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Abstract. We have been developing an approach for automatically quan-
tifying organ motion for adaptive radiation therapy of the prostate. Our
approach is based on deformable image registration, which makes it pos-
sible to establish a correspondence between points in images taken on
different days. This correspondence can be used to study organ motion
and to accumulate inter-fraction dose. In prostate images, however, the
presence of bowel gas can cause significant correspondence errors. To ac-
count for this problem, we have developed a novel method that combines
large deformation image registration with a bowel gas segmentation and
deflation algorithm. In this paper, we describe our approach and present
a study of its accuracy for adaptive radiation therapy of the prostate.
All experiments are carried out on 3-dimensional CT images.

1 Introduction

One major treatment method for prostate cancer is external beam radiation
therapy, which uses high energy x-rays that are delivered in a series of 40 or
more daily treatments. To be safe and effective, the radiation dose to the cancer-
containing prostate should be as high as possible while the dose to surrounding
organs such as the rectum and bladder must be limited. This effect is achieved
by using multiple radiation beams that overlap on the tumor and are shaped to
exclude normal tissue as much as possible. However, internal organ motion and
patient setup errors present a serious challenge to this approach. The prostate,
rectum, bladder and other organs move in essentially unpredictable ways, and
even small changes in their position can result in either tumor under-dosing,
normal tissue over-dosing, or both.

Adaptive radiation therapy (ART), which uses periodic intra-treatment CT
images for localization of the tumor and radiosensitive normal structures, is being
investigated to meet this challenge. In this method a feedback control strategy [1]
is used to correct for differences in the planned and delivered dose distributions
due to spatial changes in the treatment volume early in the treatment period.

Although in-treatment-room CT scanners provide the enabling imaging hard-
ware to implement ART, no software methods or tools for automatic image
processing exist to enable the incorporation of these images in the adaptive
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treatment of prostate or other cancer. As a result, all such work must be done
manually. However, manual segmentation of the tumor and neighboring organs
places an impractical burden on highly skilled and already overburdened per-
sonnel. Moreover, clinically significant inter- and intra-user variability of manual
segmentations introduces a source of treatment uncertainty that current adap-
tive radiation therapy techniques do not address [2, 3].

We have been developing an approach for automatically quantifying organ
motion over the course of treatment. Our approach is based on deformable im-
age registration, which makes it possible to establish a correspondence between
points in images taken on different days. This correspondence can be used to
study organ motion and to accumulate inter-fraction dose.

In prostate images, however, the presence of bowel gas can cause significant
correspondence errors as no correspondence exists for pockets of gas across dif-
ferent days. Shown in Figure 1 are two rigidly aligned axial images of a patient
taken on two different days. Due to the transient nature of bowel gas, it is present
in one of the days but absent in the other. To account for this problem, we have
developed a novel method that combines large deformation image registration
with a bowel gas segmentation and deflation algorithm. In this paper, we de-
scribe our approach and present a study of its accuracy for adaptive radiation
therapy of the prostate.

Fig. 1. Axial CT slice of the same patient acquired on different days, showing the effect
of bowel gas.

Several deformable image registration methods are currently being investi-
gated for alignment of serial CT data [4–7]. However, none of these studies ad-
dress the problem of bowel gas for deformable registration of CT images. Also,
while some authors present validation studies based on known transformations
or phantoms, to our knowledge none have presented an analysis of the accuracy
of their methods for automatic segmentation of a large number of treatment
images based on physician drawn contours.

2 Methods
We use the CT taken at planning time, the planning image, as a reference. On
each treatment day, the patient is positioned and then, prior to treatment, a
new CT scan is acquired using an in-treatment-room CT scanner that shares a
table with the linear accelerator. Each treatment image characterizes the patient
configuration at that treatment time.



If there were absolutely no organ motion then the planning and treatment
images should all be the same, except for noise from the imaging device. How-
ever, because there is organ motion, these images will differ, and the difference
characterizes the organ motion. We have understood the motion when we can
tell, for each point in the planning image, which point in the treatment image it
corresponds to. In this way organ motion and image registration are linked—we
can understand organ motion if we can estimate image correspondence.

We can view an image as a function I from the spatial domain Ω ⊂ R3 to an
intensity value in R. Image correspondence is expressed as a function h : Ω → Ω,
called a deformation field. For x ∈ Ω, h(x) is the point in the treatment image,
IT , that corresponds to the point x in the planning image, IP .

The transformation h is estimated as follows. First, the planning and treat-
ment CT data sets are rigidly registered. This quantifies the rigid patient setup
error. In order to accommodate bowel gas we apply our algorithm for segmenting
and deflating bowel gas to produce deflated images IPd

and ITd
. Finally, IPd

and
ITd

are registered using a high dimensional large-deformation image registration
algorithm. h is defined as the composition of these transformations.

Rigid Registration The planning and treatment images are thresholded so
that only bone is visible. The region of interest is restricted to the pelvis as it
remains fixed while the femurs and spine can rotate or bend. The rigid transfor-
mation, r, is estimated using an intensity based gradient descent algorithm [8].

Accommodating Bowel Gas As the contrast between gas and surrounding
tissue is very high in CT images, we create a binary segmentation of the gas in
an image using a simple thresholding operation. We refine this binary segmen-
tation using a morphological close operation, which eliminates small pockets of
gas. Next, we construct a deflation transformation s based on a flow induced by
the gradient of the binary image. Points along the gas-tissue border, where the
gradient is non-zero, flow in the direction of the gradient. As a result, gas filled
regions collapse toward their medial skeletons—deflating like a balloon. Impor-
tantly, we do not aim to simulate the true motion of the tissue but to deflate
the gas so that the image may be accurately registered.

More precisely, we construct a non-diffeomorphic deflation transformation
s : Ω → Ω such that I(s(x)) is the image I(x) after a deformation that deflates
gas. The transformation s is constructed by integrating velocity fields v(x, t)
forward in time, i.e. s(x) = x+

∫ 1

0
v(s(x, t), t) dt. These velocity fields are induced

by a force function F (x, t) = ∇(I◦st)(x) that is the gradient of the binary image.
The force function and velocity fields are related by the modified Navier-Stokes
operator (α∇2 + β∇ (∇· ) + γ)v(x, t) = F (x, t). We solve for s using an iterative
greedy method.

Figure 2 shows the result of our gas deflation algorithm. The large pocket of
gas present in the image has been deflated, resulting in an image that can be
accurately registered using deformable image registration.

Deformable Image Registration We apply the theory of large deforma-
tion diffeomorphisms [9, 10] to generate a deformation hdef : ΩPd

→ ΩTd
that

defines a voxel-to-voxel correspondence between the two gas deflated images IPd



(a) (b) (c)

Fig. 2. Gas Deflation Algorithm. (a) Axial slice CT image with large pocket of bowel
gas. (b) Zoomed in on the gas pocket. The gas is segmented using simple thresholding.
Gas is deflated by a flow induced by the gradient of the binary image. (c) The image
after application of the deflation transformation.

and ITd
. The registration is determined by finding the deformation field hdef

that minimizes the mean squared error between IPd
and the deformed image

ITd
◦ hdef ,

D(h) =
∫

x∈Ω

|IPd
(x)− ITd

(hdef(x))|2 dx.

The transformation is constrained to be diffeomorphic by enforcing that it satisfy
laws of continuum mechanics derived from visco-elastic fluid modeling [10, 9].

Composite Transformation Correspondence between the original images
IP and IT is estimated by concatenating the rigid, deflation, and deformable
registration transformations, i.e.

hP→T = r(sT (hdef(s−1
P (x))))).

That is, the point x in the planning image corresponds to the point hP→T (x)
in the treatment image. This composite transformation is not guaranteed to be
diffeomorphic. However, the non-diffeomorphic part of the transformation is re-
stricted to the region of the rectum that contains gas—where no correspondence
exists.

Figure 3 shows an example of the application of method described above.
Panel (b) shows the result of automatic segmentation using only large deforma-
tion image registration. Manually drawn contours of the prostate and rectum are
mapped, using this correspondence, from the reference image (a) onto the daily
image. Manual contours are drawn in red while mapped contours are drawn in
yellow. Notice the misalignment of the manual and automatically generated con-
tours in the daily image; the presence of bowel gas has caused correspondence
errors around the rectum. A more accurate correspondence between the refer-
ence and daily images is established by concatenating registration and deflation
transformations as shown in panel (c). Notice the close alignment between the
manual contours and the contours generated by our method.

3 Results
We now present detailed statistical analysis of the application of our methods
to a set of 40 CT images from 3 patients undergoing ART in our clinic. Each
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Fig. 3. Automatic segmentation of the prostate and rectum. Manually segmented struc-
tures in the planning image (a) are mapped to the daily image (b) before accounting
for bowel gas, and (c) after accounting for bowel gas with our gas deflation algorithm.
Manually drawn contours are shown in red and mapped contours are shown in yellow.

CT scan was collected on a Siemens Primatom CT-on-rails scanner with res-
olution 0.098 × 0.098 × 0.3 cm. We analyze the accuracy of our method by
comparing automatically generated segmentations to manual, hand-drawn, seg-
mentations. Because of inter-rater variability, however, there is no ground truth
manual segmentation to compare against. We therefore compare our automati-
cally generated segmentations with the segmentations from two different manual
raters, and then make the same comparisons between the segmentations from
the manual raters.

The experimental setup is as follows. The planning image for each patient is
manually segmented by rater A. Each treatment image is manually segmented
twice, once by rater A and once by rater B. For each patient, our method is
used to compute the transformations hi that map the planning image onto the
treatment image for each day of treatment i. An automatic segmentation is
generated for each treatment image by applying hi to the segmentation in the
planning image. We can consider our automatic method for producing treatment
image segmentations as rater C (for “computer”).

Each segmentation is represented by a triangulated surface. For manual seg-
mentations, the surface is constructed by applying the power crust algorithm [11]
to a set of contours drawn in the axial plane by the manual raters. For automatic
segmentations, the surface is generated by applying a transformation h to the
vertices of the surface given by the manual segmentation in the planning image.

For each patient and for each treatment day, we make three comparisons:
CA, automatic segmentation verses manual segmentation by rater A; CB, au-
tomatic segmentation verses manual segmentation by rater B; and BA, manual
segmentation by rater B verses manual segmentation by rater A. It should be
emphasized that the automatic segmentations are produced by transforming
manual planning segmentations produced by rater A, not rater B. Thus, we
expect the CA comparisons to be more favorable than the CB comparisons.

In the rest of this section, we present the results of this experiment when
comparing centroid differences and relative volume overlap of segmentations.

Centroid Analysis The centroid of the prostate is especially important for
radiation treatment planning and therapy because it is the origin, or isocen-



ter, for the treatment plan. To measure the accuracy of our automatic seg-
mentations with respect to centroid measurement, we compare the centroid of
each automatic segmentation with the centroids of the corresponding manual
segmentations. The differences in the lateral (X), anterior-posterior (Y), and
superior-inferior (Z) directions are measured separately.

Figure 4 shows box and whisker plots of these differences for CA, CB, and BA
comparisons. All measurements are made in centimeters. Additional summary
statistics are presented in table 1.

(a) (b) (c)

Fig. 4. Centroid differences in the lateral (X), anterior-posterior (Y), and superior-
inferior (Z) directions (cm). The horizontal lines on the box plots represent the lower
quartile, median, and upper quartile values. The whiskers show the extent of the rest
of the data. Outliers, which fall outside 1.5 times the interquartile range, are denoted
with the ‘+’ symbol.

Centroid Difference Summary (cm)

Lateral (X) A-P (Y) Sup-Inf (Z)

CA CB BA CA CB BA CA CB BA

mean -0.026 -0.007 -0.022 0.035 -0.052 0.070 0.022 0.065 -0.046

median -0.018 -0.004 -0.015 0.040 -0.104 0.089 0.030 0.028 -0.054

std. dev. 0.06 0.07 0.08 0.14 0.23 0.20 0.24 0.38 0.38

99% CI min -0.047 -0.030 -0.049 -0.010 -0.129 0.007 -0.054 -0.058 -0.167

99% CI max -0.006 0.016 0.004 0.081 0.023 0.133 0.10 0.189 0.073

Table 1. Summary statistics showing mean, median, standard deviation, and 99%
confidence interval of the mean for centroid differences.

Shown in Table 1 are the 99% confidence intervals for the true mean of each
distribution of centroid differences. The confidence intervals for the means of the
CA and CB differences both overlap with the confidence interval of the differ-
ences between human raters (AB), and are on the order of one voxel. Note that
the superior-inferior (Z) direction has a slice thickness of 0.3 cm. We conclude
that the automatic segmentation method is as accurate for estimating centroids
as human raters and, as seen by the standard deviations, just as reliable.



Relative Volume Overlap Analysis A measure often reported for compar-
ison of segmentations is relative volume overlap. This measure has been defined
in several ways. For this study, we use the Dice Similarity Coefficient (DSC) [12]
which is defined for two segmentations S1 and S2 as

DSC(S1, S2) =
Volume(S1 ∩ S2)(

Volume(S1∪S2)+Volume(S1∩S2)
2

) . (1)

Figure 5 (a) shows a box and whisker plot of the relative volume overlap for
the CA, CB, and BA comparisons. To statistically quantify the difference be-
tween the relative volume overlaps of the three segmentations A, B, and C, we
performed right sided t-tests with the alternative hypothesis X > Y . Figure 5,
panel (c), reports the P-values of these tests. It can be seen from the table that
the volume overlap measures for the CA comparisons are significantly higher
than the volume overlap measure for the manual rater comparison BA. There is
also no statistically significant difference between the relative volume overlaps
from the CB comparison with the two manual raters. Also note that the auto-
matic segmentations have a significantly better overlap with rater A than with
rater B. This is expected as the planning image was segmented by rater A.

(a)

Volume Overlap Summary

CA CB BA

mean 0.82 0.79 0.79

median 0.84 0.80 0.80

std. dev. 0.06 0.07 0.06

(b)

P-Values of right sided T-tests

X > Y Y=CA Y=CB Y=AB

X=CA 0.500 0.020 0.014

X=CB 0.980 0.500 0.523

X=BA 0.986 0.476 0.500

(c)

Fig. 5. (a) Relative volume overlap as measured by Equation 1. (b) Volume overlap
summary statistics. (c) P-value results of right sided t-test comparing the relative
volume overlaps between the various raters.

4 Conclusion

We have presented an approach for automatically quantifying organ motion for
adaptive radiation therapy of the prostate. This method extends deformable
image registration to accommodate bowel gas, which creates image regions where
no correspondence exists. We statistically analyzed the accuracy of our automatic
method against the standard of manual inter-rater variation. We showed that for
centroid and volume overlap of the prostate, the automatic method is statistically
indistinguishable from human raters. We are currently working on applying our



method to a larger number of patients and evaluating the clinical effect of organ
motion by measuring effective delivered dose and biological effect.
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