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SUMMARY

The analysis of covariance provides a common approach to adjusting for a baseline covariate in medi-
cal research. With Gaussian errors, adding random covariates does not change either the theory or the
computations of general linear model data analysis. However, adding random covariates does change
the theory and computation of power analysis. Many data analysts fail to fully account for this compli-
cation in planning a study. We present our results in �ve parts. (i) A review of published results helps
document the importance of the problem and the limitations of available methods. (ii) A taxonomy for
general linear multivariate models and hypotheses allows identifying a particular problem. (iii) We de-
scribe how random covariates introduce the need to consider quantiles and conditional values of power.
(iv) We provide new exact and approximate methods for power analysis of a range of multivariate
models with a Gaussian baseline covariate, for both small and large samples. The new results ap-
ply to the Hotelling–Lawley test and the four tests in the “univariate” approach to repeated measures
(unadjusted, Huynh-Feldt, Geisser-Greenhouse, Box). The techniques allow rapid calculation and an
interactive, graphical approach to sample size choice. (v) Calculating power for a clinical trial of a
treatment for increasing bone density illustrates the new methods. We particularly recommend using
quantile power with a new Satterthwaite-style approximation. Copyright ? 2003 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

1.1. Motivation

Medical studies often use a random baseline covariate to increase precision and statisti-
cal power. Although of no consequence in data analysis, including any random predictors
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substantially complicates the theory and computation of power. Failing to account for ran-
domness of predictors may distort power analysis and lead to a poor choice of sample size.
Regression and analysis of variance (ANOVA) models express a random response as a

function of one or more predictors. Describing each predictor as �xed or random requires
careful consideration of the study design. A scientist decides what values �xed predictors have
before the study begins. For example, dose levels of a drug are usually �xed. In contrast, a
scientist discovers values of random predictors only after collecting the data. Although errors
in measurement could introduce additional randomness in both �xed and random predictors,
we assume that the scientist measures all predictors without appreciable error.
In general, random predictors require more complex theory than do �xed predictors [1].

Optimal parameter estimates and hypothesis tests result from treating all of the predictors
�xed. However, power analysis used to plan future studies must account for the random
distribution of predictors. Computing the average power over all possible realizations of a
particular study design [1] leads to what may be called unconditional power. Power calculated
for a particular set of predictor values is described as (a particular) conditional power. With
random predictors, the non-centrality parameter is a random variable. Quantile power equals
the conditional power value that corresponds to a non-centrality value of speci�ed probability.
Each non-centrality value typically encompasses many predictor con�gurations.

1.2. Literature review

Power analysis with a baseline covariate, or any other type of random predictor, has received
little attention. Univariate linear models of Gaussian responses and random discrete predictors
have been popular in genetics [2] Soller and Genizi [3, 4] suggested large sample power
approximations for such studies. Sampson [1] reviewed the relationships between correlation
theory and regression models with multivariate Gaussian responses and predictors, de�ned
unconditional power, and provided expressions for power in the univariate case. Gatsonis and
Sampson [5] provided computational formulae and tables for exact (small sample) power of
the test of zero multiple correlation with Gaussian predictors and response.
Many authors have studied the power of tests of independence between two sets of Gaussian

variables. Most results involve asymptotic properties and use zonal polynomial forms [6–16].
Muller et al. [17] reviewed power calculations for the general linear multivariate model

(GLMM) with �xed predictors. They recommended approximations due to Muller and
Peterson [18] and Muller and Barton [19]. O’Brien and Shieh (Pragmatic, unifying algorithm
gives power probabilities for common F tests of the multivariate general linear hypothesis,
unpublished manuscript, University of Florida, 1992) suggested some modi�cations. The vari-
ous approximations achieve roughly two decimal places of accuracy [19] (O’Brien and Shieh,
unpublished manuscript as before).

1.3. Why not run a simulation?

Computer simulations provide a general tool for power analysis. However, the approach has
many disadvantages, including programming time and the burden of certifying the accuracy of
the results. Power analysis simulation can never be easier than data analysis. Equally impor-
tantly, power analysis typically involves considering an extensive range of design variations.
Each change requires a new simulation. The common desire for the hundreds or thousands
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of power values needed for plots makes simulations troublesome at best. Although we use
simulations for power analysis on occasion, it stands as our last resort.

1.4. Why worry about random predictors?

The following example illustrates the many concerns that may arise with random predictors.
Cystic �brosis typically decreases bone mineral density (BMD). Ontjes (unpublished proposal,
University of North Carolina at Chapel Hill, 1994) planned to measure spine BMD at baseline,
six months, and one year. Strati�ed by gender, patients were randomly assigned to treatment
with a drug designed to increase bone density. Clearly baseline BMD has great appeal as
a covariate. Without knowing exactly what values of BMD will occur, how can power be
calculated? Is knowing the distribution su�cient? What if the study involves a few tens of
subjects, as typically happens in phase I and II clinical trials? What impact do covariates have
on the power of tests of �xed e�ects, such as drug dose? Do repeated measures or multivariate
tests change the conclusions? Are there important interactions between two or more such
complications? The new results allow answering these questions for many situations.
Although many other choices have practical value, we restrict attention to continuous pre-

dictors with Gaussian distributions. The restriction re�ects particular interest in models with
a baseline covariate.

2. A TAXONOMY OF MODELS AND HYPOTHESES

2.1. The GLMM(F, G, D)

We introduce a taxonomy in order to simplify discussion and separate known power results
from those remaining to be discovered. Write the GLMM(F, G, D) as

Y
N × p

= XB
N × q× p + E

N × p
= FBF

N × qF × p + GBG
N × qG × p + DBD

N × qD × p + E
N × p

(1)

in which qF , qG and qD are the number of columns of �xed, Gaussian and random discrete
variables, respectively. Here qF+qG+qD= q. The N rows of Y , X and E correspond to inde-
pendent sampling units, referred to as subjects, for convenience. We assume that X and each
of its submatrices, F , G and D, have full rank, that B contains �xed parameters (which are
known for power analysis), and that E([Y G E])= [FBF 0 0]. Rows of G and E are assumed
to independently follow non-singular (�nite) Gaussian distributions. As in [1], BG=�

−1
G �GY

and �E=�Y − �YG�−1
G �GY imply �E=�Y − B′

G�GBG. Also

V{rowi([Y G E])′}=



�Y �YG �E
�GY �G 0
�E 0 �E


 (2)

For �xed �G and �Y , diagonal elements of �E decrease with increasing correlation between
the outcomes and the predictors. If qG=1, then write g and �2g rather than G and �G.
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Depending on the choice of predictors and distributional assumptions, several di�erent sim-
pli�cations of the full model arise. The classical GLMM has only �xed predictors, and in
our notation is called the GLMM(F). Similarly, we call a model with �xed and multivariate
Gaussian predictors a GLMM(F, G), and so on.
For the BMD example, both gender and drug treatment represent �xed e�ects, while the

baseline BMD measure serves as a random predictor. Let dj indicate a vector of bone mineral
density measurements at month j∈{0; 6; 12}. With m for male, f for female, t for treatment,
and p for placebo, a reference cell coding allows writing the model as

[d6 d12]=



1 0 0 0 d0;mp
1 0 1 0 d0;mt
1 1 0 0 d0; fp
1 1 1 1 d0; ft







�0;6 �0;12
�f ;6 �f ;12
�t;6 �t;12
�ft;6 �ft;12
�1;6 �1;12



+ E (3)

In this design there are no random categorical predictors (D does not exist) and

FBF + gBG=




1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1







�0;6 �0;12

�f ;6 �f ;12

�t;6 �t;12

�1;6 �1;12


+




d0;mp

d0;mt

d0; fp

d0; ft


 [�1;6 �1;12] (4)

2.2. The General Linear Hypothesis (GLH)

With both �xed and random predictors, hypothesis tests may involve only random, only �xed,
or both �xed and random predictors. Assume C , U and �0 are �xed and known, with C of
full row rank and U of full column rank. With �=CBU , an a×b matrix, every general linear
hypothesis may be stated as H0:�=�0. For the GLMM(F, G), a GLH(F) has C =[CF 0],
with CF a × qF . The GLH(G) has C =[0 CG] with CG a × qG. A test of both random and
�xed predictors, the GLH(F, G), has C =[CF CG].
Power may be computed in terms of a small collection of intermediate expressions,

especially

M =C (X ′X)−1C ′ (5)

H = (�−�0)′M−1(�−�0) (6)

�∗ =U ′�EU (7)

�=H�−1
∗ (8)

s= min(a; b), and s∗=rank(�)6 s. Also de�ne �=[tr(�∗)]2=[btr(�
2
∗)], a measure of discrep-

ancy from sphericity used for repeated measures tests. See reference [17] for more details. For
power analysis, assume that C , B, U , �0, �G and �Y are known constants. If any component
of X is random, then so are M , H and �.
The cystic �brosis study focused on the test of gender-by-treatment interaction. Using a

MANOVA approach asks if the interaction predicts any linear combination of the BMD at
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six or twelve months, adjusting for baseline. De�ne C =[0 0 0 1 0], U = I2, �0 = 0. This is
a GLH(F), which is often the most interesting sort of test in a clinical trial.

3. SMALL SAMPLE POWER

3.1. Known results for �xed predictor power and conditional power

Any method giving power for �xed predictors also gives power for models including a par-
ticular realization of random predictors. For example, in the BMD study, consider comput-
ing power using baseline values from a previous study. Hence power for �xed predictors
equals conditional power, as de�ned earlier. We consider the multivariate Hotelling–Lawley
trace statistic (HLT), as well as the tests for the univariate approach to repeated measures
(Geisser–Greenhouse, Huynh–Feldt, Box conservative, and uncorrected). See the Appendix
for detailed formulae. All reduce to the usual univariate test if b=1, which requires either
only one outcome measure, or a univariate contrast among responses. As an example, for the
BMD study, testing only the linear trend across the repeated measures gives b=1.
The O’Brien and Shieh modi�cation of the Muller and Peterson [18] approximation for

conditional power of the HLT uses McKeon’s [20] F-approximation for the null. If t1 =
(N − q)2 − (N − q)(2b + 3) + b(b + 3), t2 = (N − q)(a + b + 1) − (a + 2b + b2 − 1), then
d:f :(H)=4 + (a + b + 2)t1=t2. Let fcrit;H =F−1

F [1 − �; ab; d:f :(H)], and !H = tr(H�
−1
∗ ).

Conditional power is approximated by 1− FF [fcrit;H; ab; d:f :(H); !H].
Muller and Barton [19] described approximations for conditional power of the conservative,

Geisser–Greenhouse, Huynh–Feldt and uncorrected tests. The tests estimate � as 1=b, �̂, �̃ and
1, respectively, with �̂ and �̃ the MLE and Huynh–Feldt estimates. For test T∈{C;GG;HF;Un},
de�ne fcrit;T =F−1

F [1 − �; abm(T); (N − q)bm(T)], with m(T) equal to 1=b, an approximate
value of E(�̂), an approximate value of E(�̃), or 1. Conditional power is approximated by
1 − FFt[fcrit;T; ab�; b(N − q)�; !U], with !U = �tr(H)=tr(�∗). The uncorrected test and power
calculations are exact whenever sphericity holds (�=1).
Examination of the conditional power approximations allows concluding that they depend

on random predictors only through scalar non-centrality values. In particular, !H and !U
become random variables as functions of random X . Hence unconditional power may be
computed by deriving the density of the random non-centrality parameter and integrating over
all possible values.

3.2. New results for unconditional power: distributions of non-centrality for qG=1

The special case with qG=1 and qD=0 reduces the design matrix to

X =[F g] (9)

and also implies

C =[CF cg] (10)

with C and CF assumed to be of rank a and cg of rank 0 or 1. For example, the test of
treatment e�ect in the BMD study analysis is a special case. In turn, the presence of random
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g in

!H = tr


(�−�0)′


[CF cg]

[
F ′F F ′g
g′F g′g

]−1 [
C ′
F
c′g

]
−1

(�−�0)�
−1
∗


 (11)

and

!U =
b�

tr(�∗)
tr


(�−�0)′


[CF cg]

[
F ′F F ′g
g′F g′g

]−1 [
C ′
F
c′g

]
−1

(�−�0)


 (12)

makes both random.

Lemma 1
Assume hH;1 and hU;1 are constant, and q1, q2, q3H and q3U are scaled �2 random variables.
For a GLMM(F, g), and a GLH(F, g) or a GLH(F), the random non-centrality for power
approximation for the HLT test is exactly

!H = hH;1 − q3H=(q1 + q2) (13)

and for the ‘univariate’ approach to repeated measures tests is exactly

!U = hU;1 − q3U=(q1 + q2) (14)

See the Appendix for details of the notation and a proof. Standard results for quadratic forms
allow proving that q1 is independent of q2, q3H, and q3U, while q2 is not independent of q3H
or q3U. Also, neither q3H nor q3U are independent of q1 + q2.

Lemma 2
The non-centralities described in Lemma 1 may each be expressed exactly as weighted sums
of independent �2 random variables. See the Appendix for a proof.

3.3. Unconditional power approximations

Theorem 1
For a GLMM(F, g) and a GLH(F, g) or a GLH(F), with C and CF of rank a, !H is
absolutely continuous, with Pr{06hH;06!H6hH;1}=1. Hence the unconditional power for
the Hotelling–Lawley trace may be approximated by

Pu;H = 1−
∫ hH; 1

hH; 0
FF [fcrit;H; ab; df(H); t]f!H(t)dt

=1−
{
FF [fcrit;H; ab; df(H); t]F!H(t)|t=hH;1t=hH;0 −

∫ hH;1

hH;0
F!H(t)

@FF [fcrit;H; ab; df(H); t]
@t

dt

}

=1− FF [fcrit;H; ab; df(H); hH;1]

− 1
2

∫ hH ;1

hH;0
F!H(t)

{
FF [fcrit;H; ab; df(H); t]− FF

[
fcrit;Hab
ab+ 2

; ab+ 2; df(H); t
]}
dt (15)
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The power may be approximate for three reasons. Conditional power is approximate for
s= min(a; b)¿1. Numerical calculation of the integral may reduce accuracy. Finally, an ap-
proximation (as in Section 3.5) may be preferred to Davies’ [21] method for calculating
F!H(t) if s∗¿1. The results are exact (except for inaccuracy due to numerical integration) if
s=1. This special case arises in comparing only two groups, as in many clinical trials. If
s∗=1 then F!H(t) can be expressed exactly in terms of a possibly non-central F CDF, even
if s¿1.

Theorem 2
Let T index the conservative, Geisser–Greenhouse or Huynh–Feldt test. For a GLMM(F, g),
and a GLH(F, g), with C and CF of rank a, the approximate unconditional power for the
univariate approach to repeated measures statistics is given by

Pu;U = 1−
∫ ∞

0
FF [fcrit;T; ab�; b(N − q)�; !U]dF!U

= 1− FF [fcrit;T; ab�; b(N − q)�; hU;1]

− 1
2

∫ hU ;1

hU ;0
F!U(t)

{
FF [fcrit;T; ab�; b(N − q)�; t]

−FF
[
fcrit;Tab�
ab�+ 2

; ab�+ 2; b(N − q)�; t
] }

dt (16)

The logic and most details of the proof are the same as for theorem 1 (see the Appendix).
The power may be approximate for three reasons. Conditional power is approximate if

b¿1. Numerical integration may introduce some inaccuracy. Finally, an approximation (as in
Section 3.5) may be preferred for calculating F!H(t) if s∗¿1. The results are exact (except
for inaccuracy due to numerical integration) if b=1. This case arises with hypotheses involv-
ing only one response dimension, such as a linear trend, and any univariate hypothesis. If
s∗=1 then F!U(t) can be expressed exactly in terms of a possibly non-central F CDF, even
if s¿1.

3.4. Quantile power approximations

In addition to unconditional power, quantile power is of interest. Let !Hq be a number such
that Pr{!H¡!Hq}=F!H(!Hq)= q. A non-centrality parameter that small or smaller occurs
in only 100q per cent of all realizations of possible experiments. De�ne quantile power for
the Hotelling–Lawley test to be the power obtained conditional on observing a non-centrality
parameter of !Hq:

pq;H =1− FF [fcrit;H; ab; df(H); !Hq] (17)

Quantile powers for the four tests with the ‘univariate’ approach to repeated measures are
de�ned similarly.
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3.5. Computational techniques and approximations

Calculating a numerical value for quantile power will be illustrated by considering the
Hotelling–Lawley test:

1. Fix q. For example, to �nd the 25th percentile, q=0:25.
2. Find the qth percentile of non-centrality, !Hq=F−1

!H (q), by numerical inversion of the
equation F!H(!Hq)= q. A simple bisection method works, with Davies’ algorithm for
exact calculation of the CDF’s of !H and !U.

3. Compute Pq;H with equation [17]. The QUAD function [22] or algorithm 5.1.2 in Thisted
(reference [23], p. 271) were used for integration. Davies’ algorithm was used to calculate
exact CDF’s of !H and !U.

To improve calculation speed, we developed an algorithm based on Satterthwaite approxima-
tions. For a GLH(F), equations [A6] and [A9] express Pr{!T6w}, the CDF of the (random)
non-centrality for test statistic T ∈ {H;U}, in terms of the CDF of

ST(w)=
a∑
k=0
�Tk�2k(�k) (18)

Note that the set of �Tk are functions of w. Let

�∗T1 =

( ∑
{k:�Tk¿0}

�Tk�k

)2/ ∑
{k:�Tk¿0}

�Tk�k (19)

�∗T1 =
∑

{k:�Tk¿0}
�2Tk�k

/ ∑
{k:�Tk¿0}

�Tk�k (20)

and de�ne �∗T2 and �∗T2 as similar sums over the set {k : �Tk¡0}, but with �Tk replaced by
|�Tk |. Note that �∗T1, �∗T2, �∗T1 and �∗T2 all depend on w through the set of �Tk . If {k: �Tk¿0}
is empty, F!T(w)=0, and if {k: �Tk¡0} is empty, F!T(w)=1. Otherwise, a Satterthwaite type
of approximation is given by

F!T(w)≈FF
(
�∗T2�∗T2
�∗T1�∗T1

; �∗T1; �∗T2

)
(21)

The approximation can be used for both unconditional and quantile power.

4. LARGE SAMPLE POWER

For all of the multivariate tests, conditional power approaches 1 as sample size approaches
∞ (reference [14], p. 330). In turn, unconditional power also approaches 1, since it is an
average conditional power. Here we focus on quantized limits, in the spirit of those in
Anderson (reference [14], p. 330). See the Appendix for details. For a positive integer, m,
de�ne N (m)=mN , with N �xed. Evaluation of quantized limits centres on local Pitman-type
alternatives (reference [14], p. 330; reference [24], p. 238). This leads to basing the test statis-
tics on B=

√{N (m)}, (� −�0)=
√{N (m)}, and HLA =H =N (m), and considering N (m)→∞.
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Table I. Limits of unconditional power under local alternatives.

Test Limit

Univariate Conservative 1− F�2 [b�ccrit(a); ab�; !U;LA]
Geisser–Greenhouse 1− F�2 [ccrit(ab�); ab�; !U;LA]
Huynh–Feldt (unbounded) 1− F�2 t[ccrit(ab�); ab�; !U;LA]

Multivariate All tests coincide 1− F�2 [ccrit(ab); ab; !H;LA]

With W and Fe as de�ned in the Appendix, asymptotic limits of the approximations to un-
conditional power may be expressed in terms of MLA =NCF(F ′

eWF e)
−1C ′

F =CF(F
′F)−1C ′

F
and

QLA = (�−�0)′[M−1
LA − (�2g + c′gM−1

LA cg)
−1M−1

LA cgc
′
gM

−1
LA ](�−�0) (22)

Lemma 3
For a GLMM(F, g) and a GLH(F, g), under a sequence of Pitman local alternatives indexed
by m

HLA
p→QLA (23)

See the Appendix for a proof.

Theorem 3
Consider the limits of the unconditional power approximations given in theorems 1 and 2
under a sequence of Pitman local alternatives indexed by m. De�ne !H;LA = tr(QLA�

−1
∗ ) and

!U;LA = b� tr(QLA)=tr(�∗), and let ccrit(�)=F−1
�2 (1−�; �) be the 1−� quantile of a �2 variable

with � degrees of freedom. Then the limits of the unconditional power approximations for the
tests are given in Table I. See the Appendix for a proof.

5. NUMERICAL RESULTS

We conducted a number of simulations to assess the accuracy of the approximations and to
compare the speed of calculations to a Monte Carlo approach. Unconditional and quantile
power, with s∗=1 and s∗¿1, for HLT and the Geisser–Greenhouse tests were evaluated.
We illustrate the results with a simulation based on p=4, qF =3 and qG=1. Cell mean

coding for a balanced design gave Fe= IqF and F = IqF ⊗ 1N=qF . This led to

Y =[F g]
[
BF
Bg

]
+ E (24)

We chose �Y = Ip, �2g =1, BF =�Dg(1; 2; 0qF−2), and Bg=�1′p. The hypothesis involved
�=0:05, C =[−1qF−1 IqF−1 0], U = Ip and �0 = 0, which gave � two non-zero eigenvalues.
The parameter � scales di�erences between two group intercepts (and means), while � is
the slope for the covariate. We chose �=0:5 and N ∈ {15; 75; 150}. For each N , we selected

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:2535–2551
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Table II. Calculated and empirical HLT power.

N � Median Unconditional (mean)

Exact Approximate Empirical Exact Approximate Empirical

15 0.4997 0.200 0.200 0.194 0.195 0.195 0.193
0.8076 0.500 0.500 0.502 0.487 0.487 0.491
1.0976 0.800 0.800 0.809 0.784 0.784 0.796

75 0.1651 0.200 0.200 0.199 0.198 0.198 0.200
0.2623 0.500 0.500 0.498 0.497 0.497 0.500
0.3508 0.800 0.800 0.798 0.797 0.797 0.798

150 0.1142 0.200 0.200 0.200 0.199 0.199 0.200
0.1813 0.500 0.500 0.498 0.498 0.498 0.499
0.2424 0.800 0.800 0.798 0.802 0.798 0.798

Total CPU minutes 0.063 0.001 627.461 24.223 0.130 627.461

three values of � so that exact median quantile power, pq;H, was 0.20, 0.50 or 0.80. We also
calculated the Satterthwaite approximate 0.50 quantile power (PS;0:50;H).
Table II contains numerical power values and times. All calculations allowed a maximum

error of 0.001. To �nd empirical quantile power, for �xed values of N , �g, �Y , � and �,
we generated 1000 values of g. The SAS NORMAL function [22] produced pseudo-random
spherical Gaussian data which were transformed to obtain realizations of g. For each g, we
generated 1000 values of Y , and calculated E. Then LINMOD [25] was used to calculate
test statistics and p-values. For each g, the empirical quantile power was the total num-
ber of times that the null hypothesis was rejected, divided by 1000. The empirical quantile
power was the median of the 1000 empirical powers. Times for both quantile and uncon-
ditional power illustrate the dramatic speed advantage of the new methods over simulation,
and the approximations over exact. For the examples considered, the results for non-centrality
CDF’s di�er from those calculated with Davies’ algorithm only in the third decimal place. All
other inaccuracy arose from the conditional power approximations. The univariate approach to
repeated measures conditional power approximations introduced errors as large as 0.05 for
some cases with N =15.
A limited number of cases were examined to assess the formulae given for asymptotic

unconditional power. In those cases, a sample size of at least 1000 was required to ensure
roughly two digits of accuracy. The same accuracy can apparently be achieved by using,
for HLT for example, the �rst term, and neglecting the integral term, in equation [15]. The
integral term was never seen to be more than roughly 0.05.

6. POWER ANALYSIS EXAMPLE

A power analysis was conducted for the cystic �brosis example using our new methods.
Plausible values for BG, �Y and �G were based on pilot data in the grant proposal [20]. It
was assumed that the variances of the baseline, six and twelve month BMD’s were equal, and
that the correlation between any pair of measurements was equal. Sample sizes of 13 and 39
were considered, and a range of di�erences between means examined.
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Figure 1. Geisser–Greenhouse power for gender × treatment, N =13: : : : 95 per cent Cl;
—unconditional; — - —conditional.

At the small sample size, substantial di�erences can be seen in Figure 1 among uncondi-
tional power, the lower 0.025 quantile (corresponding to a 95 per cent con�dence level), and
the traditional conditional power approximation based on adjusting the error covariance. The
upper 0.975 quantile points lie roughly at the same values as the conditional approximation.
For N =39 (see Figure 2), for the hypothesis and sample size of interest, the choice of

quantile has a modest e�ect on power. Similar results were found for a range of related
designs, tests and hypotheses.

7. CONCLUSIONS

The presence of a baseline covariate substantially complicates power calculations of treatment
e�ects in univariate and multivariate ANCOVA settings. New exact and approximate results
allow conveniently computing power in the presence of a Gaussian covariate. We recommend
computing quantile power for studies with random predictors. The choice of which quantile
depends on the ethical and monetary features of the application.
Power methods vary substantially in convenience and speed. Simulations were the slow-

est, with methods based on numerical integration being next slowest. The Satterthwaite-style
approximation is essentially as fast as the simple adjustment with conditional power meth-
ods, while being nearly as accurate in the integration technique. Hence the simple adjustment
should be avoided, except possibly in large samples. We recommend using the Satterthwaite-
style approximation as the best combination of accuracy and computational speed.
Many unanswered questions remain for power analysis with random covariates. In particular,

the test of interaction between a random continuous predictor and a �xed predictor seems very
important, but is not covered by known results. In the BMD example, testing for equality of
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Difference of mean differences, BMD (g/cm2)

Figure 2. Geisser–Greenhouse power for gender × treatment, N =39: : : : 95 per cent Cl;
—unconditional; — - —conditional.

baseline slopes in each treatment group falls into this category. More generally, non-Gaussian
predictors seem important for practice, yet are not covered by known results.

APPENDIX

A.1. Distributions and approximations

As needed, a matrix is described as constant, random, or a realization of a random matrix. The
Kronecker product is A⊗B = {aij ·B}. Graybill’s (reference [26], p. 309) de�nition for vec is
used. Let Dg({�1; �2; : : : ; �n}) indicate a diagonal matrix. Let �2(�; !) indicate a chi-squared
random variable with � degrees of freedom and non-centrality ! (reference [27], chapter 28).
Write the cumulative distribution function (CDF) of random variable Z as FZ(z; 	1; 	2; : : : ; 	p),
with pth quantile F−1

Z (p; 	1; 	2; : : : ; 	p). For the non-central F (reference [27], chapter 30) this
gives FF(x; a; b; !).
Let K be the number of groups of subjects in F , with Nk subjects in each group. Assume

that K , Nk and the maximum entry in F are all �nite. The actual variables of interest are
assumed to be available, and no surrogate variables are used. None of the data may be missing.

Proof of Lemma 1

A standard result for the inverse of a partitioned matrix (reference [28], p. 67) gives

[
F ′F F ′g
g′F g′g

]−1
=

[
B11 b12
b′12 b22

]
(A1)
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with B11 = (F ′F)−1 + (F ′F)−1F ′gb22g′F(F ′F)−1, b12 =−(F ′F)−1F ′gb22 and b22 = {g′[I −
F(F ′F)−1F ′]g}−1 = q−11 . Then, with P=CF(F ′F)−1F ′ and g∗=Pg − cg

M = [CF cg]

[
B11 b12
b′12 b22

][
C ′
F

c′g

]

=PP′ + b22g∗g′∗ (A2)

Using the Bartlett formula for the inverse of a partitioned matrix (reference [28], p. 69),
de�ne T1 = (PP

′)−1 = [CF(F ′F)−1C ′
F ]

−1, q2 = g′∗T1g∗ and

M−1 = (PP′ + b22g∗g′∗)
−1

= (PP′)−1 − b22
1 + b22g′∗(PP

′)−1g∗
(PP′)−1g∗g′∗(PP

′)−1

=T1 − T1g∗g′∗T1=(q1 + q2) (A3)

If q3H = g′∗T1(�−�0)�
−1
∗ (�−�0)′T1g∗ and hH;1 = tr[(�−�0)′T1(�−�0)�

−1
∗ ], then

!H = tr[(�−�0)′T1(�−�0)�
−1
∗ ]−

1
q1 + q2

tr[(�−�0)′T1g∗g′∗T1(�−�0)�
−1
∗ ]

= hH;1 − tr[g′∗T1(�−�0)�
−1
∗ (�−�0)′T1g∗]=(q1 + q2) (A4)

Independence among some qj’s may be proven as follows. If z ∼ NN (0; IN ), then g=�gz ∼
NN (0; �2g IN ). If mg=P′(PP′)−1cg and mz=mg=�g then g∗=P(g−mg)=�gP(z−mz). De�ne
symmetric and psd A1 = I − F(F ′F)−1F ′, A2 =P′T1P, and A3H =P′T1(� − �0)�

−1
∗ (� −

�0)′T1P=hH;1. Here A1 is idempotent, rank �1 =N − qF , A2 is idempotent, rank a, and A3H
is not idempotent, with rank of s∗6s. Also q1 =�2g z

′A1z, q2 =�2g (z − mz)′A2(z − mz) and
q3H =�2g (z−mz)′A3(z−mz), proving that each qj is a quadratic form in independent Gaussians.
Hence A1A2 =A1A3H = 0, and A2A3H �= 0 implies independence of corresponding qj pairs [29].
For the univariate tests, hU;1 = b�tr−1(�∗)tr[(� − �0)′T1(� − �0)]. Replacing �

−1
∗ by

b�tr−1(�∗)Ib de�nes A3U in lieu of A3H, which in turn leads to q3U in lieu of q3H. Therefore

!U = b�tr−1(�∗)tr
[
(�−�0)′T1(�−�0)− 1

q1 + q2
(�−�0)′T1g∗g′∗T1(�−�0)

]

= hU;1 − q3U=(q1 + q2) (A5)

Proof of Lemma 2
Let F!H(w)=Pr{!H6w} and b0 = 1− w=hH;1, with 06b061. Then

F!H(w) = Pr{hH;1 − q3H=(q1 + q2)6w}
=Pr{b06(q3H=hH;1)=(q1 + q2)}
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= Pr

{
b06

�2g
�2g

(z −mz)′A3H(z −mz)
z′A1z + (z −mz)′A2(z −mz)

}

=Pr{b0z′A1z + (z −mz)′(b0A2 −A3H)(z −mz)60}
=Pr{SH60} (A6)

De�ne AdH = (b0A2 − A3H). The fact that A1A2 =A1A3H = 0 implies A1AdH = 0. With T1 =
FT1F ′

T1 and F
′
T1(�−�0)�

−1
∗ (�−�0)′FT1=hH;1 =VsHDg(�sH)V ′

sH, it follows that

AdH = b0P′FT1F ′
T1P − P′FT1F ′

T1(�−�0)�
−1
∗ (�−�0)′FT1F ′

T1P=hH;1

=P′FT1[b0Ia −VsHDg(�sH)V ′
sH]F

′
T1P

=P′FT1VsH[b0Ia − Dg(�sH)]V ′
sHF

′
T1P (A7)

If VdH+ =P′FT1VsH, then V ′
dH+VdH+ = Ia and AdHVdH+ =VdH+[b0Ia − Dg(�sH)]. Hence the �rst

a eigenvectors of AdH are VdH+. Also AdH has at most a non-zero eigenvalues, namely
{b0 − �sH; k}. De�ne mzH =V ′

dH+mz=V
′
sHF

′
T1cg=�g (a× 1). Then

SH = b0�20(N − qF) +
s∗∑
k=1
(b0 − �sH; k)�2k(1; m2zH; k) + b0

a∑
k=s∗+1

�2k(1; m
2
zH; k) (A8)

with all �2 random variables independent of each other, which completes the proof. All
coe�cients are positive unless b0 − �sH;1¿0, which implies w¿hH;0 = hH;1(1− �sH;1).
Many special cases arise. If cg= 0 then all �2’s are central. Note that b0 ∈ (0; 1) and

�sH; k ∈ (0; 1). If �sH; k ≡ �sH¿b0, which is guaranteed by s∗=1, then Pr{SH60} can be ex-
pressed in terms of the CDF of a possibly doubly non-central F . If cg= 0, s∗=1 and
N∗=N − qF + a − 1, then �sH =1, SH = b0�20(N∗) + (b0 − 1)�21(1), f∗=w=[N∗(hH;1 − w)]
and Pr{SH60}=FF(f∗;N∗; 1).
Replacing �−1

∗ by b�tr−1(�∗)Ib gives the parallel result for !U. In particular

F!U(w) = Pr{b06(q3U=hU;1)=(q1 + q2)}
=Pr{b0z′A1z + (z −mz)′(b0A2 −A3U)(z −mz)60}
=Pr{SU60} (A9)

With F ′
T1(� − �0)(� − �0)′FT1b�=[tr(�∗)hU;1]=VsUDg(�sU)V ′

sU, the �rst a eigenvectors of
AdU = (b0A2 −A3U) are P′FT1VsU. If mzU =V ′

sUF
′
T1Pmz=V

′
sUF

′
T1cg=�g (a× 1) then

SU = b0�20(N − qF) +
s∗∑
k=1
(b0 − �sU;k)�2k(1; m2zU;k) + b0

a∑
k=s∗+1

�2k(1; m
2
zU;k) (A10)

Proof of Theorem 1
Unconditional power equals the expected value of conditional power over all possible real-
izations of the experiment. Using the law of total probability, unconditional power can be
approximated by integrating approximate conditional power with respect to !H.
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For any G , !H = tr(H�
−1
∗ )¿ 0 implies hH;1¿ q3H=(q1 + q2). Also, qj¿ 0 and

q3H=(q1 + q2)¿ 0. Finite N , �, CF and 0¡|�∗|¡∞ ensure �nite hH;1. Hence ∞¿hH;1
¿ q3H=(q1+q2)¿ 0, which implies hH;1¿!H¿ 0. See the proof of lemma 2 for the derivation
of hH;0. As a smooth function of absolutely continuous random variables, !H is also abso-
lutely continuous (and has a density). Use an expression for @FF(f; �1; �2; t)=@t [30, 30.46]
and integration by parts to complete the proof.

A.2. Local alternatives and quantized limits

In a GLMM(F), the experimenter decides a priori to select a certain number of subjects from
each of K groups. Write the predictor matrix as

F =[f1⊗ 1′N1 f2⊗ 1′N2 · · · fK ⊗ 1′NK ]′



f ′1 ⊗ 1N1
f ′2 ⊗ 1N2
...

f ′K ⊗ 1NK


 (A11)

with fk a qF × 1 vector of values for a subject in group k. De�ne the essence matrix, Fe, as
that matrix which contains one and only one copy of each unique row of F [31]:

Fe
K×qF =[f1 f2 · · · fK ]′ (A12)

Let W be a diagonal K ×K matrix with diagonal entries {N1=N; N2=N; : : : ; Nk=Nt}. Then
N =

∑K
k=1 Nk and F

′F =NF ′
eWF e.

For a positive integer m, let N (m)=mN . As m→∞, then N (m)→∞ in a sequence of
quantized steps, each of size N , a quantized limit process. The sequences used in the lim-
its here are in the same spirit as those in Anderson (reference [14], p. 330). Also de�ne
F(m)=F ⊗ 1m. Then F(m)′F(m)=N (m)F ′

eWF e. Note that W , Fe and N remain �xed as
N (m) increases.
We assume rowi(Gm)′=NN (m)(0;�G), with independent rows. Both F(m) and Gm increase

by N rows at each step, which corresponds to drawing a larger random sample for Gm.

Proof of Lemma 4
Consider

lim
N (m)→∞

[N (m)]−1M−1 = lim
N (m)→∞

[T1=N (m)]−1

− lim
N (m)→∞

([N (m)�2g =(q1 + q2)]{[N (m)]−2�−2g T1g∗g′∗T1}) (A13)

First

lim
N (m)→∞

[T1=N (m)]−1 = lim
N (m)→∞

{CF [N (m)F ′
eWF e]

−1C ′
F=N (m)}−1

=M−1
LA (A14)
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Next write

lim
N (m)→∞

[
�2g N (m)
q1 + q2

]
= lim
N (m)→∞

1
[N (m)�2g ]−1q1 + [N (m)�2g ]−1q2

(A15)

and use lemma 19.9 of Arnold (reference [32], p. 365) to show limN (m)→∞ [N (m)�2g ]
−1q1 = 1.

As the Gaussian in q2 converges in probability to a point mass, q2=N (m)
p→ c′gM

−1
LA cg=�

2
g .

Finally

T1g∗g′∗T1[�gN (m)]
−2 =T1g∗g′∗[�gN (m)]

−2T1 (A16)

with T1 = {CF [N (m)F ′
eWF e]

−1C ′
F}−1. Since the Gaussian vector in T1g∗g′∗T1 converges in

probability to a point mass

T1g∗g′∗T1�
−2
g [N (m)]

−2 p→ M−1
LA cgc

′
gM

−1
LA �

2
g (A17)

and the result follows.

Proof of Theorem 3
For the HLT, approximate unconditional power is de�ned in equation (15). By lemma 4,
HLA

p→ QLA. Thus, limN (m)→∞!H =!H;LA. The result follows by lemma 1 in Glueck and
Muller [33]. For the univariate tests, convergence of HLA implies that limN (m)→∞!U =!U;LA,
and the CDF of non-centrality becomes a point mass. Similar arguments apply to the Pillai–
Bartlett and Wilks’ tests. Hence they have the same asymptotic unconditional power under
local alternatives.

ACKNOWLEDGEMENTS

Glueck’s work was supported in part by grant T32HS00058-04 from the Agency for Health Care Policy
and Research to the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical
School. The contents are solely the responsibility of the authors and do not necessarily represent the
views of AHCPR. A portion of the work reported here was described in the dissertation submitted
by D. H. Glueck in partial ful�llment of the requirements for the PhD degree in Biostatistics at the
University of North Carolina at Chapel Hill. Muller’s work supported in part by NCI program project
grant P01 CA47 982-04. The authors gratefully acknowledge guidance from an anonymous reviewer
that led to substantial improvements.

REFERENCES

1. Sampson AR. A tale of two regressions. Journal of the American Statistical Association 1974; 69:682–689.
2. Jayakar AD. On the detection and estimation of linkage between a locus in�uencing a quantitative character
and a marker locus. Biometrics 1970; 26:451–464.

3. Soller M, Genizi A. The e�ciency of experimental designs for the detection of linkage between a marker locus
and a locus a�ecting a quantitative trait in segregating populations. Biometrics 1978; 34:47–55.

4. Genizi A, Soller M. Power derivation in an ANOVA model which is intermediate between the ‘�xed-e�ects’
and the ‘random-e�ects’ models. Journal of Statistical Planning and Inference 1979; 3:127–134.

5. Gatsonis C, Sampson AR. Multiple correlation: exact power and sample size calculations. Psychological Bulletin
1989; 106:516–524.

6. Constantine AG. Some non-central distribution problems in multivariate analysis. Annals of Mathematical
Statistics 1963; 34:1270–1285.

7. Pillai KCS, Jayachandran K. Power comparisons of tests of two multivariate hypotheses based on four criteria.
Biometrika 1967; 54:195–210.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:2535–2551



ADJUSTING POWER FOR A BASELINE COVARIATE IN LINEAR MODELS 2551

8. Sugiura N, Fujikoshi Y. Asymptotic expansions of the non-null distributions of the likelihood ratio criteria for
multivariate linear hypothesis and independence. Annals of Mathematical Statistics 1969; 40:942–952.

9. Lee Y-S. Distribution of the canonical correlations and asymptotic expansions for distributions of certain
independence test statistics. Annals of Mathematical Statistics 1971; 42:526–537.

10. Muirhead RJ. On the test of independence between two sets of variates. Annals of Mathematical Statistics
1972; 43:1491–1497.

11. Nagao H. Non-null distributions of the likelihood ratio criteria for independence and equality of mean vectors
and covariance matrices. Annals of the Institute of Statistical Mathematics 1972; 24:67–79.

12. Fujikoshi Y. Asymptotic formulas for the non-null distributions of three statistics for multivariate linear
hypothesis. Annals of the Institute of Statistics 1975; 22:99–108.

13. Fujikoshi Y. Comparison of powers of a class of tests for multivariate linear hypothesis and independence.
Journal of Multivariate Analysis 1988; 26:48–58.

14. Anderson TW. An Introduction to Multivariate Statistical Analysis. 2nd edn. Wiley: New York, 1984.
15. Kulp RW, Nagarsenker BN. An asymptotic expansion of the non-null distribution of Wilks’ criterion for testing

the multivariate linear hypothesis. Annals of Statistics 1984; 12:1576–1583.
16. Sugiyama T, Ushizawa K. Power of largest root in canonical correlation. Communications in Statistics:

Simulations 1992; 21:947–960.
17. Muller KE, LaVange LM, Ramey SL, Ramey CT. Power calculations for general linear multivariate models

including repeated measures applications. Journal of the American Statistical Association 1992; 87:1209–1226.
18. Muller KE, Peterson BL. Practical methods for computing power in testing the multivariate general linear

hypothesis. Computational Statistics and Data Analysis 1984; 2:143–158.
19. Muller KE, Barton CN. Approximate power for repeated measures ANOVA lacking sphericity. Journal of the

American Statistical Association 1989; 84:143–158. (correction, 1991; 86:255–256).
20. McKeon J. F approximations to the distribution of Hotelling’s T20. Biometrika 1974; 61:381–383.
21. Davies RB. Algorithm AS 155: the distribution of a linear combination of chi-squared random variables. Applied

Statistics 1980; 29:323–333.
22. SAS Institute Inc. SAS/IML User’s Guide, Version 8. SAS Institute Inc.: Cary NC, 1999.
23. Thisted RA. Elements of Statistical Computing. Chapman and Hall: New York, 1988.
24. Sen PK, Singer JM. Large Sample Methods in Statistics: an Introduction with Applications. Chapman and

Hall: New York; 1993.
25. Christiansen DH, Hosking JD, Helms RW, Muller KE, Hunter KB. LINMOD (3.1) Language Reference

Manual. The University of North Carolina at Chapel Hill: Chapel Hill, NC, 1995. Freely available at
http://www.bios.unc.edu/˜muller (04/01/2002).

26. Graybill FA. Matrices with Applications in Statistics. 2nd edn. Wadsworth: Belmont, CA, 1983.
27. Johnson NL, Kotz S. Continuous Univariate Distributions, vol. 2. Houghton Mi�in: Boston, 1970.
28. Morrison DF. Multivariate Statistical Methods. 3rd edn. McGraw Hill: New York, 1990.
29. Mathai AM, Provost SB. Quadratic Forms in Random Variables: Theory and Applications. Marcel Dekker:

New York, 1992.
30. Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions, vol. 2. 2nd edn. Wiley: New York,

1995.
31. Helms RW. Comparisons of parameter and hypothesis de�nitions in a general linear model. Communications

in Statistics – Theory and Methods 1988; 17:2725-2753.
32. Arnold SF. The Theory of Linear Models and Multivariate Analysis. Wiley: New York, 1981.
33. Glueck DH, Muller KE. On the expected value of sequences of functions. Communications in Statistics –

Theory and Methods 2001; 30:363–369.

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:2535–2551


