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Abstract. This paper presents a method for identifying image loci that
can be used as a basis for object segmentation and image registration.

The focus is on 1D and 2D shape loci in 3D images. This method,

called marching ridges, uses generalized height ridges, oriented medi-
alness measures and a marching cubes like algorithm to extract optimal

scale-orientation cores. This algorithm can can also be used for other

image processing tasks such as �nding intensity skeletons of objects and
identifying object boundaries.
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1 Introduction

There are a variety of problems in medical imaging for which height ridges are

generally useful. For example, height ridges of intensity can be used to track

the centers of blood vessels. Ridges of boundariness can also be used to identify

edges using the Canny de�nition. Of particular interest to this paper are height

ridges of medialness (called cores) that can be used as the basis for a �gural

shape model, the deformable shape locus, described by Pizer [13].

In this paper, we will concentrate on height ridges as they are de�ned in [7].

In particular, we will use the de�nition of optimal parameter ridges, in which

certain parameters of the space in which we are �nding ridges are distinguished.

These ideas can be used for identifying boundaries, in which the boundary nor-

mal provides a distinguished orientation or in seaching for ridges (cores) in a

scale-orientation space of medialness, in which we will distinguish scale and ori-

entation.

This paper describes an algorithm for �nding cores of 3D images, similar

in structure to Lorensen's marching cubes [10] and Bloomenthals' tracked par-

titioning [1] (when �nding 2D cores) and Thirion's [14] marching lines (when

�nding 1D cores). This paper presents algorithms and results for 2D cores. 1D

cores in 3D images are the subject of current work.



2 Methods

The methods used in this paper combine much of the work described in Section 1

into a common algorithm called marching ridges. We measure an image using

oriented medialness kernels and then �nd ridges within the marching framework

using the optimal scale-orientation de�nition of height ridges.

2.1 Height ridges

Maximum convexity height ridges The maximum convexity height ridge

is dealt with extensively in Eberly's �ne book [3]. Here we will only repeat the

de�nition of the maximum convexity height ridge:

De�nition 21 (Maximum Convexity Height Ridge) An m-dimensional (mD)
maximum convexity height ridge of a function M : X ! IR, or m-ridge of M ,
is an mD locus in the (nD, n > m) domain of M . In general, the de�nition of
this locus involves

1. given the Hessian matrix of second derivatives H(M ), order the Hessian's
eigenvalues �i according to �i < �i+1. Let the vector vi be the eigenvector
associated with �i. The �rst n�m such vi are transverse directions.

2. require that M have a relative maximum in each of the transverse directions;
that is,
(a) vi � r(M )(�x) = 0 for i = 1; : : : ; n � m, where r(M ) is the gradient of

M , and
(b) �n�m < 0 at �x

Generalized height ridges We have expanded upon Eberly's de�nition to

create a more generalized de�nition of height ridge, one that includes many

de�nitions and algorithms already existing in the image processing literature

(See [8, 9, 5]).

De�nition 22 (Height Ridge) An m-dimensional (mD) height ridge of a func-
tion M : X ! IR, or m-ridge of M , is an mD locus in the (nD, n > m) domain
of M . In general, the de�nition of this locus involves

1. a rule for choosing n �m linearly independent directions, vi, transverse to
the putative ridge at a location x, and

2. requiring that M have a relative maximum in each of the (1D) vi directions;
that is,
(a) vi � r(M )(�x) = 0 for i = 1; : : : ; n�m, and
(b) (vi)t H(M )(�x) vi < 0 for i = 1; : : : ; n�m.

Note that the maximum convexity height ridges are a speci�c example of

the generalized height ridge in which the rule for choosing transverse directions

involves an eigen analysis of the Hessian matrix. Also, the generalized de�nition

provides a mechanism for computing Canny edges [2], for example, by choosing

one direction transverse to the ridge as the gradient direction, and maximizing

gradient magnitude in that direction.



Optimal parameter height ridges There are a number of tasks in image

processing, to include �nding skeletons [8] and edges [9], that require a choice of

directions di�erent than that of the maximal convexity de�nition. One way to do

this is the optimal parameter height ridge. In this work, we choose to calculate

optimal parameter ridges for three major reasons:

1. Distinguishing certain parameters seems a natural and intuitive choice when

dealing with certain functions. Pizer [13] has described how position, radius,

and orientation are natural parameters to separate for modeling shape. The

maximum convexity height ridge does not guarantee such separation.

2. The incommensurability of position, radius and orientation can provide for

non-Euclidean geometries in the domain of M . In the case of position and

scale alone, Eberly [3] has shown a hyperbolic geometry in the domain of

M . However, even then, there is a parameter involved relating derivatives in

space to derivatives of radius. The optimal parameter hight ridge avoids this

notion and guarantees Euclidean derivatives.

3. Algorithmically, the problems of discontinuity in eigensystems becomes un-

manageable in higher dimensions. Morse [11] was able to show success in

2D, Eberly [4] in 3D, and Furst [6] some success in 4D, but both Eberly and

Furst have failed to robustly generate maximum convexity height ridges for

medical images using a 4D domain of position and scale.

Working from our de�nition of generalized height ridges, we can de�ne an

optimal parameter ridge as follows:

De�nition 23 (Optimal Parameter Height Ridge) An m-dimensional (mD) op-
timal parameter height ridge of a function M : X � S ! IR, or m-ridge of M ,
is an mD locus in the (nD, n > m) domain of M . De�ne it as follows

1. given the Hessian matrix of M restricted to the subspace S, HjS (M ), let
each of the eigenvectors of HjS (M ) be a transverse direction, and have a rule
for choosing the remaining transverse directions from X in a way possible
dependent on the eigenvectors of HjS (M ).

2. requiring that M have a relative maximum in each of the (1D) vi directions;
that is,
(a) the gradient of M restricted to the subsace S, rjS(M ), vanishes, and

v
i � r(M )(�x) = 0 for each vi 2 X , and

(b) HjS(M ) is negative de�nite at �x and (vi)t H(M )(�x) vi < 0 for each
v
i 2 X .

Let M (�x; �s) : X � S ! IR. Let X be called the underlying image space

(typically IR2 or IR3; this paper uses IR3) and let S be called the distinguished

space whose spanning parameters will be optimized. We have identi�ed distin-

guished spaces containing from one to �ve dimensions; this paper uses three. We

can view these three as a radius and an angular orientation: IR+ � S
2 (spheri-

cal coordinates) or we can view them as a vector: IR3 (Cartesian coordinates).

The spherical coordinates provide an intuitive idea of the optimized parameters,



while the Cartesian coordinates provide a computational advantage. When look-

ing for a 2D ridge in a 6D space (IR3 � IR3) we need four transverse directions.

Requiring a maximum of M in the distinguished space S identi�es three trans-

verse directions. As required by De�nition 23, these directions are eigenvectors

of HjS (M ). The last transverse direction is taken from the underlying image

space X . This direction can be chosen using the maximum convexity rule as

given in De�nition 21. However, given that one of our distinguished parameters

is orientation, we can use the particular orientation that produces a maximum

of M in S to determine the �nal transverse direction in X . That is, if �s 2 S is

the point at which M (�x; �s) is maximal for a particular x 2 X , then v
4 = �s

k�sk

in the Cartesian formulation of �s or v4 = [cos s2 cos s3; sin s2 cos s3; sin s3] in the

spherical formulation of �s.

Once having determined this direction, we must satisfy the derivative condi-

tions to label it a ridge point. We do this by assuming that the locus of points

f(�x; �s)j(�x; �s) 2 X � Sg for which M (�x; �s) is maximal in S creates a well-de�ned

manifold M. Except for non-generic situations, this assumption holds. (See [7]

for failure of genericity).

We then de�ne a coordinate chart �i : X !M. This coordinate chart is well

de�ned except at folds of M with respect to its projection onto X . These folds,

however, occur only where one of the eigenvalues of HjS (M ) vanishes. Since a

ridge point is possible only where HjS(M ) is negative de�nite, the coordinate

chart will be well de�ned at all ridge points.

We then de�ne M̂ : X ! S = f � i. We must then satisfy the following two

conditions to establish a ridge point at x

1. the �rst derivative of M̂ in the v4 direction (M̂
v
4 ) vanishes, and

2. the second derivative of M̂ in the v4 direction (M̂
v
4
v
4) is less than 0.

See Section 2.3 for a the mathematical implementation of these conditions.

Any point (�x; �s) that satis�es these two conditions and for which M jS(�x; �s)

is maximal is an optimal scale-orientation ridge point ofM . The collection of all

such points forms the optimal scale-orientation ridge.

Subdimensional maxima Given the de�nition of a generalized height ridge,

there is no guarantee that a point satisfying the derivative conditions in some

subset of transverse directions will be a local maximumof the function restricted

to the space spanned by those transverse directions. This concern was detailed

in [7]. However, we have proved that for optimal parameter ridges, each ridge

point is a maximum of the functions M restricted to the space spanned by the

directions transverse to the ridge.

2.2 Marching ridges

Both marching cubes and marching lines share the common characteristic of

�nding implicitly de�ned manifolds by �nding intersections of the manifold with



line segments of the space. Marching cubes does this with a characteristic func-

tions and line segments whose endpoints are sample points of the original image.

Marching lines does this with zero-trapping along line segments whose endpoints

are image sample points and then zero-trapping along line segments whose end-

points are the previously de�ned zeroes. Marching ridges incorporates both these

strategies for �nding both curve and surface ridges in 3D images. However, the

ridge de�nition requires more than just that we identify zero-crossings of �rst

derivatives. It also requires that second derivatives are less than zero. This con-

dition produces boundaries of the ridge, a situation not encountered in marching

cubes or marching lines, in which the surfaces and curves, respectively, are closed.

Marching ridges is a general purpose algorithm for �nding height ridges; we

have used it to calculate skeletons, edges, and cores using a variety of ridge

de�nitions. This paper uses a speci�c implementation of the algorithm for �nd-

ing optimal parameter ridges of medialness, which I will hereafter refer to as

marching cores.

The marching cores algorithm consists of the following steps:

1. InitializationUsing a mouse to specify a spatial location in a target image

and sliders to specify distinguished parameters, the user identi�es a starting

point in X � S for the marching.
2. Search Given the starting spatial point, the algorithm constructs a cube

containing the initial point and the seven points whose coordinate values are

1 greater than the initial point for some subset of coordinates. This cube

serves as the structure for the rest of the algorithm. E.g., starting at im-

age coordinate (34,123,12) produces the cube with vertices at (34,123,12),

(35,123,12), (35,124,12), (34,124,12), (34,124,13), (35,124,13), (35,123,13)

and (34,123,13).
3. Maximization Each vertex of the cube maximizes the medialness M with

respect to the distinguished parameters, producing values for each spatial

point.
4. First derivative calculationAs described in Section 2.1, each vertex of the

cube calculates �rst derivatives of M̂ . This is done using weighting functions

as described in Section 2.3.
5. Trap zeroes If the value of M̂

v
4 at any two vertices joined by an edge of

the cube di�er in sign, we use a linear approximation of M̂
v
4 to interpolate

the location along the edge where M̂
v
4 = 0.

6. Second derivative calculation Each such zero-crossing of M̂
v
4 then per-

forms an optimization of distinguished parameters and a subsequent calcu-

lation of second derivatives of M̂ . If M̂
v
4
v
4 < 0, then the point is a ridge

point and is labeled appropriately in the image.
7. Expansion Each face of the original cube that contains any ridge points

among its edges identi�es an adjacent cube to be searched for ridge points.

Each such cube is entered into a list.
8. Marching The algorithm explores each cube in the list in a breadth-�rst

pattern in a manner similar to the initial cube with the exception that initial

values for the optimization of distinguished parameters is the average of the

optimal values already determined among its vertices.



The marching cores algorithm continues this loop until there are no more

cubes to process. This occurs as the ridges ends, closes or exits the image.

2.3 Oriented medialness

Pizer [12, 13] describes a variety of options for producing medialness in 3D im-

ages. The medialness used to produce the examples in this paper is the semi-

linear, central medialness described in [12]. It is designed to reduce the e�ects

of inter�gural interference on the calculation of cores, as well as to give a more

accurate width estimation of objects. More importantly, the orientation com-

ponent of the medialness kernel can be used in an optimal parameter ridge to

determine the �nal transverse direction as described in Section 2.1.

The underlying medialness is thus M (�x;n) = Lnn(�x; knk), where L(�x; r) =

I(�x)�G(�x; r), the original image convolved with a Gaussian of standard deviation

r. The algorithm does not, however, calculate medialness, since only derivatives

of medialness are required for ridge identi�cation. Since the medialness is a func-

tion of image derivatives, the derivatives of medialness are also derivatives of the

original image intensity. First derivatives of medialness require third derivatives

of image intensity, while second derivatives of medialness require fourth deriva-

tives of image intensity.

Given that M̂ (�x) = M (�x;�i(�x)) and thatM can be de�ned in terms of deriva-

tives of the original image, the derivatives necessary for ridge calculation are as

follows:

M̂n = M�i(n)

= Lnnn

M̂nn = M�i(n)�i(n) � (rjS(M�i(n)))
t (H�1jS(M )) (rjS(M�i(n)))

= Lnnnn � (rjS(Lnnn))
t (H�1jS(Lnn)) (rjS(Lnnn))

Where �i is the coordinate chart described in Section 2.1. Each of these derivatives

is implemented as a spherical weighting function applied to the original image

intensities.

3 Results

Figure 1 shows the result of using the marching ridges algorithm on a human

brain ventricle in an MR image. Only four slices of the head are shown; the core

extends further in the ventricle on higher and lower slices.

4 Discussion

4.1 Skeletons and object edges by marching ridges

The marching ridges algorithm has been used to produce intensity ridges (skele-

tons) of objects in 2D images. It has also been used in 3D images to �nd curvilin-

ear skeletons of tube-like objects and surface skeletons for more general objects.



Fig. 1. Optimal scale-orientation core of brain ventricle in 4 adjacent MR image slices.

The marching ridges algorithm has also been used to produce edges of objects

in both 2D and 3D images using the Canny de�nition.

4.2 1D cores in 3D images

This paper presents a method for calculating cores of general objects in 3D im-

ages, objects whose cores will generally be surface manifolds. There are, however,

structures in the human body which are better described by curvilinear cores,

e.g., blood vessels and bronchial tubes. We have modi�ed the marching cores

algorithm to calculate cores for these structures; space limitations prevent the

inclusion of our results here.

4.3 Medialness with two orientations

The medialness we are currently using is a weighting function of spatial position,

radius, and a single orientation. We have begun using Blum-like medialness

measures that are functions of spatial position, radius, and two orientations.
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