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Abstract:

A probability density function is proposed to model

the task of feature identi�cation in an observed im-

age taken from a class, given a template image

for the class. A large number of locations, called

\facets", are de�ned on several grids in the template

image and feature identi�cation is accomplished by

locating all facets in the observed image. The model

is based on a particularly simple hierarchical nor-

mal form which enables fast calculation of mode es-

timates and Monte Carlo sampling. The method

is demonstrated on three-dimensional human brain

magnetic resonance images.

1 Introduction

The aim of this research is to model the task of

feature identi�cation within a class of images given

a template image representative of the class. Our

goal is to construct a probabilistic model, given the

template image and an observed image, whose mode

matches the positions of features found in the tem-

plate with the corresponding positions in the ob-

served image. This paper outlines such a model

and illustrates its capabilities in a preliminary set of

experiments matching two three-dimensional brain

magnetic resonance images. The predictive distri-

bution is maximized and samples are simulated to

investigate its shape about the mode.

To begin the construction of the model, a dis-

persed set of locations are oriented on a grid in the

template image. These locations, termed \facets",

are numerous enough that any feature in the tem-

plate image can be represented by one or a set of

them. The notion of su�cient facet density is made

more explicit in Section 2. Facets are similar to

landmarks as de�ned by Bookstein [1] except that a

human observer has not assigned each facet to rep-

resent an anatomical structure. A facet represents

an image feature once a human observer has associ-

ated its predetermined location in the template im-

age with a feature in that image. A facet also di�ers

from a Bookstein landmark in that it is de�ned to be

one random variable in a probability density func-

tion (pdf) hierarchically de�ned on a common tree of

facets. The random variables in the facet tree repre-

sent each individual facet's position in the template

image and its corresponding position in a given ob-

served image from the class. The pdf proposed in

this paper is a joint distribution on all facets' loca-

tions in an observed image from the class, given their

positions in a template image.

Facet template locations are oriented in the tem-

plate image on several grids of varying densities.

Each grid is one level in the facet tree, and the levels

are ordered in increasing density so that the most

dense grid is the bottom level of the tree. In the

model formulation, the bottom level of facets repre-

sents the image on its original scale and higher levels

can be loosely regarded as lower resolution represen-

tations of the image.

The unnormalized joint pdf on facet locations in

an observed image from the class given their loca-

tions in the template image is the product of two

functions. The �rst is a hierarchical normal model

on facet locations that assigns a probability density

value to possible facet locations in any observed im-

age from the class, given their locations in the tem-

plate. This normal model is formulated as a series

of regressions of each child facet's predicted position

on its parent's predicted position. The model pro-

vides that, in expectation, the template parent/child

spatial relationships will be preserved in an observed

image.

The second term in the product relates the ob-

served image to the template through the facet lo-

cations in both and is a function of only the bottom

(most numerous) level of the facet tree. This term is

a product over all bottom level facets of independent

normal distributions on the observed image Lapla-

cian [7] at a facet's location with mean equal to the

facet's template image Laplacian.

Maximization of the joint density on the facet tree

proceeds hierarchically starting at the top of the tree



and moving down by maximizing a constrained full

conditional density on sub-trees of decreasing size

given the positions of all facets not contained in the

sub-tree. Proceeding in this manner, we address

global characteristics of the high-dimensional den-

sity before turning to its local characteristics.

In this paper we present a formal de�nition of

the model along with our method for maximizing

the distribution. We apply the method to achieve

point estimates of feature identi�cations in a three-

dimensional human brain magnetic resonance image

(MRI) using another MRI as template and we simu-

late from the pdf using a Gibbs/Metropolis sampling

algorithm to explore its marginal moments.

2 The Model

Facets are located in the template image on several

grids of varying densities that are connected to form

a tree structure. The children of each facet in the

tree are those on the next lowest level located closest

to the parent in the template image.

The highest resolution (bottom) level contains a

su�cient number of facets to represent salient fea-

tures of the image on its original scale. To achieve

this, the template and observed image Laplacians

are convolved with a Gaussian kernel of standard de-

viation slightly larger than the facet spacing on the

bottom level of the tree. The convolution is a low-

pass �lter with threshold frequency approximately

equal to the inverse of its standard deviation. There-

fore, the spatial sampling rate on the bottom level

of the tree is above the Nyquist rate [8].

Facet template locations are �xed in the template

image. The model is a probability density function

on all facet locations in observed images from the

class. Let the observed location of facet i on level

j of the tree be denoted xij , the vector of locations

on level j be xj , and the locations of all facets be

x. Template facet locations are denoted �. The

unnormalized density on facet locations is denoted

by p(xjk; �2), and is the product of two densities,

pS(xjk) and pI(xj�
2).

The \shape" density, pS(xjk), is a hierarchical

normal distribution made up of components convey-

ing that a facet's observed location is normally dis-

tributed with mean equal to its template location

plus its parent's displacement from the parent's tem-

plate position. Let d be the spacing of the highest

resolution facet grid in the template image. For T+1

levels in the facet tree (0; : : : ; T ), the density pS can

be expressed
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where pij is the index of the parent of facet (�)ij .

The kernel of the \image" density, pI(xj�
2), is a

product of independent normal densities on the ob-

served image Laplacian of the lowest level facets with

mean equal to each facet's template image Lapla-

cian. (The image Laplacian is used in this term

rather than intensity to remove intensity trends of

order less than two, and the observed and template

Laplacians are rescaled so that their 10th and 90th

quantiles match.) For T + 1 levels (0; : : : ; T ), the

image contribution to the density on facet locations

is
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where Lx(x
i
T ) and L�(�

i
T ) are the Laplacians of the

observed and template images at positions xiT and

�iT , respectively. This distribution is regarded as a

function of x, and therefore we neglect an unknown

normalizing constant not involving x.

The full conditional distribution of facet locations

in the observed image is therefore

p(xjk; �2;�;L�; Lx)

=
1

Z
pS(xjk;�)pI (xj�

2;�;L�; Lx)
(3)

where Z = Z(k; �2; �; L�; Lx) is a normalizing con-

stant independent of x.

3 Density Maximization and Simula-

tion

For given k and �2, the conditional density p(xjk; �2)
is maximized by proceeding through the facet tree

from top to bottom. At each facet the full condi-

tional distribution on the sub-tree below it is max-

imized under the constraint that the sub-tree re-

tains its expected inner shape relationships under

pS(xjk). In other words, during numerical maxi-

mization the sub-tree is perturbed as a whole unit in

three-dimensions. Upon perturbation, the change in



p(xjk; �2) depends on two values: (1) the sub-tree's

top facet's spatial deviation from its parent, and (2)

the sum of squared Laplacian di�erences over the

bottom level facets in the sub-tree.

When a level of sub-tree tops is complete, the full

conditional distribution for every facet above the

current level can be maximized analytically since

these distributions are all normal. A small number of

ICM [3] cycles through the conditional distributions

of the current level and those above are undertaken

before including the next level of facets in the ICM

cycle.

As noted above, numerical maximization is re-

quired for the lowest level of facets included in an

ICM cycle. Conditional on the locations of facets

above this level, the (constrained) distributions on

sub-trees whose top facets lie on this level are in-

dependent. The joint density on all sub-trees with

top facets on this level can therefore be maximized

by considering each sub-tree's individual conditional

distribution separately. The Nelder-Mead simplex

method [6] is used to maximize these trivariate den-

sities.

This estimate of the mode of the density can be

used as a starting point for iterative sampling. Gibbs

sampling is easily implemented on facet locations

above the bottom level of the tree since these full

conditional distributions are normal. For each facet

on the bottom level the log full conditional distri-

bution on its position contains a squared di�erence

between observed and template image Laplacians.

This results in a non-standard form which must be

simulated using a Metropolis step.

4 Results

We now illustrate the model on a pair of three-

dimensional T1 weighted human brain magnetic

resonance images. One image was treated as

the template for this class and the other was

treated as observed from the class. The �eld of

view was 20cm�20cm�20cm and the image vol-

ume was recorded as 60 slices of 256�256 pixel

images. The voxel dimensions were therefore

.78mm�.78mm�3mm. Both images were convolved

with a three-dimensional spherical Gaussian kernel

with standard deviation 3.9 mm, and Lx and L�

were set to the Laplacians of the convolved images.

The facet tree used in this example had 4 levels

with each parent facet having 64 children (4�4�4)

for a total of 266,305 facets. Facets were evenly

dispersed throughout the entire image cube so that

bottom level facets were located at 3.1 mm inter-

vals. This sampling rate is slightly above the spatial

Nyquist frequency implied by the convolved Lapla-

cian images.

The ratio �2=k was adjusted to reect our be-

liefs about the relative importance of the shape con-

straint enforced by the shape density (eq. 1) with

respect to the shape change driven by the image dis-

tribution (eq. 2). Heuristically, the ratio was set to

a value that caused, during maximization, a relative

weighting between shape log density variation and

image log density variation of approximately 1:20.

Three ICM cycles were performed above each level

in the tree as described in Section 3.

A subset of the facets is shown in �gure 1. The �g-

ure shows slice 30 from the template image and slices

29 and 31 from the observed image. The facets in

three regions are highlighted to showcase the mod-

el's three-dimensional capabilities. It has been noted

by visual inspection that the head of caudate in the

observed image is positioned roughly 1 slice higher

when compared with its position in the template im-

age, and the model does predict that observed \head

of caudate" facets should be in that slice. Note also

that the template grid structure allows us to see the

more subtle shape variation modeled by the proba-

bility density. In another part of the brain the high-

lighted sulcus appears 1 slice lower in the observed

image than in the template image. The model pre-

dicts this shape deformation accurately.

Upon completion of estimating the maximum

density facet positions, a Gibbs/Metropolis algo-

rithm was applied to sample from the distribution

p(xjk; �2). In this preliminary experiment the pa-

rameters (k; �2) were set by inspection of the re-

sulting marginal distributions on several facets' pre-

dicted locations in the observed image. A set of 1000

iterations were discarded to reduce the e�ect of the

starting point and 1000 samples were recorded. Fig-

ure 2 shows a summary of the sampling behavior

of 8 facets chosen to be in template slice 24. The

top panel shows their �xed template positions, and

the middle and bottom panels display normal ker-

nel density estimates of the marginal distributions

of the predicted facet positions in the observed im-

age. Note that these marginal density estimates are

three-dimensional; those displayed are marginalized

again to lie in the x=y plane and are displayed in

the highest probability slice. Half maximum den-

sity contours are shown. Note that any deviation

from normality in these marginal distributions is at-

tributable to the contribution of the image distribu-

tion pI(xj�
2) so that regions inside the contours have

Laplacian values similar to each respective facet's

template value. Contours are therefore elongated

along Laplacian isocurves.
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Figure 1: A subset of facets whose template posi-

tions are in slice 30. The top panel is slice 30 of

the template and the middle and bottom panels are

slices 29 and 31 of the observed image, respectively.

Facets in the middle and bottom panels are shown

at their maximum density predicted locations.
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Figure 2: A subset of facets whose template posi-

tions are in slice 24. The top panel is slice 24 of

the template and the middle and bottom panels are

slices 24 and 25 of the observed image, respectively.

Monte Carlo samples were used to predicted kernel

density estimated regions of highest probability in

the marginal distributions on each facet's location.



Density maximization required approximately 1/2

hour of CPU time on a mid-price UNIX workstation

and simulation required approximately 30 seconds

per sample.

5 Conclusions

We have presented a model for feature identi�cation

in images from a class using a template image for the

class. The simple form of the density and extensive

conditional independence allow for fast maximiza-

tion and enable straightforward sampling for the in-

vestigation of its moments.

In this paper the distribution was maximized to

give point estimates of feature identi�cations and

sampled to give estimated uncertainties in predicted

facet locations in a three-dimensional human brain

MRI. Excellent results were seen with empirically

chosen hyperparameters.

Further research into this model will be toward

a coherent theory of parameter estimation. If data

were available in the form of manual point feature

identi�cations in a template and several observed

images from a class, then parameter estimation for

that class would be reasonably straightforward [5].

However, in the clinical setting, data is more likely

to be found in the form of region segmentations.

This will require another level of modeling to ad-

dress the variation in a particular region's shape

given the predicted locations of facets in that re-

gion. Mathematical morphology is currently being

investigated as a tool for implementing this part of

the model. Through this addition to the model we

are taking steps toward the automation of clinically

useful high-level image analysis tasks such as image

segmentation and volume calculation.

Future research will also address several general-

izations of the model. First, template structure of

the facet tree need not be generated by the method

of Section 2. New trees will be constructed using

the template image itself to explore di�erent shape

constraints on predicted facet locations [4]. Also,

the structure of pS(x) will be generalized to have

a conditional independence structure representable

by a graph rather than a tree. By having more than

one parent for each facet, spatially extended correla-

tion structures between facets can be explored while

keeping a high level of conditional independence in

the model. Finally, the form of pI(x) will be general-

ized to include several other image functions rather

than the Laplacian, for instance the boundariness [7]

and the correlation measure used in Collins [2].

References

[1] F. Bookstein. Morphometric Tools for Landmark

Data. Cambridge University Press, Cambridge,

1991.

[2] D. Collins, C. Holmes, T. Peters, and A. Evans.

Automatic 3-d model-based neuroanatomical

segmentation. Human Brain Mapping, 3:190{

208, 1995.

[3] S. Geman and D. McClure. Methods for tomo-

graphic image reconstruction. In Proceedings of

the 46th Session of the International Statistics

Institute Bulletin ISI 52, 1987.

[4] J. K. Laading, C. McCulloch, and V. Johnson.

A hierarchical object deformation model applied

to the digital chest radiograph. In The American

Statistical Association Proceedings of the Section

on Bayesian Statistical Science, Anaheim, Cali-

fornia, 1997.

[5] C. McCulloch, J. Laading, A. Wilson, and

V. Johnson. A shape-based framework for au-

tomated image segmentation. In The American

Statistical Association Proceedings of the Sec-

tion on Bayesian Statistical Science, pages 1{6,

Chicago, Illinois, 1996.

[6] J. Nelder and R. Mead. A simplex method for

function minimization. The Computer Journal,

7:308{313, 1965.

[7] B. M. terHaar Romeny, L. Florack, J. Koen-

derink, and M. Viergever. Scale-space: its natu-

ral operators and di�erential invariants. In Lec-

ture Notes in Computer Science, number 511,

pages 239{255, Berlin, Germany, 1991. Springer-

Verlag.

[8] A. M. Yaglom. An Introduction to the theory

of Stationary Random Functions. Prentice-Hall,

Englewood Cli�s, New Jersey, 1962.


