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ABSTRACT

Medical images and genetic assays typically generate High Dimension, Low Sample

Size (HDLSS) data, namely more variables than independent sampling units.  Scientists

often use Principal Components Analysis (PCA) of sample covariance matrices to work

around the limitations of HDLSS.  We provide analytic results and Monte Carlo

simulations for Gaussian data which strongly discourage the practice.  All but a

negligible fraction of population variation must occur in a set of dominant components

far fewer in number than the number of independent sampling units.  The results

demonstrate why statisticians must assess the empirical performance of any analysis

method in the HDLSS setting.  Expressing HDLSS data in terms of underlying canonical

forms helps develop analytic and sample properties.

1. INTRODUCTION

1.1 Motivation

Medical imaging scientists often use principal components analysis (PCA) to select a

covariance model of High Dimension, Low Sample Size (HDLSS) data, i.e., more

variables than independent observations.  The resulting dimension reduction allows

classical data analysis.  However, results for other model selection methods lead to the

suspicion that HDLSS will require extremely easy problems in order to succeed.

For Gaussian data, the sample covariance matrix provides an unbiased estimator of the

population covariance matrix even with HDLSS.  In contrast, for general population

covariance, HDLSS disallows estimating all of the population eigenvalues.  Statistically,

PCA uses the sample-ordered eigenvalues of the sample covariance to estimate the

largest population eigenvalues.  PCA reduces the variable dimension by selecting the

components associated with the largest few sample eigenvalues.

Good model selection by PCA requires the sample eigenvalues to be good estimators of

the corresponding population eigenvalues (the component variances).  Previous
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theoretical and simulation results make it clear that allowing the number of variables to

decrease from above toward the number of observations leads to poor performance.  Here

we extend the results by allowing the number of variables to decrease far below the

number of observations, and therefore study the HDLSS setting.

1.2 PCA of Brain Anisotropy in a Child's Left Cerebellum

Cascio et al. (2008) used diffusion tensor imaging (DTI) to assess anisotropy

(heterogeneity) in brain regions of interest for autistic, normal, and developmentally

delayed children.  The 22 normal and 10 developmentally delayed children served as a

reference (control) group in the study.  The left cerebellum provides one of many regions

of interest in the brains of the children.  Even considered by itself, the left cerebellum

data display the HDLSS problem because for each of the 32 children have 387 values of

fractional anisotropy (FA, a measure of heterogeneity), one per voxel (cube in 3-space).

Although PCA can be computed with fewer degrees of freedom than variables, how much

confidence can we have that the results help us understand the population structure?

The same question arises in applying PCA in many other fields, including chemical

spectroscopy, proteomics, metabolomics, etc.

A full rank multivariate linear model of the 387 response variables was fitted to the DTI

data in order to adjust for age, gender, developmental group, and all their interactions.

With 8 degrees of freedom for the model, the residuals were based on / œ $#) œ #%

error degrees of freedom, and a ratio of roughly  variables per degree of freedom."'

PCA of the residual covariance matrix gave Figure 1, which includes the traditional

"scree" plot of sample-rank-order estimated eigenvalues , as well as the moreš ›-s4

informative plot of .  Of the 24 components with non-zero variance, the first 18˜ ™-s4

"Î#

accounted for 90% of the variation.  The first component explained 13.9% of the

variation, while the next 23 components accounted for 9.3% to 1.1%.
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1.3 Literature Review

Many authors have described Wishart theory in describing the sample covariance

distribution for Gaussian data (Johnson and Kotz, 1972; Anderson, 2004).  Most results

require nonsingular population covariance and more observations than variables.  Khatri

(1976) discussed relaxing the requirement of nonsingular population covariance.  Uhlig

(1994) discussed relaxing the second requirement (more observations than variables).

Muller and Stewart (2006) described a Wishart taxonomy which includes all possible

combinations of finite 1) variable dimensions, 2) population covariance ranks, and

3) sample sizes, including HDLSS cases.

The importance to statistical success of the ratio of observations to variables has been

studied in many traditional low dimension settings.  Simulation evidence emphasizes the

importance of the ratio in determining the stability of factor analysis.  The results suggest

the same for PCA, a special case of factor analysis.  MacCallum, Widaman, Zhang, and

Hong (1999) supported that position for situations with more observations than variables.

Preacher and MacCallum (2002) extended the conclusions to sample sizes as small as 10,

including some HDLSS cases.

HDLSS data allow a variety of asymptotic scenarios.  Johnstone (2001) allowed the

number of variables and observations to increase at the same rate for HDLSS data.  He

described the limiting density of the largest sample eigenvalue when all population

eigenvalues are equal.  For population covariance matrices not far from the identity, if the

ratio of variable dimension to sample size goes to a constant Baik et al. (2005) and Baik

and Silverstein (2006) discovered that the sample eigenvalues behave as if the underlying

covariance matrix were the identity matrix.   Meinshausen and Bühlmann (2006) found

that consistent selection of the mean model with HDLSS Gaussian data required a sparse

covariance matrix among predictors.  For the number of variables going to infinity with a

fixed sample size, Ahn et al. (2007) described the geometric structure of HDLSS data and
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discussed implications of using PCA in a high-dimensional space.  All of the HDLSS

results share a common feature:  success requires a simple covariance structure, at least

asymptotically.

1.4 Overview of PCA Results

We address the most basic questions about the quality of eigenvalue estimation for

HDLSS and Gaussian data.  We provide both analytic and numerical properties of sample

covariance matrices, with either full or less-than-full rank population covariance matrix.

We conclude that PCA of HDLSS data will fail unless the population covariance falls in

a limited range of simple structures.

A key step involves expressing singular HDLSS data and covariance matrices in terms

of nonsingular matrices.  The expressions demonstrate that the population eigenvectors

play no role whatsoever in the distribution of the sample eigenvalues for HDLSS data.

Being able to ignore the eigenvectors greatly simplifies the design of simulations.

Furthermore the full rank expressions make the calculations more accurate and faster.

The paper contains 6 more sections.  Section 2 details all assumptions, while sections 3

and 4 cover analytic results for nonsingular and singular population covariance matrices.

In section 5 analytic approximations lead to a formal conjecture that PCA works very

poorly in HDLSS.   simulations in section 6 support the conjecture.  WeMonte Carlo

close with some suggestions for alternatives to PCA with HDLSS.

2. ASSUMPTIONS

2.1 Multivariate Gaussian Data

We follow Schott's (1997) notation for matrices and describe the  data matrix, ,/ ‚ : ]

as containing  independent observations on  variables.  The vector row  has/ : œC ]3 3
wc d� �

a Gaussian distribution with mean zero, indicated   The assumption ofC !3 µ a:� �ßD .

zero means help simplify the exposition.  Lemma 1 details how to relax the assumption

and account for nonzero means and more general covariate adjustments, as usually
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required in practice.  matrix   Describing the distribution  as a single Gaussian, rather]

than a collection of vectors, greatly simplifies stating many of the results in the paper.

Definition 1. For symmetric  with no negative eigenvalues,  follows aB D and Y

matrix Gaussian distribution indicated , if and only if Y Qµ ß ßa/ß:� �B D

vec vec  � � c d� �Y Qµ ßa/†: D BŒ (Muller and Stewart, 2006, section 8.8).

When needed for clarity, writing fa8ß:� �Q ß ßB D  explicitly indicates that one or both

of  have one or more zero eigenvalues, and hence are singular matrices, whichB D and 

disallows the distribution from having a density.  The notation � �f a8ß:� �Q ß ßB D

indicates  and  may be singular or nonsingular.B D

Assumption 1. he data of interest follow a matrixFor integers  and , t/  ! :  !

Gaussian distribution, .  Although  is never singular  may be.] ! M Mµ ß ß� � � �f a/ / /ß: D D

In practice, the sample covariance matrix must usually be adjusted for the mean and

known covariates.  Analysis of the DTI data illustrate the point.  Applying PCA to the

sample covariance would adjust only for the grand mean and not for mean differences

due to gender, age, developmental group, nor for interactions.  The presence of group

differences would either distort the structure or define additional components in order to

accommodate the variation among groups.  Treating the mean model (first moment

variation) separately from the covariance model (second moment variation) provides a

more parsimonious, simpler, and easier to analyze covariance model.  Achieving the

simpler model requires accounting for mean structure in the data, as indicated in the

following cautionary lemma.

Lemma 1. For Gaussian data the sample covariance matrix of the residuals from a

multivariate linear model adjusting for the mean and any important covariates avoids

considering the mean and covariates any further.  Omitting the adjustment introduces

additional sources of variability (often the largest) in the covariance matrix.
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2.2 Wishart Sample Covariance

The sums of squares matrix for a Gaussian sample follows a Wishart distribution, and

so lies at the heart of PCA theory.  Muller and Stewart (2006) gave the following

definition which explicitly allows population covariance of any rank (full rank or

singular), as well as any ratio of sample size to number of variables, including HDLSS.

Definition 2. If , then  follows a ] ! M ] ]µ ß ß� � � �f a/ß:
wD central (integer) Wishart

distribution with (integer)  degrees of freedom, written  for full/ j / ! µ ß] ]w :� �D
rank , or  for singular , or  for possibly singular .D D D D Dfj / f j /: :� � � � � �ß ß

Considering the characteristic function allows extending the definition to all real ./

The following assumption specifies the class of covariance matrices of interest by

explicitly defining the  matrix of sums of squares.  :‚: Even with HDLSS, the sample

covariance matrix provides an unbiased estimator of the population covariance matrix.

Assumption 2. For integer , ./ / j / ! µ ßW ] ]œ œw D Ds � �f :� �
3. FULL RANK POPULATION COVARIANCE

3.1 Homogeneity of Component Variances, the Population Eigenvalues

With nonsingular population covariance, the complications in PCA for HDLSS data all

stem from singularity of the sample covariance matrix, which occurs due to too few

observations ( ).  The behavior of PCA for sample data varies as a function of the/  :

population pattern of eigenvalues.  The average eigenvalue (first moment) can easily be

seen to have no role in predicting performance of PCA for HDLSS except in limiting

cases (average eigenvalue near zero or infinity).  In contrast the second moment, the

dispersion of the eigenvalue pattern, can tell us a great deal about the analytic and

simulation performance of PCA for HDLSS.  In order to facilitate the discussion, the next

lemma defines a standard measure of eigenvalue dispersion.  Special values of it lead to

simple distributions of sample eigenvalues, even with HDLSS.
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Lemma 2. ,  For covariance matrix Dg the sphericity parameterD E - Eœ � � w

%

- - - -

œ Î :

œ : œ

tr tr# #

4œ" 4œ"

: :
4

#

4
# # #

� �  ‘ˆ ‰
Š ‹ ‚Š ‹� � ˆ ‰ 
D D (1)

measures homogeneity of  and e f-4 does not vary with  or scale (  and  give theE - -- †

same ).  Also  with    for complete homogeneity.% % % - -"Î: Ÿ Ÿ " œ " Í ´  !4

If  and the urank , then � �D D Dœ œs: µ ß/ W j /:� � : principal components nderlying

W  are Gaussian and independent, with variances .  Hence e f-4 % measures deviation from

component sphericity (but not sphericity of the original variables, unless ).E œ M   The

components have a spherical Gaussian distribution if and only if the in  dimensions :

eigenvalues are all equal (- œ -":), if and only if , whether% œ "   (HDLSS) or/  :

/ / /  :  :   :. If properties of sample eigenvalues differ for  and .  %  ", then 

3.2 A Dual Matrix for the Sample Sums of Squares

Whenever the variable dimension exceeds the number of independent observations,

analytic and computational problems abound for the sample covariance matrix.

Fortunately the sample eigenvalues coincide with the eigenvalues of a smaller matrix of

full rank.  Even more felicitously the smaller dual matrix involves only independent

random variables and does not depend on the population eigenvectors.

If , then any realization of  is singular with  nonzero/ / / : œ sW ] ]D œ w

eigenvalues.  Necessarily, any realization of  has the same nonzero eigenvalues as theW

corresponding particular realization of the  and nonsingular matrix/ /‚

W ] ]H
wœ  . (2)

Hence the distributions of nonzero eigenvalues of  and  coincide.W WH

The dual matrix , switching the roles of columns and rows of a data matrix, is muchWH

simpler than .  As stated in Theorem 1, although  and  share nonzero eigenvalues,W W WH
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the matrix  depends on the eigenvalues of , but not on its eigenvectors.  FurthermoreWH D

WH exactly equals a weighted sum of  independent Wishart matrices.:

Theorem 1.  for , then a) Dg , b) If rank] ! Mµ ß ß œ œ œa/ /ß
w w

:� � � � � �D D D E - E EE:

M ] ^ ^ ! M M: ß :
"Î# w, and  c) Dg  with .  d) If  then the  matrixœ µ ß ß : :‚:� � � �- E a // /:

/ / / / /D Ds œ œ ß ‚W ] ]w :µ j � � has the same  nonzero eigenvalues as the  matrix

W ] ] ^ ^ D D [H 4 4 4 4
w w w

4œ" 4œ"
4œ œ œ œDg , (3)� � � �-

: :

- -

with  being column  of  and  with  independent of  ( ).D ^ [ M [ [4 4 4 4
w4 µ "ß 4 Á 4j/ /� � w

Corollary 1.1 The characteristic function is , .9 +-� � k k#X W M X X Xà œ # œH 44œ"
"Î# w:

/

Corollary 1.2 The first moment of  is .   The variance of anW W MH H 44œ"E� � �œ : - /

element is  for , and  for .i - i -� � � �� �Ø Ù œ # † 4 œ 4 Ø Ù œ 4 Á 4W WH 44 H 444œ" 4œ"4 4
# w # w

w w
: :

At first glance, equation 3 may look too simple and wrong.  As often happens in

statistical expressions, the equation may be interpreted as a statement about random

variables or particular realizations.  Therefore it helps to carefully attend to the

distinctions among parameters (unknown constants), parameter estimates, a random

variable (matrix), a particular realization of a random matrix, and a (known) constant.  In

particular, the random matrix  has rank  and henceW ] ]œ ß œ :w
:µ j � � � �/ D D

population nonsingular covariance.  If  then any particular realization of , say ,/  : W W‡

must be singular and hence gives singular sample covariance, .Ds‡

3.3 Sample-Ordered Distributions of Estimated Eigenvalues

The sampling and computational process does not allow observing individual estimates

of particular eigenvalues.  Instead data analysts can observe only the sample order of

eigenvalues from PCA of a sample covariance matrix.  For PCA to succeed as a data

analysis requires reasonable accuracy in using the observed sample-ordered eigenvalues

to estimate the unobserved population-ordered eigenvalues.  Previously known results

about the distributions of  eigenvalues from PCA of  based onsample-ordered Ds



9

/ /D D Ds œ   :W µ ßj /:� � require  nonsingular  and  (more observations thanboth

variables).  Johnson and Kotz (1972) provided the most detailed discussion we know.

In contrast to the requirements for previous results on eigenvalue distributions, interest

in HDLSS data involves fewer observations than variables, .  Theorem 2 extends/  :

the results known about the distribution of sample-ordered eigenvalues to some HDLSS

cases with full rank population covariance, rank ./  œ :� �D
Theorem 2. For  the smallest  eigenvalues of / / / : œ : œsrank� �D D

W µ ßj /:� �D  are zero.  The distribution of the  largest sample-ordered eigenvalues/

> "
w

"œ > Ÿá Ÿ>> â >c d� � � � � � � �/ / for  depends on population eigenvalues  as follows.-

a) If  so , then 1) t- œ œ "- %" W: he eigenvalues of  exactly follow the distribution of

the eigenvalues of the ,/ / - - -‚  matrix W ] ] ^^ [ MH
w wœ œ œ µ :ß�

4œ" 4
: j/ˆ ‰/

2) the density of  is>

0 à ß : œ  > > >
#

4Î# >

:4" Î#

"

#
" 

Î#

:Î#
4œ" 4œ"

4
: " Î#

4 5 4

54

� � ˆ ‰ $ � $� �
c d� � Š ‹ ˆ ‰> /

1

-

>

> -

/

/

/ //� �� �
� � � � � �exp , (4)

which corresponds to the previously known result with  and  exchanged, and 3) the: /

(marginal) density of the largest,  is known, along with other properties (Johnson and>� �/ ,

Kotz, 1972, 188-192).

b)  If , then the joint density of  is unknown."Î:   "% >

c) If   and , then  and  have one nonzero eigenvalue which equals"Î:  Ÿ " œ "% / W WH

a weighted sum of independent chi squares.  Also    and[ µ "ß Í [ µ "4 " " 4
#j � � � �M ;

WH 4 44œ"œ [ " ‚ "�: -  is .  Davies' algorithm (1980) gives exact probabilities.

4. LESS-THAN-FULL RANK POPULATION COVARIANCE

4.1 Describing Sample-Singular Covariance Matrices

Less-than-full rank population covariance complicates the discussion of PCA for

HDLSS data.  The sample covariance matrix may be singular due to a) /  : (HDLSS),

b) rank , or c) both.  In any case, loosening the condition  to � �D œ : :   :   :  / /
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allows generalizing the preceding analytic results.  Our simulation and analytic results

demonstrate that  suffices to provide good estimation of the population/ ¦ :

eigenvalues.  The variable dimension, , : plays a role solely in determining the singularity

of the sample covariance matrix.

A more general form of the sphericity parameter % does a much better job of describing

eigenvalue patterns and characterizing distributions of sample eigenvalues.  The more

general form reduces to the original version for a nonsingular covariance matrix.

Lemma 3. A  singular covariance matrix  with rank  has : ‚ : " Ÿ œ :D D� � : Ÿ : 

strictly positive eigenvalues - œ :  :âc d- -" :  and  zero eigenvalues.

a) While  characterizes the entire set of  eigenvalues, the% œ :tr tr# #� � c d� �D DÎ :

parameter dispersion of the :% % œ :Î:  characterizes the :  eigenvaluesnonzero

%

- - - -

 
# #

4œ" 4œ"

: :
4  

#

4
# #


#

œ Î :

œ : œ

tr tr

 .

� �  ‘ˆ ‰
Š ‹ ‚Š ‹� � ˆ ‰ 
D D

 

(5)

b)  then  and If .: œ œ " " œ "Î:% %

c) I  and .f   then "  :  : : Î: "Î:  Ÿ "Î:  Ÿ "% % 

The following  rather than .   observations illustrate the value of considering If% %

/D D Ds œ W µ ß :fj /: � � and the  nonzero eigenvalues of  are all equal, then the 

corresponding components have a spherical Gaussian distribution in  dimensions: .  In

contrast, the In general, ientire set of  components have a singular distribution.  : f %  "

then properties of sample eigenvalues differ for  and ./ / :   : 

4.2 The Data and Sample Covariance in Terms of Full Rank Matrices

Expressing the data and sample covariance in terms of full rank matrices provides many

important advantages.  It greatly improves computational speed and also helps

computational accuracy.  Most importantly the full-rank expressions greatly simplify

deriving and understanding analytic properties.  The next lemma gives explicit forms.
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Lemma 4. If rank , then .  Having the  nonzero� � � �D Dœ :  : µ ß ß : ß ] ! Mfa/ /:

eigenvalues in  gives Dg  with - D E - E F F F    " :
w

 
w wœ œác d � �- -

 œ œ

E -  ß :
"Î#Dg .  For  it follows that� � � �^ ! M Mµ ß ßa/ /: 

] ^ ^œ œF - E 
w w


"Î#Dg  , (6)� �

(Muller and Stewart, 2006, section 8.8),  and] ] Ww œ œs/D

W ^ ^œ E - - E  
"Î# "Î#w w

Dg Dg  . (7)� � � �
The last line expresses singular  in terms of three simple, nonsingular matrices.W

1) The eigenvector matrix  is  and orthonormal by columns.  2) The diagonalE : ‚ :

matrix Dg  is , with diagonal elements the strictly positive eigenvalues of ,� �- D  : ‚ :

the population variances of the principal components.  3) The random matrix ^ œ De f34

is , has fully independent elements  and a nonsingular distribution./ a‚ : D µ !ß " 34 � �
If is singular ( ) and , then  is singular with rank .D D :  :   : œ :s  

w/ / œ W ] ]

In contrast if is singular and  then  is singular with rank .  The  dualD / / / / : ‚ W

matrix  is defined in both cases, but is nonsingular only if .  AsW ] ]H 
wœ Ÿ :/

detailed in the following theorem, if , then the dual matrix has a simple distribution/:

because it equals a weighted sum of independent Wishart matrices.

Theorem 3. If  for rank , / / /D D Ds œ ß : œ : µœ µ] ] W ^w
fj:� � � �

a/ / / /ß : 4   4
w

: 
� � � � � �! M M D ^ [ Mß ß 4 œ µ "ß,  being column  of , Dg , and D E - E fj

with  independent of  ( ), then[ [4 4
w

w 4 Á 4

W ] ] ^ ^ D D [H 4 4 4 4
w w w

4œ" 4œ"
4œ œ œ œDg . (8)� � � �-

: :+

- -


Corollary 3.1 The characteristic function is , .9 +-� � k k#X W M X X Xà œ # œH 44œ"
"Î# w:

/

Corollary 3.2 The first moment of  is .   The variance of anW W MH H 44œ"E� � �œ : - /

element is  for , and  for .i - i -� � � �� �Ø Ù œ # † 4 œ 4 Ø Ù œ 4 Á 4W WH 44 H 444œ" 4œ"4 4
# w # w

w w
: : 
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4.3 Distributions of Estimated Eigenvalues for Singular Population Covariance

The distribution results for estimated eigenvalues in Theorem 2 extend to allow singular

population covariance  as long as rank .  The most complex situationD D" Ÿ œ :  :� � 

involves both HDLSS and singular population covariance.  A variety of cases arise, with

some cases having sample eigenvalues with relatively simple distributions.  Theorem 4

covers , which includes HDLSS cases with , as well as more/ /  : :    : 

traditional cases with  .  In contrast, Theorem 5 covers ./ /  :  :  :  : 

Theorem 4. If  with rank  and  D E - E D Dœ   œ : : sDg� �ß œ! w
/ /� �

W Wµ ßfj /:� �D , then the smallest  sample eigenvalues of  are zero with:  :

probability one.  The  largest sample-ordered eigenvalues  have: œ > á >  " :
w

> c d� � � �

the following properties.

a) If , then  and nonzero component sphericity holds.  The density-w
:
w w

œ Ò Ó œ "- %" !


of  is  with  as in part a) of Theorem 2> > "   "0 à : ß 0 †� � � �/ .  Other properties are

similarly available.

b)  If ,  properties generalize the usual results for rank  as"Î:   "   : œ  % /> � �D
in Johnson and Kotz (1972, p170).  If ,  is a partition of , " - -4  4œ "Î  "Î Î# 7 7ˆ ‰ � �;

and  is the corresponding zonal polynomial, the joint density of  isV;� �7 � �E >

0 œ0 à: ß †
7x

%

/








� � � � $ � �Œ  c d c d� � � �c d� �> >
>

M
 "  

: Î#

4œ" 7œ!

:


4 :

Î# ∞

7

7 7 

7
/ 1

/ -

1 - V

V V

;

; ;

;� �
� � � �

� �
Dg Dg

Dg
. (9)

"

c) If , then  and  have only one nonzero eigenvalue and rank .  Also% œ "Î: : œ "sD D 

/ - - ; / ! Î µs insures .� �" "
#� �

As noted earlier, the most complex situation involves both HDLSS and singular

population covariance.  Although Theorem 5 covers the most difficult combinations of

HDLSS and singular population covariance, , some cases have sample/  :  :

eigenvalues with relatively simple distributions.
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Theorem 5. If with rank , then the smallest / / /D D Ds œ  œ: : :Wµ ßfj /:� � � � 

sample-ordered eigenvalues of  are zero with probability one.  The  largest sample-W /

ordered eigenvalues of , , depend on population eigenvalues W > ŸáŸ>� � � �" / - as

follows.

a) If , then  and nonzero component sphericity holds.  1) T-w
 :

w w
œ œ " ‘- %" !


he

eigenvalues of  exactly follow the distribution of the eigenvalues of the W / /‚  matrix

W ] ] D D [ MH 4  4  4œ" 4œ"4œ œ œ µw w- - j -� � ˆ ‰: : 
/ : ß / .

2) The density of  is the same as in part a) of Theorem 2, but with  replaced by .> : :

3) the ,(marginal) density of the largest,  is known, along with other properties>� �/
(Johnson and Kotz, 1972, 188-192).

b)  If , the joint density of  is unknown."Î:   "  % >

c) If  then  and  have one nonzero eigenvalue which is a weighted sum of/ œ " W WH

independent chi squares.  In particular,    and[ µ "ß Í [ µ "4 " " 4
#fj � � � �M ;

WH 4 44œ"œ [ "‚"�: -  is .  Davies' algorithm (1980) computes exact probabilities.

5. APPROXIMATIONS AND CONJECTURES

Two tools provide information about the distribution of sample eigenvalues when

/ % œ : "Î:   "rank  and .  1) Matrices with known eigenvalue properties� �D   

provide simple approximations for the matrices of interest. 2)  Monte Carlo simulations

help determine when the sample eigenvalues distribution can not be distinguished from

the corresponding distribution for the approximation.  Simulations also illustrate the

discrepancy between the population and sample eigenvalues.

Matching moments allows approximating  by a single spherical Wishart withWH

different degrees of freedom.  The approximation in Theorem 6 leads to the conjecture

that HDLSS sample eigenvalues behave as though all population values have been

averaged together (homogenized, a bad feature in the present setting).
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Theorem  6. a)   If rank , then a  have� � ˆ ‰D œ : Ÿ : µ ß ‡" ll elements of W Mj -/ /:

the same first moments as the corresponding elements of :  W W WH ‡" HE E� � � �œ .

b) f  , then I (usually fractional) and corresponding elements of:‡  œ : Î% - % ‡ œ -

W M W‡# ‡ ‡ Hµ ßj -/ /� �:  and  have the same first and second moments.  Also, 18 of 21

types of third order and 69 of 79 types of fourth order moments are zero for  and .W WH ‡#

Having individual elements of  and  share moments suggests their sampleW WH ‡#

eigenvalues may also share moments.  Hence the following statements formally predict

that PCA should be expected to fail with HDLSS.

Conjectures. If two Wishart matrices have the same degrees of freedom, and their

population covariance matrices have the same rank and values of , then the lower%

moments of the  nonzero sample-ordered eigenvalues will be essentially/

indistinguishable from each other.  More precisely, for , , with4− "ß # µ ße f � �W4 : 4j / D

tr tr , rank , , and , while , the� � � � � � � � � �D D D D D - -" # 4    "  # "œ œ: : Ÿ: œ/ % % Á #

sets of  nonzero sample eigenvalues for  and  will have essentially the same lower/ W W" #

moments, as will the sample eigenvalues .W M‡# ‡ ‡µ : ßj -/ /� �
6. SIMULATIONS OF SAMPLE-ORDERED EIGENVALUES

6.1 Design Motivation and Constraints

We designed the simulations to assess the accuracy of the conjectures in close

collaboration with our medical imaging colleagues.  Each successive set focused on an

increasingly narrower range of conditions. Our collaborators insisted that compelling

evidence of poor performance by PCA required simulating populations consistent with

their expectations of imaging data.  Simulation 1 used a coarse grid of conditions across

the range of eigenvalue patterns not covered by our analytic results.  The results led the

imaging scientists to requested more simulations for very small  (analytic results cover%

the boundaries  and ).  A further request for changes in population% %œ "Î: œ "Î: 

eigenvalue patterns led to simulation 3, which the imaging scientists deemed compelling
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evidence for cases of interest to them.  Simulation 4 completes the picture by

approximating the sample eigenvalue pattern of the DTI data introduced in section 1.2.

We designed the simulations to examine a range of variable dimensions ( ), sample size:

( ), and their ratio  typical of medical imaging research we have encountered.  The/ /:Î

ratio  of , for example, occurs in the DTI data.  We considered only diagonal:Î "'/

population covariance matrices because Theorem 1 assures us that population

eigenvectors play no role in the distribution of sample eigenvalues for HDLSS PCA.

The focus on HDLSS led to 6 constraints in defining sets of population eigenvalues.

1) Sorting population eigenvalues so  meant only monotone decreasing- -5 5" 

functions held any interest (without loss of generality).  2) Each set was scaled to help

accuracy and align features across conditions in a simulation (  for simulations 1- œ "

and 4,  for simulations 2 and 3).  functions giving -" œ " 3) We sought eigenvalue ratios

which remained the same for any value of  (the number of variables).  4) Our medical:

imaging collaborators only care about eigenvalue patterns with a small number of

dominant components.  Hence we considered only concave functions.  5) Testing

whether two eigenvalue population patterns with the same  have indistinguishable%

distributions of sample eigenvalues required finding two eigenvalue functions that

differed in shape.  6) We wanted functions able to define eigenvalue patterns for any

value of .% − "Î:ß "� �
6.2 Data Generation and Analysis Methods

All simulations were conducted with SAS/IML  (SAS Institute, 1999).  The NORMAL®

and RANGAM functions generated the pseudo-random numbers.  The EIGVAL function

computed the eigenvalues.  In each condition 10,000 replications were stored.

HDLSS simulations raise serious concerns about speed and accuracy.  Careful scaling

along with varying the algorithm for generating the Wishart matrices greatly improved

speed and helped accuracy.  With roughly 14 digits of accuracy, a number smaller than
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"!"% in absolute value, the size of some eigenvalues in many of our simulations, can

often be indistinguishable from zero.  Consequently we invested time in checking the

computations by comparing analytic results with simulation results for alternate

algorithms.  We believe the larger eigenvalues were computed with sufficient accuracy

for the purposes needed.

6.3 Simulation 1 Motivation and Design

Simulation 1 allowed comparing the distributions of sample eigenvalues for two

Wishart matrices having the same spherical Wishart approximation ( ) but withW‡#

different population eigenvalues.  It also allows comparisons to a spherical Wishart with

different degrees of freedom and two moments matched.  We expected that all three sets

of sample eigenvalues would be indistinguishable.

For , Figure 2 displays the square roots of the eigenvalues implied by the two: œ '%

population eigenvalue-pattern functions used to define  in the first simulation.e f-4

Function  decreases smoothly at a rate determined by , which was selected1 ÐÑ" 1

iteratively to fix  for each :% − !Þ#ß !Þ&ß !Þ) :e f
1 4à œ "  4  " Î:"� � c d� �1 1 . (10)

Function  joins two decreasing linear pieces at , with  defining the smallest1 ÐÑ ß# � �α " #

eigenvalue.  Also  with  and  were selected iterativelye fα " # α # "ß ß " Ÿ Ÿ : ! Ÿ Ÿ Ÿ "

to fix  for each :% − !Þ#ß !Þ&ß !Þ) :e f
1 4à ß ß œ

4  "   Î  " " Ÿ 4 Ÿ
4   :  Î :  Ÿ 4 Ÿ :#� � œ c d � �� � � �c d � �� � � �α " #
" α " α α
# " " #α α α  . (11)

A four-way factorial design used factors  so ,: − '%ß #&'ß "!#% : − 'ß )ß "!e f � � e flog#

/ % 1 %− %ß )ß "'ß $# − !Þ#!ß !Þ&!ß !Þ)! 1 ÐÑe f e f, and .  Solving for  in  achieved  values"

which agreed to roughly 3 significant digits.  Solving for  in  achieved e fα " # %ß ß 1 ÐÑ#

values agreeing to nearly 2 significant digits and therefore within % of the target."
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For fixed  and  both  and  lead to the same parameters for: 1 1% " #�� ��
W‡# ‡ ‡µ : ß œ Î Þj - - - %/ /� �% M  because   Figure 2 shows square roots of eigenvalues

from  and when .  1 1" #�� �� : œ '% œ !Þ# œ !Þ&For  and , the population eigenvalue% %

pattern from  appears quite different from the  pattern, and differs greatly from1 1"�� ��2

sphericity of W‡#.

6.4 Simulation 2 Motivation and Design

As noted earlier, simulation 2 was designed to have eigenvalue patterns meeting the

suggestions of medical imaging scientists, which meant small .  Eigenvalue pattern % 1$��
defines a step function giving only two distinct population eigenvalues, with :"

eigenvalues of  and  eigenvalues of  or .  For  and" :: "Î$# "Î'% :" − #&'ß "!#%e f
/ − %ß )ß "'ß $# :e f, here fixed the number of “signal” eigenvalues, with" − )ß "'e f 

!Þ!' Ÿ Ÿ !Þ"(%  across the range of conditions simulated.

The changes requested for simulation 2 reflect a simplification of the covariance

structure.  In turn, the same statement holds for simulation 3 relative to simulation 2.

Consequently the design changes steered the simulations toward easier problems.

6.5 Simulation 3 Motivation and Design

Simulation 3 met the imaging scientists' objections to simulation 2 by using two linearly

declining groups of population eigenvalues (large and small) with a wider range of

separation between the two groups:

1 4ß ß :ß : ß œ
"  1 4ß ß :  1 4ß ß : 4 Ÿ :

1 4ß ß : 4  :% "
" " "

" "
� � œ � � � � � �� �1 7

7 1 7 1
7 1  . (12)

If , then , and if , a discount factor  ( ) reduces the4 Ÿ : 1 œ 1 4  :  !" % "�� ��1 7

magnitude of the  eigenvalues.  Changing  changes the gap between the first and11�� 7

second groups of eigenvalues, the “signal” and “noise” eigenvalues, with  the number:"

of “signal” eigenvalues.  Values of , , , , and: œ #&' : œ ) œ )Þ&"") − %ß )ß "'ß $#" 1 / e f
7 7− !Þ!"ß !Þ!&ß !Þ"ß !Þ#e f were considered in a two-way factorial.  The parameter  gave
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% − !Þ!$$ß !Þ!%"ß !Þ!&$ß !Þ!)%e f.  The ratio of mean eigenvalues between the two groups

was .Ð Î: ÑÎÒ ÎÐ:  : ÑÓ − "!(*ß #!(ß *)ß %%� � e f4œ" 4œ: "
: :

4 " 4 "
"

"
- -

Simulation 4 Motivation and Design

Simulation 4 asked whether the sample eigenvalue pattern for the DTI data (section

1.2), as seen in Figure 1, could be approximated well by data with population sphericity.

We computed sample-ordered eigenvalues from 10,000 replicates of .W M‡# ‡ ‡µ : ßj -/ /� �
Given that the DTI data had  we assumed the population had  and- -s œ !Þ!!* œ !Þ!!*

chose  with .  We chose the: − !Þ"!:ß !Þ"&:ß !Þ#!: − Î!Þ"!ß Î!Þ"&ß Î!Þ#!‡ ‡e f ˜ ™- - - -

values  by an empirical grid search.e f!Þ"!ß !Þ"&ß !Þ#!

6.6 Numerical Results

Simulation 1. Figure 3 displays population values and box plots ( 1.5 IQR) of the„

square roots of the largest 16 sample eigenvalues, as a function of size and  % for : œ #&'

and Throughout,  and  indicate sample covariance matrices with/ œ "'.  D Ds s1" 1#

population eigenvalue patterns  and  respectively.  Statistical properties of1 1" #�� ��
sample eigenvalues of  (the spherical approximation) remain the same whenever theDs‡#

same  is targeted (for fixed  and ).  Hence the  patterns in any row in Figure % / : Ds‡# 3

coincide across columns except for randomness across samples.

We produced one plot like Figure  for each condition.  As  decreased the largest3 /Î:

sample and population eigenvalues differed more.  Most importantly, as long as

/Î:  "Î# s s the largest sample eigenvalue from , , and  (the sphericalD D D1" 1# ‡#s

approximation) had essentially the same mean and variance.  The same held true for

/Î: Ÿ "   !Þ&! as long as .%

Overall, the sample data did not allow distinguishing two distinct underlying

eigenvalue populations from each other, or from sphericity.  Hence a PCA data analysis

typically fails in the conditions studied.

Simulation 2. All results agreed completely with results from the other simulations.
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Simulation 3. Figure 4 displays box plots ( 1.5 IQR) of the square roots of the largest„

16 sample eigenvalues, as a function of size, for eigenvalue patterns  and the1%��
corresponding spherical approximation, with , ,  and: œ #&' : œ ) œ "'" /

7 − !Þ!"ß !Þ"!e f.  Population values are also plotted.  The figure illustrates the

conclusion that if , then  must be extremely small to allow separating the:   :" / 7

first  sample eigenvalues from the remaining .: :  :" "

Simulation 4.  The PCA results for the HLDSS DTI data in section 1.2 seem to identify

a set of dominant components.  Figure 5 displays the DTI sample eigenvalues along with

box plots of simulated sample-ordered eigenvalues from spherical populations. Clearly

the simulated data closely track the DTI values.  Hence the results make it hard to claim

the DTI data reflect a population eigenvalue pattern very far from sphericity.

6.7 Implications and Additional Deductions

The results deviated from the conjectures only when  exceeded the number of/

population eigenvalues controlling essentially all of the variance.  As an illustration, for

: œ #&' : œ ) œ "' œ !Þ"! !Þ***(, ,  and  in simulation 3, " / 7 � �
5œ"
) :

5 55œ"- -Î ¸

implies  eigenvalues control 99.97% of the generalized variance, the trace.  We: œ )"

formalize our conclusions in the following lemma about a limiting form of the

characteristic function corresponding to simulation 3, and also a corollary to Theorem 4.

Lemma 5. If  for Dg  of rank ,/ f j /D D D E - Es œ µ ß œ :W � � � � � �: 
w

- E -- - E E Ew
" # ::
w w w

" # ! " "  "œ œ :  " : :  "c d c d � �7 !


, ,  positive values in  and 

positive values in , then  with Dg .  If   has- D F F F F F E -# " # 4 4 4" #
w w "Î#œ  œ Ä !7 7� � W

characteristic function

lim lim
7 7

/

/

/

Ä! Ä!
: " #" #

w w  Î#

: " "
w  Î#

: ""
w  Î#

Ò à Ó œ Ð  #  # Ñ

œ  #

œ  #

9 + 7+

+

+

� � k k
k k
k k

X W M X X

M X

M X

F F F F

F F

F F
"

 .

(13)
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The last line of the lemma reduces the dimensions to , with .: ‚ : : Ÿ : Ÿ :" " " 

Equivalently, only the small number of very large eigenvalues matter.  We describe such

situations with a very strong signal and almost no noise in the following corollary.

Corollary to Theorem 4. If  and  exists with - - / ,5 5" "    : œ

� �
5œ"
:

5 5 "5œ"
:" - -Î ¸ " :, then the largest  eigenvalues are reliably identifiable and the

conjecture is not true.  The distribution of the sample-ordered eigenvalues will be

essentially indistinguishable from the distribution in Theorem 4 with  replacing .: :" 

7. DISCUSSION

7.1 Conclusions

Four general conclusions apply.  1) PCA will succeed with HDLSS data only for very

easy problems.  2)  As a default, we believe data analysts should avoid using PCA with

HDLSS data.  3) Statisticians must determine the validity of any traditional multivariate

method for HDLSS data.  4) Describing the underlying canonical structure helps derive

analytic characteristics and predict sample properties.

7.2 Why Use PCA Rather Than Factor Analysis?

PCA helps derive analytic properties and provide insights about the results.  However,

the covariance structures of most interest to imaging scientists (as in simulations 2 and 3)

implicitly require the more general factor analysis model.  The factor analysis model

expresses the response variables as a sum of shared and unique latent variables, a

formulation inherent to “mixed” models.  Hence for , we agree withdata analysis

Widaman (1993) and avoid PCA in favor of factor analysis.  We studied PCA because so

many scientists rely on it.

7.3 Defensible Strategies for HDLSS

Four strategies seem credible for HDLSS data.  First, developing new theory seems the

most difficult but rewarding.  However, rough approximations based on overly simplified
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covariance models have little appeal for practice.  Exact finite sample theory or results

characterizing the accuracy of approximation with small  are needed.R

Second, using credible structured covariance patterns has great appeal for estimation.

We speculate that good estimation can be achieved as long as the number of independent

sampling units (not observations) substantially exceeds the number of covariance

parameters (not the dimension of the covariance matrix).  An important caution comes

from the observation that inference for small samples based on structured covariance

models in Gaussian mixed models still needs improvement in many ways (Muller and

Stewart, 2006, Chapter 18; Orelien and Edwards, 2008).

Third, we recommend scientifically informed reduction to summary statistics to avoid

HDLSS.  The fear of losing information creates a barrier.  When valid, the approach can

greatly increase precision, as well as greatly simplify analysis and interpretation.

Fourth, analyzing the response variables in meaningful groups can find a comfortable

middle ground between the rock of multiple comparisons and the hard spot of HDLSS.

Avoiding HDLSS allows applying classical multivariate theory with data dimensions for

which validity of estimation and inference can be assured.

APPENDIX:  PROOFS

Theorems 1 and 3. use the same structure.  Inner and outer products of  have the]

same  nonzero eigenvalues.  Constituent matrix decomposition gives the weighted sum./

Independence of  follows from independence of distinct subsets of .e f e f[ ^4 34œ D

Corollary 1.1. Given  and , statisticalW [ X [ M XH 4 4 44œ"
 Î#œ à œ #� � � k k� �: - 9 +/
"

independence of  implies .e f � � � �#- 9 9 -4 4 H 4 44œ"[ X W X [à œ à:

Corollary 1.2 and 3.2. Properties of independent sums, the special case of diagonal

population covariance, and moments in Wishart (1928) lead directly to the moments.

Theorem 2 a) Inner ( ) and outer ( ) products have the sameW ] ] W ] ]œ œw w
H

eigenvalues.  In turn Dg Dg Dg  which has] ] ^ ^ ^ ^w w w w"Î# "Î#œ Ò ÓÒ Ó œ� � � � � �- E E - -
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rank , and .  If , then ./ a % j^ ! M M W ^^ Mµ ß ß œ " œ µ :ß/ / / /ß : H
w

:� � ˆ ‰- -

Theorem 2 c) If  then Dg  is a quadratic form with/ -œ " œ œ D] ] ^ ^w w #
4œ"
:

4 4� � �-

independent  and .D µ !ß " D µ "ß !4 4
# #a ;� � � �

Corollary 3.1. The proof of Corollary 1.1 with  replaced by  applies.: :

Theorem 4 statement. The eigenvalues of  ,W µ ß œj /:� � � �D D E - Ewith Dg w

coincide with the eigenvalues of ,E E -w
 !W ^ ^ ^µ ßj /:c d� �Dg .  With œ c d

E E E E - - E E
- -w w w w"Î# "Î#

 !
  

"Î# "Î#

w

W ^ ^ ^ ^ ^ !
! !

œ Ò ÓDg Dg .Dg Dg� � c d � � ” •� � � �
œ

Hence the  nonzero eigenvalues of   coincide with those of: : ‚ : E EwW

Dg Dg Dg� � � � � �- - -   
"Î# "Î#


w^ ^ µ ßj /: c d.

Theorem 4a). If  and ,Like the proof of a).  Theorem 2 % a ‡ ß :œ " µ ß ß^ ! M M/ /: 
� �

] ] ^ ! ^ !
^ ^ !
! !

w
‡ ‡

w ‡ ‡
w

œ œ- - c dc d ” • has the same  eigenvalues asnonzero

- - ^ ^ M‡  ‡
w µ : ß : j // /ˆ ‰ with .

Theorem 4c). If ,  and , then- - - %" 4 4"!   œ"Î:

Ò Î ÓÎÒ Î Ó œ " œ "  < Î "  <ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰� � � �
4œ" 4œ" 4œ# 4œ#
: : : :

4 4
# #

" "
# # # #

4 4- - - -  for . < œ Î4 4 "- -

If  and other  then  which is a contradiction.  The<  ! < œ ! Ð"#< < ÑÎ "  <  "# 4 # # #
# #� �

same logic applies to .  The special case  in Ö × : œ " œs-� �4 
w

‡ ‡
w] ] ^ ! ^ !-c dc d

applies.  Here , has one nonzero eigenvalue, , with- - -  D D M D D‡ ‡‡ ‡
w wµ "ßj/ /ˆ ‰

D D‡
w #

‡ µ ; /� �.

Theorem 5.  The results follow from generalizing combinations of previous results.

Theorem 6a) .E E� � � �W M W‡" Hœ : † œ- /

Theorem 6b) Moments of elements are  and E E� � � �Ø Ù œ Q 4ß 5 ÒÐØ Ù Ñ Ó œW WH 45 " H 45
#

Q 4ß 5 Ø Ù# H 55
#� �, with , a weighted sum of independent .  A SatterthwaiteW ;

approximation (Mathai and Provost, 1992) matches  and  to  withQ 4ß 4 Q 4ß 4 \" # ‡� � � �
\ Î µ : µ : ß Ø Ù œ Ø Ù‡ ‡ ‡ ‡# ‡ ‡ H 44 ‡# 44

#- ; j -� � � � � � � �.  Hence  gives  andW M W W/ / E E

E E E EÒ Ø Ù Ó œ Ò Ø Ù Ó 4Á5 œ: œ: œ� � � � � � � �W W W M M WH 44 ‡# 44 ‡# ‡ ‡ H
# # .  For   gives- -/ /

E E E E� � � � � � � �� �Ø Ù œ Ø Ù Ò Ø Ù Óœ Ò Ø Ù Óœ: œW W W WH 45 ‡# 45 H 45 ‡# 45 ‡
# #

4œ" 4œ"
: :

4 4
# # #

‡,  and .- - -
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All other second order moments are zero for  and  due to diagonal covariance forW WH ‡#

W [‡# 4 and , by equations 4 and 6-9 in Wishart (1928, p44).  Also 18 of 21 types ofe f
order 3 and 69 of 79 types of order 4 moments are zero for  and .W WH ‡#
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%
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Figure 3. lots for sample-ordered square roots of eigenvalues for , .
• for , solid boxes with  for 

/ œ "' : œ #&'
qD Ds11 in the left column and Ds1# in the right column, 

open boxes for .Ds‡#
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Figure 5. Square roots of sample ordered eigenvalues (black dots) for the residual covariance

matrix of DTI data ( , ) and for 10,000 simulated samples of  (: œ $)( œ #% s/ D‡# box plots 1.5„

IQR) with , , , andW M‡# ‡ ‡ ‡µ : ß œ !Þ!!* : − !Þ"!:ß !Þ"&:ß !Þ#!:j - -/ /� � e f
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