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Abstract. Many medical image analysis problems that involve multi-
modal image lend themselves to solutions that involve class posterior den-
sity function images. This paper presents a method for large deformation
exemplar class posterior density template estimation. This method gen-
erates a representative anatomical template from an arbitrary number
of topologically similar multi-modal image sets using large deformation
minimum Kullback-Leibler divergence registration. The template that
we generate is the class posterior that requires the least amount of defor-
mation energy to be transformed into every class posterior density (each
characterizing a multi-modal image set). This method is computationally
practical; computation times grows linearly with the number of image
sets. Template estimation results are presented for a set of five 3D class
posterior images representing structures of the human brain.

1 Introduction

Computational anatomy, the study of anatomical variation, is an active area
of research in medical image analysis. An important problem in computation
anatomy is the construction of an exemplar template (or atlas) from a population
of medical images. This template represents the anatomical variation present
in the population [1,2,3]. Understanding anatomical variability requires robust
high-dimensional image registration methods where the number of parameters
used to describe the mappings between images is on the order of the number of
voxels describing the space of the images.

Modern imaging techniques provide an array of imaging modalities which
enable the acquisition of complementary information representing an underlying
anatomy. Most image registration algorithms find a mapping between two scalar
images. In order to utilize multi-modal images of a single anatomy we define
the notation of a multi-modal image set, I, as a collection of m co-registered
multi-modal images, I(z) € R™. For example, I(x) might represent a CT image,
a T1l-weighted MR image, and a PET image of a single anatomy.
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Most image registration algorithms find a mapping between two scalar im-
ages. If the images are of different modalities, mutual information is typically
used to register them. High-dimensional image registration in the context of mu-
tual information and other dissimilarity measures frameworks has been studied
extensively. A thorough investigation of these dissimilarity measures in high-
dimensional image registration is presented in [4]. A multi-modal free-form reg-
istration algorithm that matches voxel class labels, rather than image inten-
sities, via minimizing Kullback-Leibler divergence is presented in [5,6]. This
method finds correspondences between two multi-modal scalar images. Although
inter-subject high-dimensional image registration has received much attention
[7,8,9,10], to our knowledge, little attention has been given to using multi-modal
image sets of subjects to estimate registration transformations.

1.1 Model Based Multi-modal Image Set Registration

Across image sets, the number of constituent images may vary, thus registration
based on an intensity similarity measure is not possible in this setting. While
mutual information can be extended to multiple random variables, its extension
to registration involving three or more images is not clear. Given these difficulties
we move to a model based approach where the registration is performed using
underlying anatomical structures. We incorporate anatomical structures as a
prior in a Bayesian framework as described in [11].

This framework is based on the assumption that human brain anatomy con-
sists of finitely enumerable structures such as grey matter, white matter, and
cerebrospinal fluid. These structures present with varying radiometric intensity
values across disparate image modalities. Given a collection of multi-modal image
sets representing the atlas population, we capture the underlying structures by
estimating, for each image set, the class posterior densities associated with each
of the structures. These class posterior densities are then used to produce the
multi-class posterior atlas by estimating high-dimensional diffeomorphic registra-
tion maps relating the coordinate spaces of the densities. The Kullback-Leibler
divergence is used as a metric for the posterior densities to estimate the trans-
formation. The use of the class posterior densities provides an image intensity
independent approach to image registration.

2 Bayesian Framework

From a population of N multi-modal image sets {I;}}¥,, for each class ¢, we
first estimate the class posterior densities p;(z) = p(cx(x)|I;) for each image
set i where cy(r) is the class associated with the voxel at postion z € R3.
Recall that this method is independent of the choice of the number of images
comprising each image set. These class posterior densities are produced using
the expectation maximization method described in [12,13]. Following [13,14], for
each class ¢ the associated data likelihood, p(I;(z)|ck (2), pr, Xk ), is modeled as
a normal distribution with mean, uj, and covariance, X;. The class posteriors
are computed using a new atlas developed at UNC’s department of psychiatry
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for two year old children. This atlas is based on fourteen subjects using the
same concepts as used in the construction of the Montreal Neurological Institute
(MNI) International Consortium for Brain Mapping (ICBM) atlas [15].

Motivated by [16,17], we are currently investigating the use Parzen windowing
as a replacement for the Gaussian model described above. In this paper we focus
on the construction of an exemplar templates from a population of anatomical
class posterior densities. We use the method developed in [18] which provides an
unbiased technique for atlas construction using large deformation diffeomorphic
registration.

3 Exemplar Templates

We consider the problem of estimating a template class posterior p that is the
best representative for a population of N class posteriors, {p;}}¥, , representing
the N individual image sets {I;}2,. The template p is not a member of the
{p:}. To this end, we consider the problem of constructing a mapping between
p and each class posterior in the set {p;}. That is, we estimate the mappings
hi : 2 — £2; where 2 C R? and £2; C R? are the coordinate systems of the class
posteriors p and p; respectively. Again, (2 is independent of any of the population
class posterior coordinate systems. This framework is depicted in Figure 1.
Following the template construc- ——
tion framework developed in [18] we
seek the representative template class
posterior p that requires the minimum

(2

amount of energy to deform into ev- A D3
ery population class posterior p;. More 3
precisely, given a transformation group ()
S with associated metric D : S? — R, 3
along with a probability density dis- h
similarity measure E(p, q), we wish to 41 P4
find the class posterior density p such —

that

N
{hi,p} = argminZE(piohi,p)—l-D(e, hi)
hi€eS,p ;4
(1) Fig. 1. Template Construction Frame-

where e is the identity transforma- york
tion.

In this paper we focus on the infinite dimensional group of diffeomorphisms
H as described in [18]. We apply the theory of large deformation diffeomor-
phisms [19] to generate deformations h that are solutions to the Lagrangian
ODEs £h(z,t) = v(h(z,1),1).

We induce a metric on the space of diffeomorphisms by using a Sobolev
norm (a norm that involves derivatives of a function) via a partial differential
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operator L on the velocity fields v. Let h be a diffeomorphism isotopic to the
identity transformation e. We define the distance D(e, h) as

1
D(e,h):min/ /||Lv(z,t)||2d:cdt
v Jo Je

subject to

h(ac)z/o v(h(z,t),t)dt.

The distance between any two diffeomorphisms is defined by

D(hy,hs) = D(e,hy*, ha).

In [18] the construction of h and h~! as well as the properties of D as described.

4 Large Deformation Class Posterior Template

Construction
Having defined a metric on the space of diffeomorphisms, the minimum energy

template estimation problem described in Equation 1 is formulated as

N 1
{Bl,ﬁ} = argminZE(pi ohi,p) + / / ||Lvi(x,t)||2d:1:td
0o Jo

hi,p i=1

subject to

1

As ameasure of dissimilarity between two probability density functions p(¢(z))
and ¢(¢(x)), the Kullback-Leibler divergence (relative entropy),

< p(er(@))
D1 (p(e(x)), q(e(x))) = ; p(ck(x))log dx (@)’

is used where ¢ = {c¢;}$_, represents the C' anatomical structure classes. From
an information theoretic viewpoint [20], this dissimilarity can be interpreted as
the inefficiency of assuming that an observation ¢(¢(x)) is true when p(¢(x)) is
true. That is, we can use Kullback-Leibler divergence to measure how much the
deformed class posteriors, {p;(¢(hi(z)))}~ , deviate from the atlas p(¢(z)).

Under the Kullback-Leibler divergence measure the template estimation prob-
lem becomes

N

hisp = argminy | Dir(p(e(2)), pi(e(hi(x))))da
hi,p i—1 V2

+/01/Q||Lvi(a:,t)||2d:cdt. 2)
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This minimization problem can be simplified by noticing that for fixed transfor-
mations h;, the p that minimizes Equation 2 is given by normalized geometric
mean of the deformed class posteriors, p;(¢(h;(x))),

1

= (sz\il pz(cj(hl(x)))) n
chzl (Hij\il pi(ck(hi(x))))

Combining Equations 2 and 3 results in the following minimization problem

plcj (@) T 3)

n

) N
s = argmin / Dicr(p(e(), pi(e(hi(x))))de
hi =1 2

1
+/ || Lvi(z, t)||* dedt. (4)
0o Jo

Note that the solution to this minimization problem is independent of the or-
dering of the NV images.

5 Implementation

Following Christensen’s algorithm for propagating templates described in [21],
we approximate the solution to the minimization problem described in Equation
4 using an iteratively greedy method. At each iteration n, the updated trans-
formation hf“, for each class posterior p’, is computed using the update rule
AT = hP (2 4 ev](w)). The fields h} and v} are the current estimated trans-
formations and the velocity for the ith class posterior, and € is the time step
size. That is, each final transformation h; is built form the composition of n
transformations.

The velocity v}* for each iteration n is computed as follows. First, compute
the updated template estimate (i.e. the normalized geometric mean)

1

n

A (I piles (B2 (@))))
5 (e5(w)) = .
Sy (T pilen(hy @)

for each class component j. Next, following the second order approximation to
Kullback-Leibler divergence described in [11] define the body force functions

T
ck(hi(z))

C
)= 3 [ ] g,
@0=2 P Y
This is the variation of the class posterior dissimilarity term in Equation 4 with
respect to the transformation h;. The velocity field v is computed at each
iteration by applying the inverse of the differential operator L to the body force
function, i.e. v?'(x) = L~'F*(x), where L = aV2+3V-V+ is the Navier-Stokes
operator. This computation is performed in the Fourier domain [22].
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6 Results

To evaluate the performance of this method we applied the algorithm to a set
of five class posterior densities that where derived from a population of T1-
weighted, T2-weighted, and proton density 3D MR images of brains of health
two year old children using an expectation maximization segmentation method
[13,14]. As a preprocessing step, these images were aligned using affine trans-
formations. An axial slice from each derived class posterior density is shown in
Figure 2. There is noticeable variation between these anatomies, especially in
the ventricular region.

Figure 3 shows the normalized geometric mean of the five class posterior den-
sities and the final estimate of the template. The normalized geometric mean is
blurry since it is an “average” of the varying individual neuroanatomies. Ghost-
ing is evident around the lateral ventricles and near the boundary of the brain.
In the final estimate of the template these variations have been accommodated
by the high-dimensional registration.

Fig. 2. Five class posteriors each with four classes. These images clearly show the large
inter-subject variability, especially in the ventricular system.
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Fig. 3. Template Construction. The top row shows the normalized geometric mean
class posterior density following an affine registration of all five subjects. The bottom
row represents the estimated template after the final iteration of the algorithm.
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