1) combining both rigid and deformable transformations in a hierarchical man-
ner, (2) combining geometry and intensity information and (3) persisting as an
instance of model-to-image registration.

Our technique takes advantage of the typical tree structure of blood vessels
and uses branch points to constrain the deformation field. We perform three
distinct steps to achieve final registration of the model with the image: global
rigid transformation, piece-wise rigid registration and deformable registration.
The first stage deals with the global rigid body registration and has been shown
to have sub-voxel accuracy, handle large initial mis-registrations and converge in
2-10 seconds [1]. Such rigid registration is a preliminary and necessary stage in
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order to be “close enough” to the deformed structure. The second stage uses the
tree structure inherent in vascular network to perform a piece-wise rigid align-
ment. First, the root of the tree is aligned and then its children are registered, in
order, from root to leaves. Branch points and physical parameters of the tubular
structure have to be known to approximately constrain this task. Hierarchical
local deformation is the concern of the third stage.

2 Method

Blood vessels in the human body are organized as a tree structure. For instance,
in the liver, portal and hepatic vessels define two distinct trees; in the brain,
vessels are divided into several trees, among them, right and left cerebral group.
Formally, a tree is composed of at least one root, but vasculature trees can
have multiple roots and can contain cycles. Our technique relies on this tree
configuration to perform a global to local registration. First, a 3-dimensional
model of the vasculature is formed using a ridge traversal technique [2]. Each
extracted blood vessel is represented as a centerline with an associated radius
at each point on the line. Next, we initiate our deformable registration strategy
by solving for a global rigid transform.

2.1 Global rigid registration

Our rigid registration method maps a 3-dimensional vascular model into the
target image using a tube-to-image technique developed by Aylward et al. [1].
This algorithm relies on blood vessels to have high intensity values in the target
image. For each sample point of the model, the intensity is computed in the
target image at a scale proportional to the radius of the vessel at that point.
The sum of these intensities is the value of the match metric and the parameters
of the transformation are optimized to maximize this metric. A unique additional
property of this method is that it limits vessel to inducing registration updates in
their normal directions. Furthermore, the iterative updates of the rigid transform
are adjusted for the orientation bias of the vessels. The second step consists of
a piece-wise rigid registration from root to leaves.

2.2 Piece-wise rigid transformation via propagation

A rigid registration is applied to each vessel in a hierarchical manner. As in our
global rigid registration step, we align the model to match high intensity values
in the target image. First the root of the tree is registered with the image using a
rigid body transformation. Second, the branches of the tree are registered rigidly
with the image one branch at a time using the parent-child hierarchy with anchor
points at the branch points. That is during this step we solve for the rotation at
each branch point using the parent-child hierarchy.

The magnitude of the rotation is given by the displacement vector v com-
puted along each branch individually (sub-branches do not contribute). The
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evaluation of the rotation is done using a linear weighted factor A(i) along the
child tube so that points close to the branch contribute more to the rotation. The
image gradient is computed only at centerline points z at a scale ¢ proportional
to the radius of the tube at that point. N represents the number of centerline
points that compose the vessel. For each centerline point ¢ the image gradient is
projected onto its normal plane n; = (ny,n2);.

N

v= D> A@)Va(o) - ni (1)

i=1

To translate a branch, the elastic property of the parent has to be taken into
account. Specifically, the translation vector v of the child is projected onto the
tangent direction t of its parent at the specified branch point z and the amount
of translation T allowed is constrained by the elasticity 7 of the parent tube
multiplied by the initial distance d between the two consecutive points near the
branch.

T = max(v - t,vd — |x — x¢|) - ¢ (2)

Once the branch point is moved, the points of the parent are updated to prop-
agate the translation along the tube. We repeat the process until convergence
before going to the next step: the deformable registration.

2.3 Deformable registration

Non-rigid registration is also driven by derivative information from the target
image. Our approach uses the image gradient computed at a scale proportional
to the radius of the tube and projected onto the normal of the tube. Due to the
potential complexity of the elastic deformations, i.e. folding, shrinking, expan-
sion, etc., we add constraints to the registration process.

The first constraint is the elasticity coeflicient v of the tube which limits the
movement of points along a tube. This is the same as 2.1 but now everypoint
along a tube may move.

The second constraint is the rigidity coefficient which defines the bending
factor of the tube. There are several ways to define such a coefficient. We define
rigidity as the maximum angle between the initial tangent to at rest and the
actual tangent t. The rigidity coefficient can be different for each point along
the structure or can be constant. Intuitively, the rigidity of a vessel is propor-
tional to its radius and depends on its material and physical properties. In our
implementation we choose to keep the rigidity constant and use a non-uniform
sampling rate to accommodate the rigidity coefficient as the radius changes.

An iterative optimization process uses these two coefficients and the projected
gradient at each point along a centerline to fit each centerline to the data. This
continues until the full hierarchy has been fit to the data.
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3 Results

In order to evaluate the accuracy of our registration algorithm we compared
registered blood vessels with vessels that had been extracted from the target
image. It is important to note that the extracted target image vessels are not
used in the registration process, but only for validation purposes.

3.1 Simulated Data

First, we tested our algorithm on simulated data to perform noise sensitivity
measurements. We created an artificial tree composed of a main trunk and two
branches. The main trunk is a straight tube composed of 50 points while the
branches are 20 points long. The three tubes have a constant radius of 2mm.
Next, we deformed the tree and created a binary image of the deformed tree
such that high intensity pixels fall inside the tubes. Finally, the image is blurred
by a Gaussian filter (o = 5) since blood vessel’s cross section have a Gaussian
profile in clinical data. Figure 1 shows a slice of the synthetic image.

Fig. 1. Simulated image, with no noise(left) and with a noise range [0,255](right), used
to test the robustness to noise of our algorithm.

Figure 2 shows the three consecutive steps of the algorithm, after rigid regis-
tration(left), after piece-wise rigid transformations(middle) and after non-rigid
registration(left). Before and after the registration process we compute the cu-
mulated measures of the percentile of points inside a given distance from the
centerline using the closest point metric. Results are shown in Figure 3.

Next, we quantify the robustness to noise of our algorithm by adding uniform
additive noise to the simulated image (Figure 1-right). Table 4 presents the
results of the registration given different ranges of noise level. The accuracy of
the registration process shows a fall-off of 3.5% only even when the noise pans
the same range as the image. The summation of derivatives calculated using
gaussians with standard deviation proportional to the size of the object is very
robust to noise [6].
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Fig. 2. Simulated tubes used to test the robustness of our algorithm. Original sets of
tubes(left), After semi-rigid registration(middle) and after non-rigid registration(right).
Only the light grey tubes are moving, they are being registered with the deformed
image. The dark vessels are only being shown to illustrate “truth”
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Fig. 3. Cumulative graphs representing the percentile of vascular points within a cer-
tain distance from the centerline of the true vasculature point, before registration(left)
and after rigid and non-rigid transformations(right)

3.2 Pre-post-surgery Brain Data

We applied our algorithm on pre- and post-surgery brain Time-of-flight MRA
data in which an arteriovenous malformation (AVM) had been embolized. The
data volume sizes 256x256x104 and has been isotropically resampled to a spacing
of 0.87. Approximately 100 vessels were extracted with an average of 150 points
per vessel. An initial global rigid registration was performed using a sample
factor of 10, i.e. approximately 15 points per vessel are used for registration.
Fig.5-left shows the result. Next we applied 40 piece-wise rigid transformation
iterations per branch, Fig.5-right. Fig.6 shows the final registration using both
piece-wise rigid and non-rigid transformations.

After each stage of the registration process we compute the percentile of
centerline points inside a given distance from the centerlines of the vessels in
the target image. Figure 7 shows the results. Both stages of the deformable
registration requires less than 10 seconds to converge on a standard desktop PC
Pentium 4 (2.4GHz) without any parallelization. Depending on the complexity
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Noise level range|% of points < 1 voxel|% of points < 2 voxels|% of points > 2 voxels
[0,0] 100 % 100 % 0%
[0,50] 100 % 100 % 0%
[0,100] 977 % 100 % 0%
[0,200] 96.8 % 99.7 % 03 %
[0,255] 965 % 99 % 1%

Fig. 4. Influence of different additive white noise levels on the registration process

Fig. 5. Original set of tubes registered with a global rigid transformation(left) and
the resulting set of tubes after the piece-wise rigid registration(right). Only the black
vasculature is moving. The light grey vasculature is shown here as truth but is never
used to drive the registration process. The data that produced the clinical MRA light
grey tubes is actually driving the registration process

of the vascular tree (number of branches, size of the tree) the computation time
can be decreased significantly using parallel processing [1]. We are currently
integrating our algorithm for Radio-Frequency Ablation (RFA) of liver tumors
in the operating room and are pursuing parallelization and other speed improving
enhancements.
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Fig. 6. Set of tubes after the deformable registration process. Non-rigid deformations
are applied after the semi rigid registration. Again, the light grey vasculature is shown
here as an illustration but is never used to drive the registration process. Circles high-
light areas of larger non-rigid deformation
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Fig. 7. Percentile of points inside a given distance from the centerlines of the ves-
sels in the target image (cumulative graphs). Before registration(left), after semi-rigid
registration(middle) and after semi-rigid plus deformable registration(right)



8 Julien Jomier and Stephen R. Aylward

4 Discussion and Conclusions

We have developed a novel model to image registration technique that uses both
rigid and deformable transformations in a hierarchical manner. The model, a set
of blood vessels, is registered with the image by exploiting the parent-child hier-
archy present in the vasculature. Furthermore, elasticity and rigidity coefficient
of the vessels are taken into account during the registration process to constrain
the deformation field. Our algorithm shows high accuracy and robustness to
noise on simulated data and operate with ~ 87% of centerline points within 2
voxels on pre-to-post AVM embolization MRA registration.
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