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Abstract
Shape correlation of multi-object complexes in the human body can have significant implications in understanding the
development of disease. While there exist geometric and statistical methods that aim for multi-object shape analysis, very
little research can effectively extract shape correlation. It is especially difficult to extract the correlation when the involved
objects have different variability in separate non-Euclidean spaces. To address these difficulties, this paper proposes geometric
and statistical methods to extract the shape correlation from multi-object complexes. In particular, we focus on the shape
correlation of the hippocampus and the caudate subject to the development of autism. The proposed methods are designed
(1) to capture objects’ shape features (2) to capture shape correlation regardless of different variability between the two objects
and (3) to provide interpretable shape correlation in multi-object complexes. In our experiments on synthetic data and autism
data, the quantitative results and the qualitative visualization suggest that our methods are effective and robust.

Keywords Multi-object shape analysis · Shape correlation · Joint shape variation · Autism classification

1 Introduction

Structures in the human body are often functionally and
spatially interrelated. The shape correlation between these
related structures should be closely associated with the bio-
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logical variation (e.g., disease).Also,multi-object complexes
contain information additional to the information in single-
object complexes. This additional information is expected to
be useful in understanding the biological variation.

For example, previous research on the development of
AutismSpectrumDisorder (ASD) has found associationwith
the shape of single brain structures (see e.g., [10,25,35,36]),
including the hippocampus and the caudate. However, this
research has not effectively revealed the joint shape varia-
tion1 of the related structures subject to the development of
ASD. The difficulties of analyzing the joint shape variation
come frommany directions. First, because the shape correla-
tion is often coupled with variation of relative pose and size
of multiple objects, it is difficult to extract the shape corre-
lation [14]. Second, it is difficult to obtain robust patterns
of shape correlations because of different variability across
multiple objects and also because of the complex data space.
Third, it is often difficult to interpret the shape correlation,
making the results hypothetical to researchers and clinical
users.

Many existing geometric and statistical methods attempt
to address the above difficulties (see e.g., [4,29,34]). For
instance, deformation-based methods (e.g., [16]) analyze
the deformation of multi-object complexes involving the

1 In this paper, “joint shape variation” is used interchangeably with
“shape correlation”.
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ambient space.However, the principal variation can be biased
by the variation of relative pose between objects. Statistical
methods (e.g., [32,44,47]) of multi-block data analysis show
promise in extracting correlation in multi-object complexes.
Nonetheless, few such statistical methods can effectively
extract correlation of shape data due to the complex data
space, as discussed in Sect. 6.

In this paper, we extend geometric and statistical meth-
ods to extract joint shape variation in two-object complexes.
We use boundary points derived from skeletal representa-
tions (s-reps [37]) to capture shape features. Then we extract
joint shape variation from two blocks of shape features via
our method called Non-EUclidean Joint and Individual Vari-
ation Explained (NEUJIVE). The resulting jointly varying
features are the basis of hypothesis testing and classification.
Because previous research has shown significant association
between the development ofASDand shape features of either
the hippocampus or the caudate [17],weverify the joint shape
variation of the hippocampus-caudate pairs using our meth-
ods in classification of the ASD versus non-ASD group.

NEUJIVE is designed for extracting robust joint shape
variation from multi-object complexes where the variability
across multiple objects can be largely different. In essence,
NEUJIVE is an extension of a recent method called Angle-
based Joint and Individual Variation Explained (AJIVE)
[12]. Different from AJIVE, our extension accounts for non-
Euclidean properties of each object. Specifically, NEUJIVE
consists of two critical steps: (1) convert shape descriptors to
Euclidean representations and (2) extract the joint variation
from the two-block Euclidean data via AJIVE. Considering
the spherical property of shape data after removal of transla-
tion and scale [9], we adopt a method called Principal Nested
Spheres (PNS) [24] to obtain the Euclidean representations
for each object. By combining PNS and AJIVE, NEUJIVE
can effectively extract joint shape variation that is insensitive
to different variability of objects.

To capture shape features of objects with good correspon-
dence, we adopt skeletally implied boundary points from
s-reps. These implied boundary points capture smooth geo-
metric features of individual objects for the joint analysis.
Moreover, the s-rep implied boundary points allow straight-
forward interpretation of the joint shape variation.

We show the effectiveness and robustness of the above
geometric and statistical methods in synthetic data and real
shape data relating to ASD. Our key contributions in this
paper can be summarized as below.

1. We propose a new statistical method for multi-object
shape analysis, called NEUJIVE, to extract the joint
shape variation from multi-object complexes. We have
deliberately designed simulations to demonstrate the
effectiveness and robustness of NEUJIVE in extracting
joint variation from multi-block non-Euclidean data.

2. We propose analyzing joint shape variation from NEU-
JIVE in real shape data relating to ASD. Because ASD
is found to change the shape of multiple brain structures,
the joint shape variation of multiple functionally related
brain structures ought to have strong association with the
development of ASD. The good interpretability of the
joint shape variation can lead to interesting findings with
respect to the development of ASD.

3. We propose using s-rep implied boundary points in the
joint analysis of the hippocampus and the caudate. On the
one hand, these implied boundary points provide smooth
geometric features with good correspondence across a
population. On the other hand, it is straightforward to
interpret the results from NEUJIVE on the basis of the
s-rep implied boundary points.

The rest of this paper is organized as follows. In Sect. 2
we introduce our driving problem and our solution that uti-
lizes joint shape variation in classification. To produce the
joint shape variation, in Sects. 3 to 5 we detail our methods
that (1) capture shape features via s-rep implied boundary
points (2) Euclideanize each block of shape features and (3)
extract joint variation from two Euclidean blocks via AJIVE.
Section 6 discusses relevant methods, with which we com-
pare ourmethod. In Sect. 7 we demonstrate that our proposed
method can extract useful patterns from simulated two-block
non-Euclidean data. Then we show another simulation to
verify the benefit of the joint shape variation in classifica-
tion. Last, our methods are verified in applications (including
hypothesis testing and classification) to ASD data. Section 8
discusses a general form and broader impact of our methods.
The paper concludes with remarks and discussions in Sect. 9.
We introduce the source code that implements the methods
and the simulated experiments in Sect. 10.

2 Classify ASD versus Non-ASDwith
Subcortical Shape

We want to take advantage of classification to demonstrate
the effectiveness of NEUJIVE in extracting the joint shape
variation from two-object complexes. An effective joint
shape variation that has strong association with the develop-
ment ofASDought to improve classificationperformance.To
this end, this section discusses the classification framework
in which we use shape correlation in two-object complexes
as classifying features.

To classify the ASD and the non-ASD group, we set up a
binary classification model as

ŷ = σ(wT X) (1)
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Fig. 1 The framework of extracting the joint components with NEU-
JIVE. Column a: Input data live in K pre-shape spaces. Column
b: Euclidean representations of the K blocks form the score space
R
n (shown as the yellow and green planes), in which the joint

variation subspaces (shown as the yellow and green arrows) live.

Column c: Extract the joint components from the K blocks, yielding
the joint structures (brown dots) that live in R

r . Here, r denotes the
dimension of the joint variation subspace. d For interpretation of the
joint structures, we map the joint structures back to the pre-shape space
via φ−1

k for k = {1, · · · , K } (Color figure online)

wherew ∈ R
d×1 is a learnable weight vector, d is the dimen-

sion of the feature space and T means transpose. The matrix
X ∈ R

d×n represents the data of n configurations in our pro-
posed feature space. We highlight that in this paper the rows
of X are features, while the columns are cases. The output
ŷ ∈ {0, 1}n denotes the vector of predicted labels for the n
configurations. The symbol σ(·) denotes a mapping to the
predicted binary class labels.

Our contributions concentrate on producing the feature
matrix X that captures the joint shape variation of the hip-
pocampus and the caudate. Because this joint shape variation
should be strongly associated with the development of ASD
[40,41], the use of the joint shape variation ought to pro-
duce good classification performance. We propose methods
to extract the joint shape variation in an unsupervised way,
making use of PNS and AJIVE, as illustrated in Fig. 1.

As we focus on two-object complexes (i.e., the
hippocampus-caudate pairs), let X1 ∈ R

d1×n denote the
shape descriptors of the hippocampi, where d1 denotes the
dimension of the feature vector of a hippocampus and n
denotes the number of complexes. Likewise, let X2 ∈ R

d2×n

denote the shape descriptors of the caudate nuclei, where d2
denotes the dimension of the feature space of the caudate.
In many cases, both d1 and d2 are larger than the number of
samples n.

Our first step is to capture shape features of each sin-
gle object. Next, because shape features should be invariant
under translation and scaling, we map the geometric fea-

tures onto a unit hypersphere. Then we obtain Euclidean
representations of each object via PNS. Let φ denote the
transformation from shape features to Euclidean representa-
tions of each object, i.e.,

φ : Rd×n �→ R
(n−1)×n (2)

where d is the dimension of the shape descriptors of the
object and d � n. Because n data points lie in a hypersphere
of dimension n − 1, higher level PNS components are not
included.

Finally, we extract the joint shape variation from the two
PNS blocks using AJIVE. We use ψ to denote the mapping
from the two PNS blocks of Eq. (2) to the low dimensional
joint variation space, i.e.,

ψ : R(n−1)×n × R
(n−1)×n �→ R

r×n (3)

where r denotes the dimension of the joint variation space.
Essentially, our proposed joint shape variation is obtained

by composing Euclideanization and the AJIVE, i.e.,

X = ψ(φ(X1), φ(X2)) (4)

where X1 and X2 denote shape features of the two objects,
respectively.

In the following, Sect. 3 discusses capturing the shape
of the hippocampus and of the caudate, resulting in feature
matrices X1 and X2. Section 4 details the transformation φ
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Fig. 2 Fit an s-rep to a hippocampus and derive its implied boundary
from the s-rep. Panel a: SPHARM-PDM representation of the seg-
mented boundary of a hippocampus. Panel b: A near ellipsoid (black
transparent mesh) that is diffeomorphic to the hippocampal bound-

ary. The ellipsoidal s-rep is discretized, yielding skeletal points (black
grid points) and discrete spokes (colored line segments). Panel c: The
discrete s-rep fit to the hippocampus. Panel d: The implied boundary
derived from the hippocampus s-rep (Color figure online)

that projects shape descriptors onto a unit hypersphere and
then Euclideanizes the spherical variables via PNS. Section 5
discusses the transformation ψ that extracts the joint shape
variation from the PNS blocks.

3 S-rep Implied Boundary Points

This section discusses the shape model that we use to repre-
sent two-object complexes. Because segmented boundaries
of anatomic structures are often noisy, skeletal representa-
tions (s-reps) are designed to provide robust and rich geo-
metric features of objects. Importantly, geometric features
provided by s-reps are designed to have good correspondence
for joint analysis of multi-object complexes, leading to inter-
pretable analysis results, as shown in later experiments.

An s-rep consists of a skeleton and “spoke” vectors defined
on the skeleton. These spokes point from the skeleton to
the boundary of an object. Compared to deformation-based
shape models that are sensitive to ambient space deforma-
tions (see e.g., [16,19]), s-reps only capture interior and
boundary geometric features of an object [39].Different from
other skeletal representations (e.g., [15,56]), s-reps are fitted
to objects to have consistent skeletal topology across a pop-
ulation (see e.g., Fig. 2b, c). Such consistency allows us to
have geometric features with good correspondence across a
population.

Recently, Liu et al. [31] have proposed automatically fit-
ting s-reps to slabular objects such as the hippocampus and
the caudate.A slabular object refers to an objectwhose length
is greater than its breadth, which is greater than its width.
Such an object can be deformed to an ellipsoid via a dif-

feomorphism. Essentially, Liu’s method deforms an s-rep of
an ellipsoid to fit to an object. That ellipsoidal s-rep is con-
sistently discretized so that spokes in the target object have
correspondence across a population.

A fitted s-rep gives rise to a smooth mapping, so-called
radial flow, from the skeleton to a set of level surfaces of radial
flow [5]. These level surfaces have their own geometry (e.g.,
normals) without intersections within an object. Moreover,
the radial distances τ ∈ [0, 1] are measured as fractions of
spokes’ lengths from the skeleton. The boundary of an object
is equivalent to a level surface at τ = 1, while the skeleton
is a level surface at τ = 0. We make use of landmarks on
the level surface at τ = 1 for each object. These landmarks
are referred to as “s-rep implied boundary points”, formed
by the tips of spokes.

The s-rep implied boundary points provide good corre-
spondence for each object across a population. The corre-
spondence of these boundary points are determined by the
correspondence of spokes. As shown in Fig. 2c, the primary
spokes in each object have good correspondences across a
population.Additionally, the interpolationmethodof an s-rep
gives an arbitrary number of spokes [31]. This interpolation
method uses the relative positions on the skeleton, which also
provide correspondence across a population.

Figure 2 shows shape representations of an example hip-
pocampus. In panel (a), the hippocampal shape is represented
via SPHARM-PDM [45]. Though SPHARM-PDM gives
a straightforward representation of segmented boundary
geometry, it shows weaker robustness and inferior cor-
respondence across a population than s-rep based shape
representations (see e.g., [18,48]). Panel (b) shows an ellip-
soid that is diffeomorphic to the hippocampal boundary in
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panel (a). The ellipsoidal s-rep is consistently discretized,
yielding the primary spokes shown as the line segments in
red, cyan and magenta. Each skeletal point on the black grid
is associated with two spokes (cyan andmagenta) pointing to
two sides of the ellipsoid. Each skeletal point along the edge
curve (in yellow) is associated with a fold spoke (red) point-
ing to the crest curve of the boundary. This ellipsoidal s-rep is
deformed to fit the hippocampus, as shown in panel (c). Then
the s-rep is refined to have good geometric properties—for
example, the spokes will not cross within the object so that
the interior geometry of the object is smooth. Panel (d) shows
the s-rep implied boundary, which is developed and used in
this research. To obtain this implied boundary, we interpolate
the refined s-rep so that we can obtain the same number of
points with the SPHARM-PDM in panel (a).

4 Euclideanize Skeletally Implied Boundary
Points

The above s-rep implied boundary points capture shape fea-
tures coupled with pose and size variations. However, we
want our joint shape analysis between the hippocampus and
the caudate to be insensitive to translation and scaling of indi-
vidual objects. To this end, we map the shape data onto a unit
hypersphere by removing the position and size variation for
each object. We detail this transformation in Sect. 4.1.

As a result of the above transformation, each object is
transformed to a unit hypersphere that is also referred to as a
pre-shape space. In order to make use of Euclidean methods
of extracting joint shape variation, we Euclideanize the pre-
shapes of each object, converting the pre-shapes to Euclidean
shape features for each object. To do so, we adopt themethod
PNS, as discussed in Sect. 4.2.

4.1 Convert S-rep Implied Boundary Points to
Pre-shapes

This research focuses on the joint shape variation between
objects. The positions and sizes of objects should not affect
the joint shape variation. To achieve joint analysis that is
insensitive to positions and sizes of objects, we remove posi-
tion and size variation by converting the coordinates of the
s-rep implied boundary points to pre-shapes, as described
below.

The position variation of an object can be removed by sub-
tracting the coordinates of its centroid from the coordinates of
landmarks [8]. Specifically, given a 3D object represented by
m landmarks, let X ∈ R

m×3 denote the shape feature matrix
of the object. This object can be centered via a linear transfor-
mation C · X , where the centering matrix C = Im − 1

m 1m1
T
m .

In the centering matrix, Im ∈ R
m×m denotes an identity

matrix and 1m ∈ R
m×3 is a matrix of ones.

To remove the size variation, we denote S(·) as a function
that measures the centroid-based size of an object. Specifi-
cally, let X̄ denote the centroid of the object. The function
S(·) is defined as

S(X) =
√
√
√
√

m
∑

i=1

|Xi − X̄ |2 (5)

where Xi denotes the coordinates of the i th landmark. To
take advantage of the centering matrix C , the function S(X)

can be written as

S(X) = |C · X | (6)

Combining the removal of position and size variation, we
transform the shape matrix X via

ZC = C · X
|C · X | (7)

where ZC ∈ R
m×3 is referred to as a pre-shape because it is

invariant to translation and scaling of the object represented
by X . Accordingly, the pre-shape space is the space of all
pre-shapes.

The pre-shape space is isomorphic to a unit hypersphere
because any pre-shape is of unit size, i.e., |ZC | = 1. Impor-
tantly, we center the data in the pre-shape space around the
mean (i.e., the PNS mean) as detailed in Sect. 4.2. In some
applications (e.g., [21]), shape features are also expected
to be invariant to rotations of the object. There, a shape
space is a stratified space of the pre-shape space, in which
pre-shapes of different orientations are identified. Similar to
previous research that was based on SPHARM-PDM (see
e.g., [18,43]), our research preserves orientations of objects,
restricting the data space to the pre-shape space.

As a result of the above transformation, we end with 2
unit hyperspheres. Figure 3 shows the resulting pre-shapes
of a caudate nucleus (top row) and a hippocampus (bottom
row). The left column shows the s-rep implied boundary
points of each object, while the right column shows the
pre-shapes transformed via Eq. (7). As shown in Fig. 3, the
above transformation preserves shape characteristics despite
the translation and scaling effects. Moreover, we find in our
experiments that this transformation is helpful in classifying
the ASD and non-ASD groups, suggesting that the positions
and sizes of the objects are non-critical factors in distinguish-
ing ASD among infants around the same age.

4.2 Euclideanize Pre-shapes

Our research benefits from the above transformation to pre-
shapes not only because putting the data in the pre-shape
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Fig. 3 Transform s-rep implied boundary points (red points) of a cau-
date nucleus (top row) and those of a hippocampus (bottom row) into
pre-shapes that are represented by transformed points (blue points) via
Eq. (7). Despite the translation and scaling effects, the geometry of

the boundary is preserved. All these points are presented on smooth
the implied boundary shown as transparent volumes underneath (Color
figure online)

space removes the translation and scaling effects of each
object, but also because the spherical geometry of the pre-
shape space allows us to efficiently represent data.

In this paper, we choose PNS features [24] that give statis-
tically efficient representations of pre-shapes in the following
senses. First, PNS estimates a backwards mean that is more
representative of spherical population than the Fréchet mean
(see [37]). Second, PNS models the principal components
in the pre-shape space via either a great circle (a geodesic
curve) or a small circle (a non-geodesic curve), depending
on the distribution of the data.

Specifically, PNS iteratively reduces the dimension of the
unit hypersphere, yielding a hierarchy of subspheres (treated
as generalized principal components) that fits the data by
minimizing residuals (see Fig. 4). From these subspheres the

pre-shapes are represented by geodesic distances (restricted
to the range of [0, π ]). Eventually, these geodesic distances
are taken as Euclidean representations of pre-shapes. We
detail the process as follows.

Initial hypersphere. Let X ∈ R
d×n be the n pre-shapes

of dimension d, where d � n in this paper. An initial
hypersphere S

n−1 can be obtained using Singular Value
Decomposition (SVD) by removing components that have
zero singular values.

Fit subspheres to data. Instead of only fitting great circles
to single object data (see e.g., [13,21]), PNS fits a hierar-
chy of subspheres that are of decreasing dimensions from
S
n−1 down to S0, as shown in Fig. 4. At each dimension, the

best fitting subsphere is obtained by minimizing the sum of
squared residual geodesic distances along the surface of the
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Fig. 4 Obtain PNS scores by fitting nested spheres to n samples, start-
ing from the initial hypersphere S

n−1. Blue dots illustrate pre-shapes
on hyperspheres. Each subsphere An−l−1 is parametrized by the center

and radius (i.e., vl and rl ), associated with a score vector of length n.
The concatenation of the n − 1 score vectors is taken as the Euclidean
representations of the n samples

sphere. This best fitting subsphere is not necessarily a great
circle because sometimes a small circle can better fit the vari-
ation which is natural to s-reps [6,37] and the s-rep implied
boundary points. PNS computes the backwards mean on the
nontrivial subsphere of the lowest dimension (i.e., S1). Then,
this backwards mean is pulled back to every component in
high dimensional spheres, yielding a representative mean on
the nested spheres.

Compute scores from the fitted subspaces. In order
to compute scores of each sample, which can be taken as
Euclidean representations, PNS measures the geodesic dis-
tances from principal components that are represented by
either a great or a small circle. In fact, each subsphere is the
fitted principal component of its embedding sphere.

As a result, the nested subspheres of the initial hypersphere
S
n−1 produce n− 1 score vectors, where n denotes the num-

ber of samples. Collectively, the two-object shape data are
represented by two Euclidean blocks R(n−1)×n × R

(n−1)×n .
In the following, we discuss extracting joint variation from
these two Euclidean blocks, which forms the basis of our
statistical analysis including hypothesis testing and classifi-
cation.

5 Extract Joint Variation in Two-Object
Complexes

From the above methods, each PNS block R
(n−1)×n has n

columns. Moreover, the two PNS blocks should align in
columns in a way that the corresponding columns are from

the same subject. The alignment of the two blocks in the
score space allows us to extract their joint variation that is
useful in discriminating the ASD and non-ASD group. We
explain this alignment in Sect. 5.1.

Due to the alignment of columns, we refer to the row space
R
n as “a score space”. Thus, we treat the two-block data as

two blocks of samples from a shared score space. In Sect. 5.2,
we discuss extracting joint variation of two blocks of data
using AJIVE within the PNS score space. Last, Sect. 5.3
discusses implications of joint variation from NEUJIVE.

5.1 Alignment in PNS Score Space

Though it is difficult to calibrate the two PNS feature spaces
(two sets of nested subspheres), the two PNS blocks have
a common score space. Moreover, as noted above, the joint
shape variation of the hippocampus and the caudate should
provide strong association with the development of ASD. It
is natural to search the common PNS score space for the
variation direction that points from the non-ASD cases to the
ASD cases.

Two PNS score vectors (n-vectors) share a score space if
the corresponding entries are about the same subjects. Specif-
ically, we arrange columns in the two PNS blocks, aligning
the i th column in the hippocampus PNS block and the i th
column in the caudate PNS block both of which characterize
the i th subject. By doing so, the correspondence of columns
is determined by the column indices.

Within the shared score space Rn we search for the direc-
tions along which the hippocampus scores and the caudate
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scores jointly vary. These directions together give a joint
variation space, which is of prime interest in the following
discussion. In Sect. 5.2 we discuss the method AJIVE that
can simultaneously extract the joint and individual variation
from the two PNS blocks.

5.2 Joint Analysis of Two-Block Euclidean Data

From an AJIVE viewpoint, each block of data is a combi-
nation of joint, individual and residual components. Specif-
ically, let Xk ∈ R

(n−1)×n denote the PNS block of the kth

object, where k = 1, 2. Let J denote the joint component
shared by the two objects. Let Ik and Ek , respectively, denote
the individual and the residual component specific to the kth

object. The feature matrix Xk can be decomposed as

Xk = J + Ik + Ek, k = 1, 2 (8)

Assuming that the joint and individual components are
uncorrelated, AJIVEmodels the joint variation space orthog-
onal to every individual variation space. Because two PNS
blocks share the same score spaceRn as discussed above, we
can define joint and individual variation spaces as subspaces
of the score space Rn . As such, the joint variation space and
each individual variation space form a pair of complementary
spaces in a certain subspace in Rn .

We seek the mapping from the two-block data {Xk} to the
joint component J . To this end,AJIVEmakes use of Principal
AngleAnalysis (PAA) to estimate the joint variation space. In
our case, the intersection subspace of two PNS score spaces
is taken as the joint variation space of the two PNS blocks,
which is also a subspace in Rn , as detailed below.

PAA of subspaces in a Euclidean space. PAA is used
to analyze the relations between subspaces of a Euclidean
space. It can achieve a robust estimation of the joint variation
space when the subspaces in question are divergent in terms
of dimension, unit or scale [2].

Principal angles (defined below) have been extensively
investigated in measuring the difference between a pair of
Euclidean subspaces (see e.g., [7,22,27]). Small or zero
differences correspond to the joint variation space where
statistical correlation arises. Consider in R

n two Euclidean
subspaces of dimensions l and m, respectively, assuming
that l ≤ m. Let vi and qi denote vectors from the two
subspaces, respectively, where i = 1, · · · , l. The principal
angles, i.e., the θ , of the two subspaces are defined as acute
angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θl ≤ π

2 that are minima of

θ j = min
v j ,q j

cos−1
(

< v j , q j >

||v j || · ||q j ||
)

,

v j ⊥ vi , q j ⊥ qi , i ∈ [1, j − 1]
(9)

where < ·, · > denotes the dot product. The pair of vectors
v j and q j is called a pair of principal vectors, where j =
1, · · · , l.

To evaluate theprincipal angles between the twoEuclidean
subspaces, PAA computes the principal angles as stated in
the following lemma.

Lemma 5.1 Let J and Q be two linear subspaces in R
n,

and let the rows of a matrix MJ ∈ R
l×n and the rows of

a matrix MQ ∈ R
m×n be orthonormal basis vectors for J

and Q, respectively. The singular values σi of the matrix
MQMT

J ∈ R
m×l relate to the solution of Eq. (9) via

σi = cos θi ,

i = 1, · · · , l and σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0.
(10)

In practice, because of noise in real data, the principal
angles can not equal 0 with probability 1. To address this
problem, AJIVE estimates the basis vectors of the intersec-
tion space by selecting small enough principal angles. In the
following, we detail how we use AJIVE to achieve a robust
estimation of the joint variation space of two PNS blocks.

Orthonormalize PNS scores via low rank approxima-
tion.Because PAA requires orthonormal basis vectors of two
Euclidean spaces in R

n , the first step of AJIVE is to obtain
orthonormal score vectors from the two PNS blocks. This
orthonormalization can be achieved via SVD. Moreover, the
operations of SVD on the two blocks can put negligible vari-
ation in the residual component Ek (see Eq. (8)) to avoid
spurious correlation. The number of negligible components
is determined by choosing an initial rank rk .

Specifically, let UkSkV T
k be the result from SVD of the

block Xk ∈ R
(n−1)×n , where Uk and V T

k are orthonormal
matrices. By choosing an appropriate initial rank rk , we can
simultaneously truncate (1) the columns of Uk , (2) the rows
of V T

k and (3) the rows and columns of Sk such that the
negligible singular values are removed. As a result, we obtain
the approximated left singular matrix Ûk ∈ R

(n−1)×rk , the
approximated singular value matrix Ŝk ∈ R

rk×rk and the

approximated right singularmatrix V̂k
T ∈ R

rk×n . As a result,
the low rank approximation of Xk can be written as X̂k =
Ûk Ŝk V̂k

T
. Importantly, the rows in V̂k

T
give orthonormal

basis vectors of X̂k’s score space, in which the joint and
individual variation space are defined.

Estimate joint variation space. Next, we use AJIVE to
select principal angles that are associated with basis vectors
of the joint variation space. AJIVE calculates the principal

angles based on SVD of the concatenation of the V̂k
T
’s,

according to Lemma 5.1. The pairs of principal vectors with
large enough singular values (equivalently, small enough
principal angles) are used to form the basis vectors of the
joint variation space [12].
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The joint component J is the projection of X̂k into the
joint variation space, capturing the variation driven by com-
mon factors of the two blocks. Therefore, we expect that in
our data the joint shape variation of the hippocampus and the
caudate fromNEUJIVE is strongly associatedwith the devel-
opment of ASD. Moreover, because this joint component
integrates information frommultiple blocks, the jointly vary-
ing features are expected to be insensitive to demographic
differences [42]. Hence, the operation ψ(·) should enhance
the discriminatory power of the two PNS blocks.

Individual variation. In addition to the joint variation
space, individual variation that is specific to each PNS block
is also of use in some applications. After extracting the joint
components, AJIVE computes the individual components Ik
using the orthogonality condition between J and Ik . By doing
so, the resulting joint and individual components together
provide a comprehensive understanding of the variation of
each block. Though we focus on the joint component in this
paper, we discuss potential applications of individual com-
ponents in Sect. 8.

5.3 Implication of Ranks in NEUJIVE

The rank of the joint component J fromNEUJIVE is the joint
rank r (see Eq. (3)). This section distinguishes the joint rank
r from the initial ranks rk . First, we discuss the implication
of the joint rank r computed by NEUJIVE. Then we discuss
the choosable initial rank rk for each PNS block.

The joint rank r from NEUJIVE indicates the
classes/subclasses in the data. This rank is determined by
the dimension of the joint variation space. Assume that the
joint variation space from NEUJIVE consists of r basis vec-
tors inRn , where r ≤ min(rk) ≤ n. The number of the basis
vectors has to do with (1) common characteristics of the two
blocks (e.g., the severity of ASD) and (2) the degree to which
the two blocks are correlated with the common characteris-
tics. Therefore, the joint rank can be large in data of notable
diversity (e.g., samples from many subtypes of the disease),
while the joint rank can be small when the samples tend to
be homogeneous. Particularly, r = 0 when there is a degen-
erate joint variation space due to the absence of significant
correlation between blocks.

As noted above, the critical choosable parameter is the
initial rank in approximating each block of data. This param-
eter directly determines the amount of signals passed to PAA.
Also, the parameter determines the rank of the residual com-
ponent. Specifically, in extracting joint shape variation of
the hippocampus and the caudate, an over-rank setting leads
to noisy input to PAA. The extraneous noise can prevent
PAA from effectively extracting joint shape variation. Conse-
quently, the joint shape variation may showweak association
with the development of ASD. In contrast, an under-rank
setting can dismiss the joint shape variation in the approxi-

mated matrix X̂k , which also prevents PAA from effectively
extracting joint shape variation. In our experiments, we use
cross-validation to choose an appropriate rank in the clas-
sification problem. Alternatively, Feng et al. [12] provide a
means of choosing this parameter by inspecting the scree
plot of each block. The optimal rank is chosen around the
elbow position of the curve. This method can be useful in
some applications, e.g., hypothesis testing. However, it is
often difficult to manually choose the optimal rank in classi-
fication where a number of random experiments need to be
done automatically.

6 Relevant Work

In this section we review related data integration methods.
These are compared with our methods in Sect. 7. These other
methods include Consensus PCA (CPCA) [54], JIVE [32],
Generalized Canonical Correlation Analysis (GCCA) [44],
Partial Least Squares (PLS) [53], Hierarchical PCA (HPCA)
[52] and DISCO-SCA [49].

A straightforward approach to obtain the basis for the joint
variation space is via a multi-block Principal Component
Analysis (PCA) on the composite matrix {Xk}, which is
called Consensus PCA (CPCA) [54]. However, the princi-
pal directions resulting from this approach can be dominated
by the block of relatively larger variability, ignoring the joint
variation.

Alternatively, Lock et al. [32] proposed Joint and Indi-
vidual Variation Explained (JIVE) to decompose data into
three structures, namely, the joint, individual, and residual
structures. With this decomposition model, the method iter-
atively decomposes the data via minimizing the residual
components. However, because JIVE estimates the dimen-
sion of the joint variation space via a permutation test, it is
likely that JIVE can overestimate the joint component by
inappropriately including individual components [12]. To
address this problem, AJIVE proposes a more robust esti-
mation of the joint variation space, leading to more robust
joint components. Moreover, AJIVE is shown to be more
computationally efficient than JIVE.

Another direction of multi-block data analysis is based on
Canonical Correlation Analysis (CCA) [20] that maximizes
the correlation over all possible directions, yielding pairs of
canonical loadings {uk ∈ Uk |k = 1, · · · , K }, where Uk is
the left singular matrix of Xk . However, the canonical load-
ings are not well-defined in HDLSS problems. Moreover,
Shen et al. [44] point out that it is not necessarily benefi-
cial to include additional datasets in classification with CCA.
The researchers proposeGCCA that can jointly analyzemore
than 2 datasets.Moreover, they show that GCCA can help the
classification when some sufficient conditions are satisfied.
This work shows an example of classification where an unsu-
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pervised learning is followed by a supervised classification.
Also, in the classification of real datasets, the researchers
adopt an embedding method calledMulti-Dimensional Scal-
ing (MDS [46]). Importantly, the embedding via MDS and
the dimension reduction via GCCA make no use of class
labels. The classification splits training and test data from
GCCA’s results, which we call post-feature-selection in our
classification experiment. However, the GCCA directions
that maximize the correlation may not produce jointly vary-
ing patterns regarding two blocks. The inconsistent varying
patterns in two blocks lead to inconsistent interpretation of
various joint components.Moreover, this inconsistency com-
plicates model selection.

Different from CCA, Partial Least Squares (PLS) [53]
directions are the directions in feature spaces that maximize
covariance instead of correlation. However, the resulting
scores can be biased by structured noise, which is defined as
systematic variation that is not linearly correlated between
blocks (see [23] Section 4.2 for more details). To avoid the
bias due to structured noise in standard PLS, Hierarchical
PLS (HPLS) applies PCA on the data matrix prior to fit-
ting a PLS model. As a result, the model can have better
interpretability than standard PLS (see e.g., [28]). Alterna-
tively, Trygg et al. [47] propose removing structured noise of
two blocks via projections orthogonal to PLS components,
yielding a method called O2-PLS. Due to the orthogonal
projections, this method provides good interpretation of
structured noise for each block. However, the joint variation
space is different across blocks. The multiple joint variation
spaces are not necessarily orthogonal to individual variation
spaces, which might deteriorate the interpretability of the
joint components.

Deun et al. [49] propose DISCO-SCA to simultane-
ously decompose the joint and individual components from
multi-block data. This method first extracts the residual com-
ponent via Simultaneous Component Analysis (SCA). Then
it rotates the SCA components towards an optimal user-
defined target matrix. Compared to AJIVE, DISCO-SCA
rotates the concatenation of the joint and the individual
components. This leads to orthogonal constraints between
individual components across blocks. Such a restrictive con-
straint rarely corresponds to biological behaviors [26].

7 Experiments

This section aims to validate the effectiveness and robustness
of the proposed method on both simulated and real data. In
Sect. 7.1, we show that by extending AJIVE to NEUJIVE
we can extract useful joint variation from two-block non-
Euclidean data. Then in Sect. 7.2 we show the effectiveness
of our method in extracting joint shape variation in simu-
lated 2D objects. Different from Sect. 7.1, each block of the

simulated 2D objects has two groups, formed by a common
process. Last, we assess our method in the context of a real
dataset. To this end, in Section 7.3 we describe a shape data
set (of subcortical structures) from the Infant Brain Imaging
Study (IBIS) network. Sections 7.4 and 7.5 show hypothe-
sis testing and classification of ASD and non-ASD on the
subcortical structures’ shape. Finally, we interpret the joint
shape variation of the structures (the hippocampus and the
caudate) related to ASD in Sect. 7.6.

7.1 Joint Components of Two-Block Non-Euclidean
Data

In this section,weaim toverify the effectiveness ofNEUJIVE
for the joint analysis of two-block non-Euclidean data in a
toy example. To this end, we simulate two correlated data
blocks lying on S

2, in which the joint component is created
via a known function.

The two blocks of simulated data can be visualized as the
colored points in the left column of Fig. 5. We simulate the
data via the following steps:

1. We generate a joint component (a small circle) in the
tangent space at the north pole of S2.

2. We generate an individual component for each block in
the tangent space at the north pole of S2.

3. We map the generated data, which sum the joint com-
ponent and the individual component, from the tangent
space onto the sphere.

4. We rotate the above spherical data centered at the north
pole to other places on the sphere.

Joint component. Because important modes of variation
from s-rep based models tend to follow small circles (see
[37] Section 6.1 for more details), we simulate a joint com-
ponent along a small circle respective to each block. We
sample 50 random variables θ from the uniform distribu-
tion θ ∼ Uniform(0, 3

2π). Then we map the θ ’s onto a unit
circle, yielding circular points of coordinates (cos θ, sin θ).
Wemultiply the coordinates with block-specific constants ak
to have different radii of the circles across the two blocks,
where k = 1, 2.

Individual component. In addition to the above joint
component, we generate some random variables for each
block. We sample independent two-dimensional Gaussian

variables ε1
i .i .d∼ N (0, 1) and ε2

i .i .d∼ N (0, 1). The sumakeiθ+εk
of the joint and individual components forms a noisy circular
distribution on a tangent plane centered at the north pole of
the sphere.

Map and rotate. The simulated data in the tangent space
are then mapped onto S

2 via the Exponential map Exp(·)
centered at the north pole. Finally, we rotate the data from
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Fig. 5 Left column shows simulated two blocks of points on S
2. The

data tend to lie along a small circle with joint location on the circle
indexed by the colors of points. The middle column shows the joint
structure (magenta points) estimated by AJIVE inR3. This AJIVE joint
variation follows a linear pattern. The right column shows the joint
structure (magenta points) estimated byNEUJIVE.ThisNEUJIVE joint
structure captures the actual joint variation pattern in the two blocks

the north pole to places that are specific to each block via
rotations gk(·), which result in

Xk(θ) = gk(Exp(ake
iθ + εk)) k = 1, 2 (11)

The left column in Fig. 5 shows the simulated two blocks
X1 and X2 in the data space S

2. The joint component of
X1 and X2 follows small circles on S

2, shown as the black
dashed curves. The latent variables θ are indicated by colors
as one moves along the small circles.

As shown in the right column of Fig. 5, NEUJIVE can
effectively extract useful joint structures (magenta points)
that follow a small circle pattern. In the middle column,
the joint structures (magenta points) estimated by Euclidean
AJIVE are far from the underlying joint variation pattern. In
particular, the joint component from AJIVE follows a linear
pattern instead of a circular pattern. Thus, the result from
NEUJIVE provides a mode of variation that is much more
descriptive of the actual joint variation in the data.

This toy example demonstrates that our method can
effectively capture the joint variation between multi-block
non-Euclidean data.We owe this effectiveness to the efficient
representation of PNS scores. Moreover, the effectiveness of
NEUJIVE remains when the joint component follows differ-
ent patterns across blocks (see Appendix A). Due to space
limitations, we show in Appendix A the Root Mean Square
Error (RMSE) of the estimated joint structures via NEUJIVE
under various levels of noise.

In addition to the joint component, NEUJIVE also results
in reasonable individual components for respective block,
clustered around the PNS mean. Because we focus on the
joint variation in this paper, we show the individual compo-
nent in Appendix A (see Fig. 11).

We have also tried GCCA, O2-PLS [3] and DISCO-SCA
to decompose this toy dataset. However, we failed to find
meaningful components on the sphere. We suspect that the
failure is due to the difficulties of extracting joint variation
in feature space after many nonlinear transformations on θ ’s
in Eq. (11).

7.2 Joint Shape Analysis in Toy Classification

Beyond the above example, we also want to show that NEU-
JIVE can extract useful joint variation from two blocks each
of which has two groups. To this end, we design the two
groups to be formed by a common process in the two blocks.
By doing so, the joint variation of the two blocks should be
associated with the common process and thus be useful in
classifying the two groups.

In particular, we simulate two blocks of shape data formed
by 2D landmarks. The simulated data is analogous to the real
shape data (see Section 7.3) of our interest in the follow-
ing senses. First, the simulated shape are obviously different
across the two blocks, analogous to the hippocampus and the
caudate shape. Second, we impose on the two blocks a com-
mon process (via full Procrustes deformation2) to form two
groups. This common process acts as the development of
ASD, which simultaneously changes the shape of the hip-
pocampus and the caudate. Last, it is difficult to classify
the two groups within each block because the two groups
have close means, which is also the case in classifying ASD
vs. non-ASD using either the hippocampus or the caudate
shape. In such scenarios, NEUJIVE can effectively extract
joint shape variation that is associated with the group differ-
ence.

Figure 6 shows the simulated two data blocks, in which
the two groups are denoted as the red and the blue. In this
simulation, we start with a dataset from [9] in which eight 2D
landmarks are sampled on each of the skulls of 29 male adult
gorillas, shown as the blue circles in the top left panel. Then
we create another group via a deformation ϕ [9], yielding the
landmarks shown as the red crosses in the top left panel.

Next, we create a secondary block of data for the purpose
of joint analysis, shown in the bottom left panel of Fig. 6. This
secondary block is designed to have notably different shape
from the above data block. In addition, the two groups in the
secondary block are designed to be formed via the common
processϕ. Specifically, we firstmove the top-most landmarks
in the top left panel to be farther away. Thenwe rotate all land-
marks by 45 degrees. These modified landmarks are shown
as the blue circles in the bottom left panel. Second, we apply

2 While Procrustes alignment is normally used to preprocess shape
data, our simulation instead uses this alignment to produce a geometric
transformation that is sensitive to NEUJIVE and that forms the group
difference.
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Fig. 6 Joint analysis of two blocks shape data formed by 2D landmarks
frommale gorillas’ skulls. The left column shows the two blocks: block
1 (top) and block 2 (bottom). Each block has two groups (shown as the
blue circles and the red crosses). We detail the generation of the two
blocks in the text. The right two columns show the heat maps of the

PNS matrices (the top row), the joint structures (the second row), the
individual structures (the third row) and the residuals (the last row). The
color represents the entry values of eachmatrix. See the text for detailed
interpretation (Color figure online)

the deformation ϕ on the modified landmarks, forming the
red group shown as the red crosses.

The above two blocks of landmarks with two groups form
the input of NEUJIVE. Specifically, let XG ∈ R

16×29 denote
the original landmark matrix of the gorillas’ skulls. The red
group in the first block can be written as ϕ(XG). The con-
catenation of the two groups forms the first block X1 of
NEUJIVE. As we create the secondary block, we obtain the
modified landmarks denoted as X̃G ∈ R

16×29. Likewise, the
red group in the second block can be written as ϕ(X̃G). The
concatenation of X̃G and ϕ(X̃G) forms the second block X2.
In total, the inputs of NEUJIVE are organized as

X1 = [XG ϕ(XG)] ∈ R
16×58

X2 = [X̃G ϕ(X̃G)] ∈ R
16×58

(12)

We present the resulting components from NEUJIVE in
the right two columns of Fig. 6. We obtain the pre-shapes
of X1 and X2 by centering and normalizing each shape by

the centroid size, yielding two pre-shape matrices. To each
matrix,we apply PNS to obtain the PNS featurematrix shown
in the top row. The colors in the heat maps represent the entry
values of the PNS features of X1 (the middle column) and
X2 (the right column). The other rows show the entry values
of the matrices resulting from the joint analysis of the two
PNS blocks. The resulting NEUJIVE components include
(1) the joint components (shown in the second row), (2) the
individual components (shown in the third row) and (3) the
residual components (shown in the last row).

In Fig. 6 we can observe notable patterns from the joint
components, as compared to the input matrices, the indi-
vidual components and the residual components. Across all
thesematrices, columns are samples, while rows are features.
We can find clearly different patterns between the two groups
of samples in the joint component of every block. This visu-
alization suggests that the joint component from NEUJIVE
focuses on the common factors that form the two groups. As
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Table 1 Test performance using different features in classification

Features X1 X2

Landmarks 0.44 ± 0.15 0.46 ± 0.15

PNS 0.46± 0.12 0.48 ± 0.13

Euclidean AJIVE 0.53±0.14 0.52± 0.12

Spherical AJIVE 0.68 ± 0.08 0.66 ± 0.08

NEUJIVE 0.75 ± 0.09 0.72 ± 0.1

Bold values indicate best performance among the compared methods

such, we make use of the joint component in classifying the
two groups.

The individual components also are as expected in both
blocks. Because of the facts (1) that the first block uses the
initial rank of 2, while the second block uses the initial rank
of 3 and (2) that the joint variation is rank 2, there is no
individual variation specific to the first block.

To demonstrate that the joint shape variation improves the
classification between the red and the blue group, we com-
pare in the following (1) the classification using the joint
component from NEUJIVE, (2) the classification using the
landmarks and (3) the classification using the joint compo-
nent from other joint analysis methods including AJIVE.

To classify the two groups, we train a robust linear clas-
sification method called Distance Weighted Discrimination
(DWD). This has been shown to have better properties than
the support vector machine by [33]. We randomly select
80% of the data in the training while we use the remain-
ing in the test. To avoid the bias due to splitting the data, we
repeat this experiment 100 times. Table 1 reports the average
test accuracy (± standard deviation) over all the repetitions.
The classification of each block uses various sets of features
(corresponding to the rows of Table 1): (1) the original coor-
dinates of landmarks (the first row), (2) the PNS scores (the
second row), (3) the joint structures from AJIVE on the orig-
inal coordinates (the third row), (4) the joint structures from
AJIVE on the spherical coordinates (the fourth row) and (5)
the joint structures from NEUJIVE (the fifth row).

From Table 1 we find that the joint component fromNEU-
JIVE (the last row) improves the classification performance
compared to raw landmarks (the first row) by a large margin.
It is difficult for a linear classifier to learn a good deci-
sion boundary from the coordinates of landmarks. Moreover,
we find that the Euclidean AJIVE can capture some group
difference. Yet, due to the complexity of the data space,
the group difference is relatively weak in AJIVE’s joint
component, compared to those from Spherical AJIVE and
NEUJIVE. Importantly, NEUJIVE’s joint component more
strongly indicates the group difference than those of Spheri-
cal AJIVE.We owe this advantage to the statistically efficient
data representation by PNS.

7.3 Autism Data for Multi-Object Shape Analysis

From this section on, we analyze the shape of subcortical
structures from 174 infants. These structures are segmented
[50] from MRI images of the subjects around 6-months-old.
There are 33 of the infants who were diagnosed as autistic
later and 141 of these were shown not to have developed
autism.

We focus on complexes that consist of the left hippocam-
pus and the left caudate. Each object is represented by a
triangular mesh using SPHARM-PDM [45]. We fit s-reps to
each object and extract 1002 implied boundary landmarks
from the s-reps, as described in Sect. 3.

In the following, we first check if there exists statistically
significant difference betweenASDand non-ASD in the joint
component from NEUJIVE. We check the statistical signifi-
cance via a hypothesis test, as discussed in Sect. 7.4. Thenwe
conduct classification experiments in Sect. 7.5. Section 7.6
shows an interpretation of the joint component of the hip-
pocampus and the caudate.

7.4 Hypothesis Testing

Our hypothesis test aims to verify whether the difference
between the two groups (ASD vs. non-ASD) is statistically
significant in the joint variation space. Because the sample
size is small, the hypothesis test should be based on permu-
tation testing ideas. To this end, we accomplish this task in
the following steps.

We start from s-rep implied boundary points of the
hippocampus-caudate pairs, each of which is associated with
a class label (i.e., ASD or non-ASD). We separately convert
the landmarks of the hippocampus and those of the caudate
into pre-shapes as described in Sect. 4.2. Then we apply
NEUJIVE to the pre-shapes of the hippocampus and the cau-
date.

Figure 7 shows for various features the Explained Vari-
ance Ratio as a function of the number of eigenmodes. We
choose s-rep implied points to remove non-systematic geo-
metric details on the boundary. As a result, the s-rep implied
boundary points give smooth geometric features across a
population. Also, Fig. 7 suggests that PNS features (green
curves) are more statistically efficient representations, espe-
cially for the caudate and for the hippocampus-caudate pair,
as compared to the pre-shapes (orange curves).

Figure 7 also gives us ameans of choosing initial ranks for
low rank approximation.Considering theExplainedVariance
Ratio of PNS features from s-rep implied boundary points
(s-rep PNS), we choose the initial rank 50. In this setting,
NEUJIVE finds a joint component of rank 2 (i.e., r = 2 from
Fig. 1c), which suggests very few common characteristics in
our data, as discussed in Sect. 5.3. It turns out that these two
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Fig. 7 The cumulated Explained Variance Ratio (EVR) of the first 35
eigenmodes vs. the number of eigenmodes.The left and themiddle panel
show the EVR of shape features from single objects—the hippocampus

and the caudate, respectively. The right panel shows the EVR of con-
catenated shape features of the hippocampus-caudate pairs. Best viewed
in color images (Color figure online)

Fig. 8 The results from the permutation test of concatenated PNS
blocks (left) and the test of NEUJIVE joint component (right). The
green dots on the bottom of each figure represent the test statistics (i.e.,
MDs) from the permutations. The black curve represents the estimated
density function of those MDs

dimensions give statistically significant difference between
the ASD and non-ASD groups.

Within the two-dimensional joint variation space (a sub-
space in R

n), we test the data projected on the unit vector
between the means of the two groups with a permutation
test, which is implemented by a method called Direction-
Projection-Permutation (DiProPerm) [51]. We let DiProP-
erm generate 1000 random permutations and then compute
the univariate statistic, i.e., Mean Difference (MD) between
the two groups for each permutation.

Figure 8 shows the test statistics on the MDs in those per-
mutations using two sets of features. The observed MDs of
the two groups are at the positions of the vertical dashed lines.
Along with the permutation statistics, we show the empiri-
cal p-values, which are the proportion of the permutations
that have larger MDs than the observed MD. We also show
the z-scores, which measure how many deviations that the
observed MDs are above the average MD of their permuta-
tions. The p-values and z-scores together indicate statistical
significance of group difference with respect to the test fea-
tures. Smaller p-values and larger z-scores indicate more
statistical significance of the group difference.

NEUJIVE joint components give statistically significant
difference between the ASD and non-ASD groups, as shown

in Fig. 8 right. We found no permutations that have larger
MDs than the observedMD, i.e., the empirical p-value equals
0. Moreover, the z-score (≈ 13.39) is relatively large, indi-
cating strong statistical significance. As a comparison, we
use the concatenated PNS blocks of the hippocampus and the
caudate in the test, yielding less statistically significant differ-
ence, as shown in the left panel. Specifically, there is a small
proportion (∼ 2.8%) of permutations that have larger MDs
between theASDandnon-ASDgroup than the observedMD.

Table 2 presents more comprehensive results from the
hypothesis test using various sets of shape features. The
first row shows the results from using the concatenation of
s-rep implied boundary points. The second row shows the
results from using the concatenation of Euclideanized PDMs
with PNS. Comparing these two rows, we notice that the
Euclideanization improves the discriminatory power of the
shape features. Moreover, using joint structures from AJIVE
(the third row) results in a more statistically significant dif-
ference between the two groups. The fourth row shows the
results of our hypothesis test with NEUJIVE features. It
demonstrates the advantages of using the joint shape vari-
ation in the test. The last three rows of Table 2 show the
results from the compared joint analysis methods that are
reviewed in Sect. 6. These methods can extract the correla-
tion of features in high dimensional feature space. Yet, the
group difference from these methods are not as significant as
those from NEUJIVE.

7.5 Classification

Because joint shape variation captures correlated shape fea-
tures from multiple objects, and because this correlation is
closely associated with class labels, the joint components
from NEUJIVE lead to statistically significant differences
in the above hypothesis test. In this section, we attempt to
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Table 2 Hypothesis testing of
ASD vs. non-ASD with
different joint features

p-values ↓ a z-scores ↑ a

Concatenate Implied PDMs 0.3106 0.3679

Concatenate Euclideanized PDMs 0.028 2.274

AJIVE [12] 0.0136 2.7714

NEUJIVE (ours) 0 13.392

HPLS [55] 0.1135 1.206

PNS + HPLS 0 4.4263

E-GCCA [44] 0.0169 2.0031

Bold values indicate best performance among the compared methods
a Smaller p-values and larger z-scores indicate more significant differences

exploit the joint components from NEUJIVE in classifying
the ASD versus non-ASD group.

Because the joint analysis via NEUJIVE is based on the
alignment of PNS score space, as discussed in Sect. 5.1, it
is necessary to estimate the joint shape variation by pooling
the training and test data. Oftentimes, the number of training
and test samples are different. Therefore, the estimated joint
shape variation space in the training domain is not readily
transferable to the test domain. To address this problem, we
pool the training data with the test data for the joint analysis
via NEUJIVE. The resulting joint shape variation is the basis
of training and testing a classifier. Because the process of
producing joint shape variation does not make use of class
labels, it is natural to comparewith other similar classification
methods such as the method using GCCA [44].

We obtain the joint shape features following steps simi-
lar to Sect. 7.4. We again use DWD as the classifier in this
section. We compute the Area Under the ROC (Receiver
Operating Characteristics) Curve (ROC-AUC) as the eval-
uation metric. Fig. 9a shows the ROC-AUCs as a function of
initial ranks. From Fig. 9a we can see that the optimal perfor-
mance results from the initial rank of about 50. Fig. 9a also
shows that both the under-ranks (rk < 47) and over-ranks
(rk > 54) can lead to poor performance in classification.

To select a good initial rank for the test data, we use five-
fold cross-validation to select the optimal initial rank from
20 sets of NEUJIVE joint features. Specifically, we apply
NEUJIVE to the pooled data with 20 different initial ranks.
By observing the Explained Variance Ratio via s-rep PNS
features in Fig. 7, we set the same initial rank for the hip-
pocampus and the caudate PNS block. The 20 parameters
result in 20 sets of NEUJIVE joint features. We apply the
same partition of samples3 to every set of NEUJIVE joint
features into the training, validation and test data. To avoid
bias due to splitting data, we generate 1000 randompartitions
of samples.

3 We create a random partition of the samples into 10 roughly equal-
sized subsets of the ASD group and likewise with the non-ASD group.
We set aside one of the subsets from each group for testing and use the
remaining subsets for training and validation.

We compared test AUCs from NEUJIVE with those from
other multi-block analysis methods, including Hierarchical
PCA (HPCA) [52], Consensus PCA (CPCA) [54] and Gen-
eralized CCA (GCCA) [44]. We show the histogram of the
test ROC-AUCs in Fig. 9b. Our method (shown as the green
curve) performs better than the compared methods.

Figure 9c shows the average test ROC-AUCs (from 1000
partitions) from NEUJIVE (the green bars) and the com-
pared methods. In the classification using the joint structures
of either the hippocampus or the caudate, our method
significantly improves the average test ROC-AUC. This
improvement benefits from both the Euclideanization via
PNS and the focus on joint structures provided by AJIVE.
Also, we find that the joint structures from NEUJIVE are
almost consistent across blocks, shown as the green bars.
As a comparison, the other methods yield notably different
joint structures for the hippocampus block vs. for the caudate
block.

7.6 Shape Differences in the Joint Variation
Subspace

In medical applications, it is important to interpret the results
from anatomic shape analysis. The results from NEUJIVE
can be pulled back to the pre-shape space for understanding
the joint shape variation patterns. In this section we demon-
strate the interpretation of the joint shape variation of the
hippocampus and the caudate from NEUJIVE.

Specifically, we show how to interpret the difference
between the ASD and the non-ASD group in NEUJIVE’s
joint variation space. Given the NEUJIVE joint structure
J ∈ R

r×n , we first separately average the columns of the
ASD group and those of the non-ASD group, yielding a
matrix Y ∈ R

r×2. Then we map the matrix Y to the PNS
hippocampus block and to the PNS caudate block, respec-
tively, resulting in the hippocampus PNS features of two
groups and the caudate PNS features of two groups. The two
PNS blocks are both of dimension (n − 1) × 2. We apply
the inverse PNS to obtain pre-shapes of the hippocampus
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Fig. 9 Results from the classificationusing joint structures.aTheAUCs
in classifying ASD vs. non-ASD with NEUJIVE joint features vs. the
chosen initial ranks. b The histograms of test AUCs using joint struc-

tures of the hippocampus from different methods. c The average test
AUCs from various methods using the joint structures of hippocampi
(left part) and caudate nuclei (right part)

Fig. 10 The visualization of the group mean differences (in millime-
ters) captured in NEUJIVE joint variation space. The two groups are
the autism and the non-autism group. These two groups have more dif-
ference in the red regions than in the blue regions (Color figure online)

and those of the caudate. Finally, we compute Euclidean
distance for each object between the pre-shapes of the two
groups.

The distances between the corresponding landmarks are
shown in Fig. 10 as heat maps overlaid on a non-ASD
hippocampus-caudate pair. Such heatmaps suggest that some
regions (the red) in the hippocampus and the caudate are
more jointly associated with ASD than other regions (the
blue). This visualization provides a means of understanding
joint shape variation of multi-object complexes in the devel-
opment of ASD.

8 Broader Impact

Though this research focuses on multi-object shape analy-
sis, there are many possibilities to generalize our proposed
methods to other applications. This section discusses a more
general form of our methods. The general form leads to
broader impact beyond multi-object shape analysis. Specifi-
cally, we discuss possible generalization (1) of data represen-
tations (2) of manifolds that the representations live on and
(3) of Euclideanization methods. Next, we discuss poten-
tial applications of the individual variation component from
NEUJIVE.

First, it is possible to have different representations of
data in some applications. We only use s-rep implied bound-
ary points in our research because these landmarks have
good correspondence and also because it is rather simple
to map the data to a unit hypersphere. However, other shape
features from s-reps (e.g., spokes’ directions) also provide
useful information of an object. Such shape features often
require a differentmapping tomanifolds and to the Euclidean
representations (e.g., via Composite PNS [38]). Moreover,
although this paper focuses on applications in two-object
complexes, the methods are generalizable to multi-object
complexes each of which contains more than 2 objects.
Because PAA can accept multiple input Euclidean subspaces
inRn and output their joint variation space (also inRn), there
are no theoretical barriers preventing the analysis of more
than 2 objects. However, care is needed in the selection of
objects. All the selected objects should be (strongly) asso-
ciated with at least a common factor (e.g., disease of few
subtypes). Otherwise, it is difficult to find the joint variation
with PAA.

Second, our joint analysis method is applicable for the
data not only on the cross-product of unit hyperspheres, but
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also on the cross-product of general Riemannian manifolds
(e.g., polysphere [11]) or stratified sets. The geometry of
the manifolds determines the Euclideanization method, as
discussed below.

Third, there exist various Euclideanization methods that
map data on a manifold (or a stratified set) to a Euclidean
space. The choice of the method should depend on the
data properties. Principal Geodesic Analysis (PGA) [13], for
instance, is used in capturing principal components of data in
a Riemannian manifold. The Euclidean representation from
PGA is expressed in terms of an orthonormal basis in the tan-
gent space centered at the Fréchet mean. Regardless of the
different choices of the basis, AJIVE can achieve consistent
results frommultiplePGAblocks because of invarianceprop-
erties of PGA score spaces under rotations of the basis (i.e.,
orthogonal transformations multiplied on the left of φ(X1)

or φ(X2) in Eq. (4)).
Last, although we focus on the joint shape variation in

this paper, the individual shape variation can also be useful
in some applications. In contrastive analysis (see e.g., [1]),
multiple datasets are used to extract the distinctive variation.
In this regard, the individual shape variation from NEUJIVE
is useful to extract robust andmeaningful patterns of interest.
We leave this as our future research.

9 Conclusions and Discussion

This research aims to provide geometric and statistical meth-
ods for analyzing multi-object complexes. Despite the recent
advances in the shape statistics field and in the multi-block
data analysis field, there previously existed no methods that
effectively extract joint and individual shape variation. This
paper bridges the two fields, yielding a new method that can
effectively extract joint shape variation from multi-object
complexes.

We focus on the joint shape variation in two-object com-
plexes in this paper. Because ASD simultaneously changes
the shape of multiple brain structures including the hip-
pocampus and the caudate, it is natural to assume that the
shape of these related structures are jointly varying in the
development of ASD. Under this assumption, an effective
joint shape variation should be associated with the devel-
opment of ASD. Therefore, we verify the effectiveness of
NEUJIVE in the hypothesis test and classification between
the ASD and non-ASD group. The interpretation of the joint
shape variationmay lead to interesting findings regarding the
development of ASD.

Not only in the experiments with real shape data, we
also verify our method in toy examples, showing notable
advantages over our baseline method AJIVE. In analyzing
the example with multi-block homogeneous data, NEUJIVE
can effectively recognize the joint variation component (see

Sect. 7.1), regardless of the complexity of the feature spaces.
In the toy example with multi-block heterogeneous data
(of two groups), NEUJIVE focuses on the group difference
in the joint structures and thus results in higher classifica-
tion accuracy. These toy examples explain the advantages of
NEUJIVE on multi-block non-Euclidean data analysis.

These experimental advantages result from our choice
of the methods in this paper. First, to capture shape fea-
tures of the hippocampus and of the caudate, we develop
s-rep implied boundary points, which yield smooth geomet-
ric features with good correspondences across a population.
Second, to obtain shape features that are insensitive to the
pose and size variation, we convert s-rep implied boundary
points into respective pre-shape space. Third, we adopt PNS
to convert pre-shapes into Euclidean variables. The resulting
PNS scores are insensitive to orthogonal transformations of
features,making theEuclidean representations robust against
rotations of objects. Moreover, the score spaces Rn of two
PNSblocks share basis vectorswith aligned columns, assum-
ing columns are observations. This alignment allows us to
extract joint shape variation of the two objects. Fourth, we
use AJIVE to estimate the joint variation of the two PNS
feature matrices, yielding low-dimensional jointly varying
features.

In our futurework, in addition to the potential applications
discussed in Sect. 8, we also want to extend this research by
explicitly accounting for the relations between objects [30].
Among selected objects that are likely associated with a dis-
ease, it is possible that within-object shape features of an
anchor object correlate with its relations with other objects
during the development of the disease. In such a scenario, the
joint shape variation ofwithin- andbetween-object shape fea-
tures can provide interesting information about multi-object
complexes.

10 Online Resources

We have provided python code that generates an arbitrary
number of s-rep implied boundary points, given a triangular
mesh from SPHARM-PDM.We also provide MATLAB and
R code that can simulate the toy examples. Due to limited
permission of sharing theASDdata,we only provide the code
to reproduce the synthetic experiments in the repository (see
https://github.com/ZhiyLiu/shanapy).
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A Non-Euclidean Joint and Individual Varia-
tion Explained

In this section, we show more comprehensive experimen-
tal analysis of NEUJIVE.

First, it is of interest to show all NEUJIVE components of
the toy example discussed in Sect. 7.2, which has homo-
geneous circular data in each block. In Fig. 11 the first
row shows both the joint and the individual structures from
NEUJIVE. The individual structures are designed as ran-
dom variables from multivariate Gaussian (see Eq. (11)).
Moreover, the top left cell in Fig. 11 shows that the indi-
vidual structures (shown as blue dots) from NEUJIVE are
distributed around the PNS mean as expected. As a compari-
son, AJIVE fails to find significant individual components in
either block, as shown in the top right cell. Instead, the blue
dots are the residual components resulting from AJIVE.

Second, we show the NEUJIVE components when the
two blocks are of notably different variability in the bottom
row of Fig. 11. Different from Sect. 7.2, the first block is
generated via

X1 = g1(Exp(p(θ) + ε1)) (13)

where p(θ) is a straight line in the tangent space at the north
pole. A point on this line has coordinates (θ, 0.3θ). The sec-
ond block is still generated via Eq. (11). Moreover, to have
Different Noise Levels (DNL) across the two blocks, we set
different standard deviations of εk across the two blocks. The
results show that NEUJIVE can still give effective estimation
of the joint components regardless of the different variability
between the two blocks.

Third, we investigate the robustness of the joint structures
estimated by NEUJIVE as we increase noise. We simulate
two blocks of data via Eq. (11), increasing the standard
deviation of εk from 0.01 to 0.1. The simulated data under
3 different noise levels can be seen in Fig. 12 left, i.e.,
σ(εk) = {0.01, 0.05, 0.1}. For each noise level, we com-
pute the joint structure fromNEUJIVE.Wemeasure the Root
of Mean Square Error (RMSE) between the NEUJIVE joint
structures and the actual joint structures. The curves ofRMSE
versus noise levels of the two blocks are shown in Fig. 12
right. This figure shows that the RMSE is almost linearly
increasing along with the increasing noise level.

Fig. 11 Joint and individual structures from NEUJIVE on two corre-
lated non-Euclidean blocks. The first row shows the simulation where
the joint structures are designed as circular variables along Small Cir-
cles (SC) in the two blocks (see Eq. (11)). Moreover, the two blocks
share the Equal Noise Level (ENL) in which εk share the same stan-
dard deviation. The second row shows a different simulation study. In

this simulation, the joint component is designed to be a Great Circle
(GC) in block 1. But this component follows a small circle in block 2.
Moreover, the two blocks have Different Noise Level (DNL). On each
sphere, the black dots are simulated data. The magenta dots are joint
structures from each algorithm. The blue dots are individual structures
from NEUJIVE and residual structures from AJIVE, respectively
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Fig. 12 Root Mean Square Error (RMSE) between the actual joint
structures and NEUJIVE estimated joint structures as increasing the
noise level. Left panel: Simulated data as increasing the standard devi-
ation σ(εk) of noise from 0.01 to 0.05 and to 0.1. The two circular

blocks are of different radii, i.e., a1 = 0.25 while a2 = 0.35. Right
Panel: RMSE of the NEUJIVE joint structures of the two blocks as
increasing standard deviation of noise. The red and the blue curve are,
respectively, the RMSE of the block 1 and the block 2

References

1. Abid, A., Zhang, M.J., Bagaria, V.K., Zou, J.: Exploring patterns
enriched in a datasetwith contrastive principal component analysis.
Nat. Commun. 9(1), 1–7 (2018)

2. Björck, A., Golub, G.H.: Numerical methods for computing angles
between linear subspaces.Math.Comput.27(123), 579–594 (1973)

3. Bouhaddani, S.E., Uh, H.W., Jongbloed, G., Hayward, C., Klaric,
L., Kielbasa, S.M., Houwing-Duistermaat, J.: Integrating omics
datasets with the omicspls package. BMC Bioinf. 19(1), 1–9
(2018). https://doi.org/10.1186/s12859-018-2371-3

4. Cerrolaza, J., López Picazo, M., Humbert, L., Sato, Y., Rueck-
ert, D., González Ballester, M.A., Linguraru,M.G.: Computational
anatomy for multi-organ analysis in medical imaging: a review.
Med. Image Anal. 56, 44–67 (2019)

5. Damon, J.: Smoothness and geometry of boundaries associated
to skeletal structures I: sufficient conditions for smoothness. Ann.
línst. Fourier 53, 1941–1985 (2003)

6. Damon, J., Marron, J.: Backwards principal component analysis
and principal nested relations. J. Math. Imag. Vis. 50(1), 107–114
(2014)

7. Deutsch, F.: The angle between subspaces of a Hilbert space. In:
Approximation theory, wavelets and applications, pp. 107–130.
Springer (1995)

8. Dryden, I.L.,Mardia,K.V.: Statistical shape analysis.Wiley,Chich-
ester (1998)

9. Dryden, I.L., Mardia, K.V.: Statistical shape analysis: with appli-
cations in R, vol. 995. Wiley (2016)

10. Eilam-Stock, T., Wu, T., Spagna, A., Egan, L.J., Fan, J.: Neu-
roanatomical alterations in high-functioning adults with autism
spectrum disorder. Front. Neurosci. 10, 237 (2016)

11. Eltzner, B., Jung, S., Huckemann, S.: Dimension reduction on poly-
spheres with application to skeletal representations, pp. 22–29.
Springer (2015)

12. Feng, Q., Jiang, M., Hannig, J., Marron, J.S.: Angle-based joint
and individual variation explained. J. Multivar. Anal. 166, 241–
265 (2018)

13. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic
analysis for the study of nonlinear statistics of shape. IEEE Trans.
Med. Imag. 23(8), 995–1005 (2004)

14. Gorczowski, K., Styner, M., Jeong, J., Marron, J.S., Piven, J.,
Hazlett, H.C., Pizer, S.M., Gerig, G.: Statistical shape analysis of
multi-object complexes. In: 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8 (2007)

15. Gorczowski, K., Styner, M., Jeong, J.Y., Marron, J., Piven, J.,
Hazlett, H.C., Pizer, S.M., Gerig, G.: Multi-object analysis of vol-
ume, pose, and shape using statistical discrimination. IEEE Trans.
Pattern Anal. Mach. Intell. 32(4), 652–661 (2009)

16. Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Poupon, C.,
Hartmann, A., Ayache, N., Durrleman, S.: A Bayesian framework
for joint morphometry of surface and curve meshes in multi-object
complexes. Med. Image Anal. 35, 458–474 (2017)

17. Hong, J.: Classification of neuroanatomical structures based on
non-Euclidean geometric object properties. Ph.D. thesis. Computer
Science dissertation, University of North Carolina at Chapel Hill
(2019)

18. Hong, J., Vicory, J., Schulz, J., Styner, M., Marron, J., Pizer, S.:
Non-Euclidean classification of medically imaged objects via s-
reps. Med. Image Anal. 31, 37–45 (2016)

19. Hong, S., Fishbaugh, J., Gerig, G.: 4D continuous medial rep-
resentation by geodesic shape regression. In: 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), pp.
1014–1017. IEEE (2018)

20. Hotelling, H.: Relations between two sets of variates. Biometrika
28(3–4), 321–377 (1936). https://doi.org/10.1093/biomet/28.3-4.
321

21. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis:
Geodesic PCA for Riemannian manifolds modulo isometric Lie
group actions. Statistica Sinica pp. 1–58 (2010)

22. Ipsen, I.C., Meyer, C.D.: The angle between complementary sub-
spaces. Am. Math. Mon. 102(10), 904–911 (1995)

23. Jiang, M.: Statistical learning of integrative analysis. Ph.D. thesis,
The University of North Carolina at Chapel Hill (2018)

24. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested
spheres. Biometrika (2012)

25. Katuwal, G.J., Cahill, N.D., Baum, S.A., Michael, A.M.: The pre-
dictive power of structural MRI in autism diagnosis. In: 2015
37th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pp. 4270–4273 (2015).
https://doi.org/10.1109/EMBC.2015.7319338

123

https://doi.org/10.1186/s12859-018-2371-3
https://doi.org/10.1093/biomet/28.3-4.321
https://doi.org/10.1093/biomet/28.3-4.321
https://doi.org/10.1109/EMBC.2015.7319338


Journal of Mathematical Imaging and Vision

26. van der Kloet, F.M., Sebastián-León, P., Conesa, A., Smilde, A.K.,
Westerhuis, J.A.: Separating common from distinctive variation.
BMC Bioinf. 17(5), 271–286 (2016)

27. Knyazev, A.V., Argentati,M.E.:Majorization for changes in angles
between subspaces, ritz values, and graph laplacian spectra. SIAM
J. Matrix Anal. Appl. 29(1), 15–32 (2007)

28. Lindström, A., Pettersson, F., Almqvist, F., Berglund, A., Kihlberg,
J., Linusson, A.: Hierarchical pls modeling for predicting the bind-
ing of a comprehensive set of structurally diverse protein- ligand
complexes. J. Chem. Inf. Model. 46(3), 1154–1167 (2006)

29. Liu, Z.: Geometric and statistical models for multi-object shape
analysis (chapter 2). Ph.D. thesis. Computer Science dissertation,
University of North Carolina at Chapel Hill (2022)

30. Liu, Z., Damon, J.,Marron, J.S., Pizer, S.: Geometric and statistical
models for analysis of two-object complexes. Under review (2022)

31. Liu, Z., Hong, J., Vicory, J., Damon, J.N., Pizer, S.M.: Fitting
unbranching skeletal structures to objects. Med. Image Anal. 70,
102020 (2021)

32. Lock, E.F., Hoadley, K.A., Marron, J.S., Nobel, A.B.: Joint and
individual variation explained (JIVE) for integrated analysis of
multiple data types. Ann. Appl. Stat. 7(1), 523 (2013)

33. Marron, J.S., Todd, M.J., Ahn, J.: Distance weighted discrimina-
tion. J. Am. Stat. Assoc. 102(480), 1267–1271 (2007)

34. Miolane, N., Caorsi,M., Lupo, U., Guerard,M., Guigui, N.,Mathe,
J., Cabanes, Y., Reise, W., Davies, T., Leitão, A., et al.: ICLR
2021 challenge for computational geometry & topology: design
and results. arXiv preprint arXiv:2108.09810 (2021)

35. Murphy, C.M., Deeley, Q., Daly, E., Ecker, C., Obrien, F.: Anatomy
and aging of the amygdala and hippocampus in autism spectrum
disorder: an in vivo magnetic resonance imaging study of asperger
syndrome. Autism Res. 5(1), 3–12 (2012)

36. Nicolson, R., DeVito, T.J., Vidal, C.N., Sui, Y., Hayashi, K.M.,
Drost, D.J., Williamson, P.C., Rajakumar, N., Toga, A.W., Thomp-
son, P.M.: Detection and mapping of hippocampal abnormalities
in autism. Psychiatr. Res. Neuroimaging 148(1), 11–21 (2006)

37. Pizer, S.M., Hong, J., Vicory, J., Liu, Z., Marron, J.S., et al.: Object
shape representation via skeletal models (s-reps) and statistical
analysis. Riemannian Geometric Statistics inMedical Image Anal-
ysis pp. 233–272 (2019)

38. Pizer, S.M., Jung, S., Goswami, D., Vicory, J., Zhao, X., Chaud-
huri, R., Damon, J.N., Huckemann, S., Marron, J.: Nested sphere
statistics of skeletal models. In: Innovations for shape analysis, pp.
93–115. Springer (2013)

39. Pizer, S.M., Marron, J., Damon, J., Vicory, J., Krishna, A., Liu, Z.,
Taheri, M.: Skeletons, object shape, statistics. Front. Comput. Sci.
4, 842637 (2022)

40. Qiu, A., Adler, M., Crocetti, D., Miller, M.I., Mostofsky, S.H.:
Basal ganglia shapes predict social, communication, and motor
dysfunctions in boys with autism spectrum disorder. J. Am. Acad.
Child Adolesc. Psychiatr. 49(6), 539–551 (2010)

41. Richards, R., Greimel, E., Kliemann, D., Koerte, I.K., Schulte-
Körne, G., Reuter, M., Wachinger, C.: Increased hippocampal
shape asymmetry and volumetric ventricular asymmetry in autism
spectrum disorder. NeuroImage Clin. 26, 102207 (2020)

42. Sagonas, C., Panagakis, Y., Leidinger, A., Zafeiriou, S.: Robust
joint and individual variance explained. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5267–5276 (2017)

43. Schulz, J., Pizer, S., Marron, J., Godtliebsen, F.: Nonlinear hypoth-
esis testing of geometric object properties of shapes applied to
hippocampi. J. Math. Imag. Vis. 54, 15–34 (2016)

44. Shen, C., Sun, M., Tang, M., Priebe, C.E.: Generalized canonical
correlation analysis for classification. J. Multivar. Anal. 130, 310–
322 (2014)

45. Styner,M.,Oguz, I., Xu, S., Brechbühler, C., Pantazis,D., Levitt, J.,
Shenton,M.,Gerig,G.: Statistical shape analysis of brain structures
using SPHARM-PDM. Insight J. 1071, 242–250 (2006)

46. Torgerson, W.S.: Multidimensional scaling: I. theory and method.
Psychometrika 17(4), 401–419 (1952)

47. Trygg, J., Wold, S.: O2-PLS, a two-block (X-Y) latent variable
regression (LVR) method with an integral OSC filter. J. Chemom.
17, 53–64 (2003). https://doi.org/10.1002/cem.775

48. Tu, L., Styner, M., Vicory, J., et al.: Skeletal shape correspondence
through entropy. IEEE Transactions on Medical Imaging (2018)

49. Van Deun, K., Van Mechelen, I., Thorrez, L., Schouteden, M., De
Moor, B., Van Der Werf, M.J., De Lathauwer, L., Smilde, A.K.,
Kiers, H.A.: Disco-sca and properly applied gsvd as swinging
methods to find common and distinctive processes. PLoSOne 7(5),
e37840 (2012)

50. Wang, J., Vachet, C., Rumple, A., Gouttard, S., Ouziel, C., Perrot,
E., Du, G., Huang, X., Gerig, G., Styner, M.A.: Multi-atlas seg-
mentation of subcortical brain structures via the AutoSeg software
pipeline. Front. Neuroinf. 8, 7 (2014)

51. Wei, S., Lee, C., Wichers, L., Marron, J.: Direction-projection-
permutation for high-dimensional hypothesis tests. J. Comput.
Graph. Stat. 25(2), 549–569 (2016)

52. Westerhuis, J.A., Kourti, T., MacGregor, J.F.: Analysis of multi-
block and hierarchical PCA and PLS models. J. Chemom. 12(5),
301–321 (1998)

53. Wold, H.: Partial least squares (2004). https://doi.org/10.1002/
0471667196.ess1914

54. Wold, S., Geladi, P., Esbensen, K., Öhman, J.: Multi-way principal
components andPLSanalysis. J.Chemom.1, 41–56 (2005). https://
doi.org/10.1002/cem.1180010107

55. Wold, S., Kettaneh, N., Tjessem, K.: Hierarchical multiblock PLS
and PCmodels for easier model interpretation and as an alternative
to variable selection. J. Chemom. 10, 463–482 (1996)

56. Yushkevich, P., Fletcher, P.T., Joshi, S., Thall, A., Pizer, S.M.: Con-
tinuousmedial representations for geometric object modeling in 2d
and 3d. Image Vis. Comput. 21(1), 17–27 (2003)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Zhiyuan Liu received his Ph.D.
from the Department of Computer
Science at the University of North
Carolina at Chapel Hill (UNC).
He was co-advised by Dr. Stephen
M. Pizer and Dr. J. S. Marron. His
research interest lies in analyzing
complex data such as shape data
and graph data.

123

http://arxiv.org/abs/2108.09810
https://doi.org/10.1002/cem.775
https://doi.org/10.1002/0471667196.ess1914
https://doi.org/10.1002/0471667196.ess1914
https://doi.org/10.1002/cem.1180010107
https://doi.org/10.1002/cem.1180010107


Journal of Mathematical Imaging and Vision

Jörn Schulz studied mathemat-
ics at the Humboldt University of
Berlin, Germany. He received his
Ph.D. from the Arctic University
of Norway in 2013 with a thesis
in statistical analysis of medical
shapes and directional data. He
is currently an Associate Profes-
sor of Mathematics and Physics at
the University of Stavanger (UiS),
Norway.

Mohsen Taheri studied applied
mathematics in Iran, Azad Uni-
versity of Tehran. He received the
Master’s degree in mathematics
and physics from the University
of Stavanger (UiS) in Norway with
a thesis in statistical shape analy-
sis of brain structures. Currently,
He is a Ph.D. student in med-
ical statistics and a member of
biomedical data analysis labora-
tory (BMDLab) at UiS.

Martin Styner is a research asso-
ciate professor in the Department
of Computer Science with a joint
appointment as an assistant pro-
fessor in the Department of Psy-
chiatry at UNC. He is the co-
director of the UNC Neuro Image
Research and Analysis Labora-
tory and associate director of the
Developmental Neuroimaging
Core in the Carolina Institute for
Developmental Disabilities at
UNC.

James Damon is an emeritus
professor in the Mathematics
Department at UNC. He received
the B. A. degree in mathematics
from Dartmouth College in 1967,
and the Ph. D. from the Harvard
University in 1972.

Stephen Pizer is a Kenan Profes-
sor of Computer Science, Radi-
ation Oncology, Radiology, and
Biomedical Engineering at UNC.
He received the Bachelor degree
in applied mathematics from
Brown University in 1963 and the
Ph.D. in computer science from
Harvard in 1967. He
founded and has led UNC’s multi-
departmental MIDAG. He is Fel-
low of the MICCAI Society. For
many years he was Associate Edi-
tor of IEEE Transactions on Med-
ical Imaging.

J. S. Marron is the Amos
Hawley Distinguished Professor
of Statistics and Operations
Research at UNC. He received the
B. S. degree from the University
of California at Davis, and the
Ph.D. from the University of Cali-
fornia at Los Angeles. Marron has
held the positions of Assistant,
Associate and Full Professor with
UNC, and is also Adjunct Pro-
fessor of Computer Science and
Member of the Lineberger Com-
prehensive Cancer Center.

123


	Analysis of Joint Shape Variation from Multi-Object Complexes
	Abstract
	1 Introduction
	2 Classify ASD versus Non-ASD with Subcortical Shape
	3 S-rep Implied Boundary Points
	4 Euclideanize Skeletally Implied Boundary Points
	4.1 Convert S-rep Implied Boundary Points to Pre-shapes
	4.2 Euclideanize Pre-shapes

	5 Extract Joint Variation in Two-Object Complexes
	5.1 Alignment in PNS Score Space
	5.2 Joint Analysis of Two-Block Euclidean Data
	5.3 Implication of Ranks in NEUJIVE

	6 Relevant Work
	7 Experiments
	7.1 Joint Components of Two-Block Non-Euclidean Data
	7.2 Joint Shape Analysis in Toy Classification
	7.3 Autism Data for Multi-Object Shape Analysis
	7.4 Hypothesis Testing
	7.5 Classification
	7.6 Shape Differences in the Joint Variation Subspace

	8 Broader Impact
	9 Conclusions and Discussion
	10 Online Resources
	Acknowledgements
	A Non-Euclidean Joint and Individual Variation Explained
	References




