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Abstract. Deformable shape models require correspondence across the
training population in order to generate a statistical model for use as
a future geometric prior. Traditional methods use fixed sampling and
assume correspondence, or attempt to induce correspondence by min-
imizing variance. In this paper, we define a training methodology for
sampled medial deformable shape models (m-reps) which generates cor-
respondence implicitly via a geometric prior. We present quantitative
results of the method applied to real medical images.

1 Introduction

Automatic segmentation of medical images is a vital step in processing large
populations for quantitative study of biological shape variability. In this paper,
we present a methodology for statistically training the geometry of deformable
model templates that can be used as geometric prior and basis for intensity train-
ing for automatic segmentation of gray images. Our method frames the problem
as a special case of the general segmentation problem. Given a data set of hu-
man or otherwise expertly segmented training cases, we fit models to the labeled
data, and then create our template by statistical analysis of the fit population.
The fitting is an optimization over model parameters in a Bayesian framework,
searching for the model with the highest posterior probability of fitting the data.
Our posterior is decomposed into data likelihood and geometric prior terms. The
data likelihood accounts for both image match and optional landmark match.
The geometric prior encourages models to stay in a legal shape-space. We de-
scribe an implementation of the method using m-reps and present results showing
that the method is accurate and yields models suitable for statistical analysis.

Deformable Models We desire a statistical model for a population of training
data. Probabilistic deformable models describe shape variability via a probability
distribution on the shape-space. Under the Gaussian model, the distribution
of the training data can be modeled by the mean, a point in the space, and
several eigenmodes of deformation. This model describes all possible shapes in
the training data, and by extension, estimates the actual ambient shape-space
from which the training data is drawn. This statistical model can then be used as
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Fig. 1. The method starts with an initial model and n images from the training pop-
ulation. It results in a geometry trained model which can be used as a geometric prior
for data segmentation and to train intensity likelihoods.

a geometric prior probability when searching for an object from this shape-space
while segmenting new data sets.

For point distribution models (PDMs), the shape variance is classically de-
scribed by principal component analysis (PCA) of the feature space [1]. However,
this method requires Euclidian parametrization of the model features and is only
as effective as its ability to identify and maintain correspondence between sam-
pled features in the training data sets. Our training method uses sampled medial
representations (m-reps), a symmetric space shape parameterization that allows
us to model local bending and twisting as well as provides us with an object-
centric coordinate system. Principal component analysis has been extended to
non-Euclidean domains like that of m-reps as principal geodesic analysis [3]. The
deformable template becomes the Fréchet mean of the training population and
a set of principal modes of variance which may include coefficients of position,
rotation, and scale for each sample.

An m-rep figure is parameterized as samples on an object’s medial manifold.
The medial samples or ‘atoms’ have eight parameters: three position, four pose
(two spoke directions), and scale. An implied boundary surface must be com-
puted from the medial samples; our implementation uses a variant of Catmull-
Clark subdivision with a nearly interpolating surface and normal constraints [4].
M-reps are a hierarchical shape domain; collections of m-rep samples form fig-
ures, and collections of figures may be taken together to form more complex
objects and object groups. Here, because we have restricted ourselves to single
object binary labeled images and shapes which can be adequately modeled with
a single medial manifold, we need only work at the atom and figure levels.

2 Method

The general procedure is shown in figure 1. The method begins with n hand
segmented images, in which every voxel has been labeled as inside or outside



the object of interest and anatomic landmarks have optionally been identified.
Then, given a starting model with approximately the correct sampling rate for
the object’s complexity, we find the most likely deformation of the model into
each training image by optimization. Finally, we gather geometric statistics of
the fit shapes and produce the trained template model.

2.1 Definitions

Data: Let I be a binary labeled image. Let LI = {li1..., lim} be a set of landmarks
identified in the image, each with confidence σi.
Model: Let M be a medial model with samples {m1, ..., mn}. Let Ωs

M be the
discrete approximation of the implied surface of model M at subdivision level s.
Let LM be a set of landmarks corresponding to LI identified in M .
Distances: Let d(x, y) be the Riemannian distance between two points[3]. For
points in 3-space, this is the regular Euclidean distance; for medial samples, this
is a symmetric space distance.

2.2 Designing a Posterior

We use a Bayesian framework and seek the model that maximizes P (M |Data)
and so has the greatest conditional probability given the data. By Bayes Rule
P (M |Data) ∝ P (Data|M)P (M), so we describe P (M |Data) as two terms: a
data likelihood and a geometric prior. Our data likelihood term must reflect our
desires that the model’s surface be accurate to the data’s label boundary and,
if landmarks have been identified in the images, that the model’s corresponding
landmarks must interpolate those points. Our geometric prior term must reflect
our desires that the fit model be stable and implicitly maintain correspondence,
which we define as proximate in shape to the starting model and preserving
topology (no bending, folding). As log is a monotonic function, we can maximize
the log probability to the same result as maximizing the original term. Therefore,
we actually describe the elements of a log posterior in the next sections.

2.3 Data Likelihood

Our data likelihood term is jointly conditioned on the model’s fit to the image
data, and the model’s fit to the landmark data. Assuming these factors are inde-
pendent, the joint probability is the product P (Data|M)) = P (I|M)P (LI|M).

Image Likelihood Our image likelihood term is specific to the problem of
matching binary labeled data from an existing by-hand segmentation. In this
case, we have the correct answer at hand: the binary image labeling. We compute
the boundary of the label and consider it as a surface, B, then using a Gaussian
model, we define the log image likelihood as a function of the distance of the
label boundary to the model surface:



log(P (I|M)) ∝ − 1
α

∑

ωiεΩs
M

d2(B,ωi) (1)

with α a weighting scalar.

Landmark Likelihood We introduce a landmark term to create model-to-
image correspondences at anatomically important points and also to add lim-
ited points of explicit model-to-model correspondence across the training popu-
lation [5] [6]. An expert identifies landmarks in the training image population,
then we constrain the fit models to always interpolate these points at the same
object-coordinates. Similar to the image likelihood term, we define the landmark
likelihood as a normal probability over the positions of the landmarks LM iden-
tified in M , with mean at the landmarks LI identified in the image, and with σi

equal to a tolerance or confidence assigned to each pairing lmi to lii.

log(P (LI|M)) ∝ −
∑

liiεLI

d2(lmi, lii)
σi

(2)

2.4 Geometric Prior

Geometric Reference Likelihood Our aim is to construct a geometric prior
before we have a statistical estimate of the shape space. If we had a statistical
model available, we would define a geometric prior as the exponentiated Maha-
lanobis distance of a model from the mean shape. However, before we have a
statistical model, we make two simplifying assumptions: first that our starting
model is representative of the mean of this shape space, and second, that the
shape space is isotropic with an identity covariance. In this case, the Mahalanobis
distance to the mean is simplified to the sum of the atom-to-atom symmetric
space distances between the candidate model and the starting model. Let R be
the starting model and β be a scalar weighting factor, then the log probability
of the shape is as follows:

log(PRef (M)) ∝ − 1
β

∑

M

d2(mi, ri) (3)

This term is invariant to the subdivision level of the surface and does not assume
point-to-point correspondences on the model’s surface.

Geometric Regularity Likelihood However, without a statistical model, a
prior based on the distance from the starting model alone is not sufficient to
induce shape legality. We simplify our enforcement of legality to simply looking
at regularity of sampling on the medial sheet. Our regularity likelihood is mo-
tivated by Markov random field assumptions about a sample’s dependence on
neighboring parameters. Let N (m) be the neighborhood of atom m and δ be a
scalar weighting factor, then:



log(PReg(M)) ∝ −1
δ

∑

miεM

1
|N (mi)|

∑

mjεN (mi)

d2(mi,mj) (4)

Minimizing this expression as a function of mi is equivalent to minimizing the
symmetric space distance of each sample m to the Fréchet mean of its neighbors.

Finally, we describe our full P (M) as an independent joint distribution of
the geometry reference likelihood and regularity likelihood with joint density
P (M) ∝ PRef (M)PReg(M).

2.5 Optimization

We combine terms to form an objective function of the full log posterior:

log(P (M |Data)) ∝ − 1
α

∑
ωiεΩs

M
d2(B, ωi)−

∑
liiεLI

d2(lmi,lii)
σi

(5)

− 1
β

∑
M d2(mi, ri)− 1

δ

∑
miεM

1
|N (mi)|

∑
mjεN (mi)

d2(mi,mj)

We initialize the optimization by coarse alignment of the model to the data
via method of moments. We compute the model’s centroid, volume, and co-
variance by integral on the model’s surface according to Stokes’ Theorem. We
compute the image moments directly by integration over the voxel volume. The
model moments are then aligned to the data by a similarity transformation ap-
plied to the model. Because of ambiguity in orientation, we chose the rotation
with the smallest angle.

We then optimize by seeking a model parameterization that maximizes our
log posterior. Because our shape models are organized hierarchically, we max-
imize our objective function over parameters appropriate to the working level
of the model description. At the figure level, the objective function is optimized
over a similarity transform. At the medial sample level, we optimize over each
sample’s similarity component (position, pose, size), as well as each sample’s
extended parameters (local bending, twisting). We maximize via a conjugate
gradient search as described in Numerical Recipes [7]. To find the gradient di-
rection at each step in the parameter space, we use numeric differentiation; we
evaluate the model at several values for each parameter and take an initial step
in the aggregate best direction. Because conjugate gradient search performs best
given a relatively isotropic global minimum, some effort is expended tuning the
parameter scalings of the algorithm.

Surface-to-Surface Distance Implementation Details Ideally we desire to
measure the distance of the label boundary surface from the model, however, this
is computationally exorbitant given finely sampled subdivision surfaces required
for accurate matches and the large number of candidate surfaces generated for
optimization. Furthermore, we note that near zero, the distance of the label
boundary to the model is equal to the distance of the model to the label bound-
ary, so we simplify by approximating one by the other.



Because the label boundary is static, it is quite fast to generate a lookup
table for distance function from the model surface to the label boundary. We
compute our lookup table inside and outside the label boundary by Danielsson’s
algorithm [8]. Six connected neighbors are used to find B. Trilinear interpolation
of values out of the lookup table gives a very fast measure of the distance at any
point in space to the closest boundary point on B. Then we let d(B,ω) be the
lookup of the position of ω in the distance map.

This approximation may be enhanced by computing the true label boundary
to model distance at a minimal number of points. We identify points where we
would expect the label boundary to model distance to be different than the
model to label boundary distance by checking the gradient of the distance map
against the surface normal. If their dot product is below some threshold, we
compute a new distance along the model’s normal for that point.

2.6 Statistical Analysis

We then build a deformable shape model by computing the Fréchet mean and
PGA eigenvectors of the fit models [3]. This model becomes a better estimator
of the shape space than our untrained geometric prior. We now redefine our
statistical geometric prior explicitly as proportional to an exponentiated Ma-
halanobis distance of the candidate model to the mean model. This covariance
weighted distance is computed by projecting the model into the PGA space and
then simply taking the norm of the eigenvalue scaled PGA coefficients. That is,
the Mahalanobis distance squared =

∑ α2
i

λi
where α are the coefficients of M

expressed in PGA eigenvectors and λ are the corresponding eigenvalues.

3 Results

We fit two sample data sets with our implementation of the method: a left kidney
trained from forty-two landmarked training images at 0.3mm voxel resolution,
and a left hippocampus trained for forty-six unlandmarked training images at
0.5mm voxel resolution. We present results showing that the implied surfaces
of the fit models are accurate to the training data, thus the statistical model is
gathered over a population of correct models. We also show that the fit models
create a stable statistical sample by leave-one-out testing.

Quality of Fit Both data sets were automatically fit by our method. There were
no ’illegal’ results, no shapes with broken topology, and all looked encouragingly
like the correct shape. Quantitative results are summarized in table 1.

Stability We then calculated the Fréchet mean and PGA eigenmodes of our
fit kidney models. Figure 2 shows the mean and +/- two standard deviations
of deformation along the first four eigenmodes of the shape space. As shown in



After Figure After Figure and Atom

Structure µ Ave Dist σ Ave Dist Worst Dist µ Ave Dist σ Ave Dist Worst Dist

Kidney 0.180mm 0.023mm 0.977mm 0.161mm 0.010mm 1.201mm

Hippocampus 0.536mm 0.058mm 3.556mm 0.263mm 0.013mm 2.880mm
Table 1. Model surface to label boundary distances after optimization stages

Fig. 2. Trained kidney template and two standard deviations of deformation in each
of first four principal modes of shape variance

figure 3, the first four eigenmodes account for over 60% of the training data’s
shape variance.

With variance computed as the sum of the PGA feature space eigenvalues, the
entire training set has a symmetric space variance of 0.0013 units. To demon-
strate that our fitting method generates tightly clustered models suitable for
our statistical model, we recompute Fréchet means on subsets of the training
set, leaving out each one of the training cases in turn. This results in a set of
forty-two different kidney templates which, taken together, define a new PGA
feature space. This feature space has a variance of 7.3e-007 units, three orders
of magnitude tighter distribution than the original training set.

4 Discussion

This methodology for training deformable shape templates is accurate and ex-
tends to a variety of shapes. Results in this paper were generated with our
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Fig. 3. Eigenvalues of the kidney population and variance captured per eigenmode

implementation of the method, Binary Pablo. Binary Pablo has a variety of
visualization and m-rep modeling tools, and automatic fitting runs as a config-
urable batch process. It works quickly, producing the kidney and hippocampus
models presented in our results in under two minutes per model, and population
analysis can be easily parallelized over a network, scaling in speed with number
of machines. Binary Pablo is currently being applied to a variety of shapes in
several different labs. It is is available as a freely licensed download from our
group and is distributed with a complete user’s guide and example data.

Substantial continuing research in UNC MIDAG is focused on shape model
training for shape analysis, primarily developing extensions for multi-figure mod-
els with more complex medial sheets [9] and for multi-object constructs (i.e.,
bladder, rectum, prostate in the male pelvis) [10]. Results of this paper also
suggest the possibility of training by statistical bootstrapping; feeding the sta-
tistically trained deformable model back into the pipeline to increase training
accuracy.
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