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Abstract. The construction of population atlases is a key issue in med-
ical image analysis, and particularly in brain mapping. Large sets of
images are mapped into a common coordinate system to study intra-
population variability and inter-population differences, to provide voxel-
wise mapping of functional sites, and to facilitate tissue and object seg-
mentation via registration of anatomical labels. We formulate the un-
biased atlas construction problem as a Fréchet mean estimation in the
space of diffeomorphisms via large deformations metric mapping. A novel
method for computing constant speed velocity fields and an analysis of
atlas stability and robustness using entropy are presented. We address
the question: how many images are required to build a stable brain atlas?
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1 Introduction

Computational anatomy is the study of anatomical variation. For a set of images
representing a population, a natural problem in computational anatomy is the
construction of an atlas — an image that serves as a representative for the
population. Such an atlas must represent the anatomical variation present in
the image population [1]. A major focus of computational anatomy has been the
development of image mapping algorithms [2,3,4,5] that map and transform a
single brain atlas onto a population.

In the recent and related work of [6], the authors developed a large defor-
mation template estimation algorithm by averaging velocity fields. Most, other
previous work [7,8] in atlas formation has focused on the small deformation set-
ting in which arithmetic averaging of displacement fields in well defined. We do
not make this small deformation assumption.

To generate the deformations for producing atlases, we apply the theory of
large deformation diffeomorphisms [9,3]. We simultaneously estimate the un-
biased atlas and the transformations which map the atlas to each population
image. Linear averaging cannot be applied directly to the large deformation set-
ting as, under the large deformation model, the space of transformations is not a
vector space, but rather the infinite dimensional group H of diffeomorphisms of
an underlying coordinate system {2. In our previous work [10], we address this
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problem by posing anatomical atlas creation as a statistical estimation problem
where the notion of simple intensity averaging is extended to general metric
spaces first proposed by Fréchet [11]. In [10], we developed a method for unbi-
ased construction of atlases based on an iterative greedy method for generating
large deformation diffeomorphisms.

In this paper, we present a complete large deformations metric mapping
(LDMM) methodology introduced by [12]. Both the greedy and LDMM im-
plementations provide large deformation coordinate system transformations. In
[10], the solution to the atlas formation problem generates paths through the
space of diffeomorphisms, the length of which cannot be used to define a metric
as the method provides a locally optimal rather than full space-time solution.
In contrast, the variational optimization of the atlas formation cost function in
the LDMM algorithm, gives geodesic paths on the manifold of diffeomorphic
transformations, G, the lengths of which places the orbit of transformed images
into a metric space. In this way, we build a geodesic atlas.

We use the entropy of voxel intensities to measure the robustness and sta-
bility of unbiased atlases. In the context of in MR images, entropy is often used
to assess the degree to which an image differs from an ideal where an ideal im-
age intensity histogram consists of a small number of modes representing tissue
classes [13,14]. We study the stability of atlases produced by our method by
building atlases, of increasing population size, using multiple permutations of
images from a database of images.

The remainder of this paper is organized as follows: in Section 2, the unbiased
atlas formation problem is developed culminating in the Euler-Lagrange equa-
tions used to characterize the LDMM; in Section 3, implementation details and
a novel method for constant velocity computation are presented; and in Section
4, an analysis of the atlas stability and robustness using entropy are reported.

2 Method

In our previous work [10], we exemplify the atlas estimation problem by first
considering a population of N images {I;};—1...n acquired by the same imaging
modality which have been rigidly aligned. We seek the representative image, I,
that requires the minimum amount of energy to deform into each population
image I;. In the spirit of [12], we define dense transformations, from the infinite
dimensional group of diffeomorphisms H, and fluid flow vector fields in the fol-
lowing manner: the group elements of the change of coordinates ; such that
I= 90;111- = I; o p; are generated as the end-points ¢; = ¢;(1) of the flows of
time-dependent vector fields v;(-,t), t € [0,1] from the space of smooth vector
fields V via

d

B(t) = (1) = vil), 1)

where the superscript v in ¢} is used to explicitly denote the dependence of ¢;
on the associated velocity field v. The terminal point of the curve ¢} at t = 0 is



II1

#¥(0) = e € G where e is the identity transformation e(x) = z, Vo € 2. The end
point of the curve ¢? at t = 1 is the particular diffeomorphism ¢?(1) = ¢; € G
that links the images I and I; such that [ = <p;1[i = [;0¢;. The transformations
w; are generated by integrating velocity fields, v;, forward in time.

Given H, with associated metric D : H x H — R, along with an image
dissimilarity measure E(Iy, I5), we wish to find the image I such that

{@i, I} = argmlnz (I, Iio ;) + D*(e, 7)) - (1)
pieH,I

We induce a metric on H by a Sobolev norm via a partial differential operator
L on the velocity fields. Let ¢ be a diffeomorphism isotopic to the identity
transformation e, that is, there exists a continuous family of diffeomorphisms
from e to ¢. We define the squared distance D?(e, ) on the space V of smooth
velocity vector fields on the domain {2, as

D*(e,p) =  min / Lo (b)|[3dt.
v:(t)=v(Pv,t)
The distance between any two diffeomorphisms is defined by

D(¢1,2) = D(e, 7" 0 p2).

This distance satisfies all the properties of a metric [15].
Having defined a metric on H, the minimum energy template estimation
problem described by Equation 1 is formulated as

N 1
{isI}iz1.. N = argmin Z (EQ(I, I; 0 ;) —|—/ ||Lvi(t)||%,dt) .
vi:(£)=v(?,t),1 =1 0

Throughout this paper we use the square error dissimilarity metric. Under this
metric, the template estimation problem becomes

{¢i,f}i:1...N = argmin
vi:g(t)=v(¢",t),I
N 1 1
> (;III —Liogill7 +/0 ||Lvi(t)||%/dt> (2)
=1

where ¢ models the noise in the image match term. Smaller values of this pa-
rameter increase the penalty of image mismatch leading to exact match when
o — 0 which comes at the expense of smoothness in the estimated maps ;.

This minimization problem can be simplified by noticing that for fixed trans-
formations ¢;, the image I that minimizes Equation 2 is given by the voxel-wise
arithmetic mean of the deformed images

1 N
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Combining Equations 2 and 3 results in following optimization, in terms of
velocity fields,

{9:i}i=1..y = argmin FE(v;) =
031 (t)=v(e",t)
Y1 & ’ 1
Z 52 NZIJ‘O% —ILioy; +/ || Lvi(t)||3-dt |(4)
i=1 = e 0

For each individual velocity field, the minimizer of Equation 4 is constant speed,
that is, ||v;(¢)]|v = constant, since it is a geodesic. Note that the solution to this
minimization problem is independent of the ordering of the N images.

3 Implementation

We use the full space time strategy presented in [12]. Since the minimization
problem is independent of the ordering of the N images we use an algorithm that
estimates, on a per iteration basis, each ; in turn. The optimization described
by Equation 4 is implemented by an iterative steepest descent algorithm given
by

ot (E) = vf (1) - Vs E (5)
where VF is the Gateaux differential of the energy of the objective function giv-

ing the Euler-Lagrange condition. The Euler-Lagrange equation for the solution
of the variational problem in 4, in space of smooth velocity fields V', becomes

ult) = 2K (DYt DI(T 0.64(+,0) — I o 611, 1) V(T 0 61(1,0))  (6)

where ¢;(s,t) = ¢;(t)o(¢i(s)) ' and I = & Zjvzl I 0¢;. The operator K is the
Green’s function of the differential operator LfL used to define the norm || - ||y .
In our implementation, L is a modified Navier-Stokes operator [9]. Note that the
stable point of Equation 6 satisfies the Euler-Lagrange equation VE = 0.

3.1 Constant Speed Velocity

The optimal velocity fields 0;, given by Equation 4, each define a geodesic path
on the space of diffeomorphisms. As geodesics have constant speed, the velocity
fields have constant norm over time. Given VE, we enforce this geodesic con-
straint by calculating adaptive per-iteration time steps €¥(¢) such that for all
time steps ¢, the norms [, [|Lvf(t)[|3dz are equal. We formulate the inductive
hypothesis: [, || Lv(t)||3dz = p¥, a constant and solve for €/ (¢) such that

J e e = [ I - P OF o B e =
Q Q ‘

= I = (1) — AP O (1) + 4 (1) (1) (7)
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) = o 2 [ (b0 ) + ;/ B ), K (08 (1)) da
Io) £
1
N = pf = =5 | (W (), ()da
2

DET(t) = | Doy (t,1)|(I 0 ¢Y(£,0) — I 0 ¢¥ (¢, 1)) V(I 0 ¢Y(£,0)).

After choosing an appropriate value for the difference pf“ — pk, we solve Equa-
tion 7 for ¥ (¢) using the quadratic formula for the positive solution which
yields,

iy = L (A§+l<t>+J(Ai—““(t)f—vf“a) k=)

k1

2v;
We begin by specifying an initial value for one of the ef“(t) and solve for
pitt — pk. Note that the integrated velocity norm |, o ||[Lof ™ (t)|3dx does not
have to be computed since it starts at zero and increases at iteration by pf“ ok,
which is known at each iteration.

4 Results

To evaluate the performance of this method, we consider the question: how many
images are required to represent a population? To address this question, we build
atlases of increasing population size and analyze their stability with respect to
image intensity entropy. Entropy has often been proposed as a good measure of
image quality [13,14] where sharp images have relatively low entropy. Let X be
a random variable associated with the intensities for a given image and let px
be the probability mass function associated with X. Discrete entropy is defined
as the expected uncertainty in X,

H(X) = & [~ logpx ()] = = Y px(z)log px(x)
reX

where the logarithm, in our case, is take with base two yielding entropy mea-
sured in bits. The uniform distribution maximizes entropy for random variables
defined without moment constraints, such as image intensities [16]. That is, a
blurry image, with a relatively flat histogram, will have greater entropy than a
sharp image. We are interested in the entropy introduced by the atlas creation
method rather than the intrinsic entropy associated with images of individual
brain anatomy.

4.1 Atlas Formation

Our image database contains fourteen brain images that have been provided
by the UNC autism image analysis group. These images have been intensity
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normalized and rigidly aligned to 1 x 1 x 1mm? grid. Due to the high memory
demands of our implementation, we apply our algorithm to 2D mid-axial slices,
although the methodology is generalizable to 3D. These images are show in Fig-
ure 1. There is noticeable large deformation variation between these anatomies,
especially in lateral ventricles.

Fig. 1. Image Database: 2D mid-axial slices from MR images of fourteen subjects.

To quantify the stability of the estimated atlases, we generate eleven atlas
cohorts, {C;}i=2. 12, each with twenty atlases derived from [ images randomly
selected from the original database of fourteen images. Three resulting atlases
are shown in Figure 2 for both simple averaging and the LDMM method. The
rigidly aligned atlases are blurry since they are arithmetic averages of varying
individual neuroanatomies. Ghosting is evident around the lateral ventricles and
near the boundary of the brain. In the final Fréchet atlases, these regions appear
much sharper.

4.2 Atlas Convergence

To evaluate the robustness and stability of our atlases we first compute the
mean and standard deviation of the entropies of the original fourteen images. To
this we compare the mean and standard deviation of the atlas cohort entropies
that have been created both by simple arithmetic averaging of the rigidly aligned
images and those produced by the LDMM method. These results are summarized
in Figure 3. From this plot we notice that as atlas size increases, the average
atlas entropy increases for atlases formed by simple intensity averaging, where as
the average entropy decreases for atlases created via LDMM. This quantitatively
confirms the qualitatively sharper representation of underlying anatomy as seen
in the bottom row of Figure 2. The atlases also become more stable with respect
to entropy as the standard deviation decreases with atlas size. After cohort C1g,
the atlas entropy means appear to converge. To answer our original question,
given these fourteen subjects, we need about ten images to create a stable atlas
representing neuroanatomy.
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Fig. 2. Sample Atlases: each column represents an individual atlas constructed
by both (a) arithmetically averaging rigidly aligned images (top row) and (b)
estimating a Frechét mean atlas after 100 iterations (bottom row). Each sample
is selected from a cohort of twenty atlases.

Cohort Average Entropy (bits)

a0k — Atlases via Averaging
. - - Atlases via LDMM

[ o RS SR

2 3 4 5 6 7 8 9 10 11 12
Atlas Size

Fig. 3. Average Entropy: for comparison, the average entropy of the original
fourteen images is 3.91 bits with standard deviation 0.08 bits. The error bars
represent one standard deviation from the mean. Prior to computing entropy,
we shift all atlases by half a pixel to compensate for the entropy introduced
by the linear interpolation used to reconstruct images during registration.
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5 Conclusion

A novel method for unbiased atlas formation involving large deformations met-
ric mapping has been presented. The LDMM implementation has also been
improved by new constant speed velocity reparameterization constraint. The
preliminary results show that this method produces stable atlases with respect
to the entropy image quality measure. A possible direction for future work is
to explore the stability and robustness in the presence of much larger initial
population databases.
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