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Abstract

Active contour segmentation and its robust implementation using level set meth-

ods are well established theoretical approaches that have been studied thoroughly

in the image analysis literature. Despite the existence of these powerful segmen-

tation methods, the needs of clinical research continue to be fulfilled, to a large

extent, using slice-by-slice manual tracing. To bridge the gap between methodolog-

ical advances and clinical routine, we developed an open source application called

ITK-SNAP, which is intended to make level set segmentation easily accessible to a

wide range of users, including those with little or no mathematical expertise. This

paper describes the methods and software engineering philosophy behind this new

tool and provides the results of validation experiments performed in the context

of an ongoing child autism neuroimaging study. The validation establishes SNAP

intra/interrater reliability and overlap error statistics for the caudate nucleus and

finds that SNAP is a highly reliable and efficient alternative to manual tracing.

Analogous results for lateral ventricle segmentation are provided.
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1 Introduction

Segmentation of anatomical structures in medical images is a fundamental

task in neuroimaging research. Segmentation is used to measure the size and

shape of brain structures, to guide spatial normalization of anatomy between

individuals and to plan medical intervention. Segmentation serves as an essen-

tial element in a great number of morphometry studies that test various hy-

potheses about the pathology and pathophysiology of neurological disorders.

The spectrum of available segmentation approaches is broad, ranging from

manual outlining of structures in 2D cross-sections to cutting-edge methods

that use deformable registration to find optimal correspondences between 3D

images and a labeled atlas (Haller et al., 1997; Goldszal et al., 1998). Amid

this spectrum lie semiautomatic approaches that combine the efficiency and

repeatability of automatic segmentation with the sound judgement that can

only come from human expertise. One class of semiautomatic methods formu-

lates the problem of segmentation in terms of active contour evolution (Zhu

and Yuille, 1996; Caselles et al., 1997; Sethian, 1999), where the human expert

must specify the initial contour, balance the various forces which act upon it,

as well as monitor the evolution.

Despite the fact that a large number of fully automatic and semiautomatic seg-

mentation methods has been described in the literature, many brain research

laboratories continue to use manual delineation as the technique of choice

for image segmentation. Reluctance to embrace the fully automatic approach

may be due to the concerns about its insufficient reliability in cases where

the target anatomy may differ from the norm, as well as due to high compu-

tational demands of the approach based on image registration. However, the
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slow spread of semiautomatic segmentation may simply be due to the lack of

readily available simple user interfaces. Semiautomatic methods require the

user to specify various parameters, whose values tend to make sense only in

the context of the method’s mathematical formulation. We suspect that insuf-

ficient attention to developing tools that make parameter selection intuitive

has prevented semiautomatic methods from replacing manual delineation as

the tool of choice in the clinical research environment.

ITK-SNAP is a software application that brings active contour segmentation

to the fingertips of clinical researchers. Our goals in developing this tool were

(1) to focus specifically on the problem of segmenting anatomical structures,

not allowing the kind of feature creep which would make the tool’s learning

curve prohibitively steep; (2) to construct a friendly and well documented

user interface that would break up the task of initialization and parameter

selection into a series of intuitive steps; (3) to provide an integrated toolbox

for manual postprocessing of segmentation results; and (4) to make the tool

freely accessible and readily available through the open source mechanism.

SNAP is a product of over six years of development in academic and corpo-

rate environments and it is the largest end-user application bundled with the

Insight Toolkit (ITK), a popular library of image analysis algorithms funded

under the Visible Human Project by the U.S. National Library of Medicine

(Ibanez et al., 2003). SNAP is available free of charge both as a stand-alone

application that can be installed and executed quickly and as source code that

can be used to derive new software. 1

1 SNAP binaries are available for download at www.itksnap.org; source code is

managed at www.itk.org.

4



This paper provides a brief overview of the methods implemented in SNAP and

describes the tool’s core functionality. However, the paper’s main focus is on

the validation study, which we performed in order to demonstrate that SNAP

is a viable alternative to manual segmentation. The validation was performed

in the context of caudate nucleus segmentation in an ongoing child autism MRI

study. Each caudate was segmented using both methods in multiple subjects

by multiple highly trained raters and with multiple repetitions. The results of

volume and overlap-based reliability analysis indicate that SNAP segmenta-

tion is very accurate, exceeding manual delineation in terms of efficiency and

repeatability. We also demonstrate high reliability of SNAP in lateral ventricle

segmentation.

The remainder of the paper is organized as follows. A short overview of au-

tomatic image segmentation, as well as some popular medical imaging tools

that support it, is given in Sec. 2. A brief summary of active contour segmen-

tation and level set methods appears in Sec. 3.1. Sec. 3.2 highlights the main

features of SNAP’s user interface and software architecture. Validation in the

context of caudate and ventricle segmentation is presented in Sec. 4. Finally,

Sec. 5 discusses the challenges of developing open-source image processing

software, notes the limitations of SNAP segmentation and brings up the need

for complimentary tools, which we plan to develop in the future.

2 Previous Work

In many clinical laboratories, biomedical image segmentation involves having

a trained expert delineate the boundaries of anatomical structures in con-

secutive slices of 3D images. Although this approach puts the expert in full
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control of the segmentation, it is time-consuming as well as error-prone. In

the absence of feedback in 3D, contours traced in subsequent slices may be-

come mismatched, resulting in unnatural jagged edges that pose a difficulty

to applications such as shape analysis. Studies have demonstrated a frequent

occurrence of significant discrepancies between the delineations produced by

different experts as well as between repeated attempts by a single expert.

For instance, a validation of caudate nucleus segmentation by Gurleyik and

Haacke (2002) reports the interrater reliability of 0.84. Other studies report

higher interrater reliability for the caudate, such as 0.86 in Naismith et al.

(2002), 0.94 in Keshavan et al. (1998), 0.955 in Hokama et al. (1995) and

0.98 in Levitt et al. (2002). The reliability of lateral ventricle segmentation

tends to be high, with Blatter et al. (1995), for example, reporting intraclass

correlations of 0.99.

On the other side of the segmentation spectrum lie fully automated meth-

ods based on probabilistic models of image intensity, atlas deformation and

statistical shape models. Intensity-based methods assign tissue classes to im-

age voxels (Wells III et al., 1995; Alsabti et al., 1998; Van Leemput et al.,

1999a,b) with high accuracy, but they can not identify the individual organs

and anatomical regions within each tissue class. Methods based on elastic and

fluid registration can identify anatomical structures in the brain by deforming

a labeled probabilistic brain atlas onto the subject brain (Joshi and Miller,

2000; Avants et al., 2005; Davatzikos et al., 2001; Thirion, 1996). This type of

registration assumes one-to-one correspondence between subject anatomies,

which is not always the case, considering high variability in cortical folding

and potential presence of pathology. In full-brain registration, small structures

may be poorly aligned because they contribute a small portion to the overall
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objective function optimized by the registration. When augmented by expert-

defined landmarks, registration methods can achieve very high accuracy in

structures like the hippocampus (Haller et al., 1997) but, without effective

low cost software tools, they may lose their fully automatic appeal. Meth-

ods based on registration are also very computationally intensive, which may

discourage their routine use in the clinical environment. Yet another class of

deformable template segmentation methods uses a statistical model of shape

and intensity to identify individual anatomical structures (Cootes et al., 1998;

Joshi et al., 2002; Davies et al., 2002). The statistical prior model allows these

methods to identify structure boundaries in absence of edges of intensity. How-

ever, shape priors must be learned from training sets that require a significant

independent segmentation effort, which could benefit from a tool like SNAP.

In the field of biomedical image analysis software, SNAP stands out as a full-

featured tool that is specifically devoted to segmentation. A number of other

software packages provide semi-automatic segmentation capability, but these

packages tend to be either very broad or very specific in the scope of functional-

ity that they provide. For instance, large-scale packages such as Mayo Analyze

(Robb and Hanson, 1995) and the open-source 3D Slicer (Gering et al., 2001)

include 3D active contour segmentation modules, and the NIH MIPAV tool

(McAuliffe et al., 2001) provides in-slice active contour segmentation. These

tools carry a steep learning curve, due the large number of features that they

provide. More specific tools include GIST (Lefohn et al., 2003), which has a

very fast level set implementation but a limited user interface. In contrast,

SNAP is both easy to learn, since it is streamlined towards one specific task,

and powerful, including a full set of complimentary editing tools and a user

interface that provides live feedback mechanisms intended to make parameter
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selection easier for non-expert users.

3 Materials and Methods

3.1 Active Contour Evolution

SNAP implements two well-known 3D active contour segmentation methods:

Geodesic Active Contours by Caselles et al. (1993, 1997) and Region Compe-

tition by Zhu and Yuille (1996). In both methods, the evolving estimate of

the structure of interest is represented by one or more contours. An evolving

contour is a closed surface C(u, v; t) parameterized by variables u, v and by

the time variable t. The contour evolves according to the following partial

differential equation (PDE):

∂

∂t
C(t, u, v) = F ~N , (1)

where ~N is the unit normal to the contour and F represents the sum of various

forces that act on the contour in the normal direction. These forces are charac-

terized as internal and external : internal forces are derived from the contour’s

geometry, and are used to impose regularity constraints on the shape of the

contour, while external forces incorporate information from the image being

segmented. Active contour methods differ by the way they define internal and

external forces. Caselles et al. (1997) derive the external force from the gradi-

ent magnitude of image intensity, while Zhu and Yuille (1996) base it on voxel

probability maps. Mean curvature of C is used to define the internal force in

both methods.
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In the Caselles et al. method, the force acting on the contour has the form

F = αgI + βκgI + γ(∇gI · ~N) , (2)

where gI is the speed function derived from the gradient magnitude of the input

image I, κ is the mean curvature of the contour, and α, β, γ are weights that

modulate the relative contribution of the three components of F . The speed

function must take values close to 0 at edges of intensity in the input image,

while taking values close to 1 in regions where intensity is nearly constant. In

SNAP, the speed function is defined as follows:

gI(x) =
1

1 + (NGMI(x)/ν)λ
NGMI(x) =

‖∇ (Gσ ∗ I) ‖
maxI ‖∇ (Gσ ∗ I) ‖

(3)

where NGMI is the normalized gradient magnitude of I; Gσ ∗ I denotes con-

volution of I with the isotropic Gaussian kernel with aperture σ; and ν and

λ are user-supplied parameters that determine the shape of the monotonic

mapping between the normalized gradient magnitude and the speed function,

illustrated in Fig. 1. Note that since the speed function is non-negative, the

first term in (2) acts in the outward direction, causing the contour to expand.

This outward external force is counterbalanced by the so-called advection force

γ(∇gI · ~N), which acts inwards when the contour approaches an edge of in-

tensity to which it is locally parallel. An illustration of Caselles et al. (1997)

evolution in 2D with and without the advection force, is given in Fig. 2.

Zhu and Yuille (1996) compute the external force by estimating the probability

that a voxel belongs to the structure of interest and the probability that it

belongs to the background at each voxel in the input image. In SNAP, these

probabilities are estimated using fuzzy thresholds, as illustrated in Fig. 3.

Alternatively, SNAP users can import tissue probability maps generated by
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atlas-based and histogram-based tissue class segmentation programs. In the

SNAP implementation, the external force is proportional to the difference of

object and background probabilities, and the total force is given by

F = α(Pobj − Pbg) + βκ . (4)

This is a slight deviation from Zhu and Yuille (1996), who compute the exter-

nal force by taking the difference between logarithms of the two probabilities.

An example of contour evolution using region competition is shown in Fig. 4.

Region competition is more appropriate when the structure of interest has

a well-defined intensity range with respect to the image background. In con-

trast, the Caselles et al. (1997) method is well suited for structures bounded

by strong image intensity edges.

Active contour methods typically solve the contour evolution equation using

the Level Set Method (Osher and Sethian, 1988; Sethian, 1999). This approach

ensures numerical stability and allows the contour to change topology. The

contour is represented as the zeroth level set of some function φ, which is

defined at every voxel in the input image. The relationship ~N = ∇φ/‖∇φ‖ is

used to rewrite the PDE (1) as a PDE in φ:

∂

∂t
φ(x; t) = F |∇φ| . (5)

Typically, such equations are not solved over the entire domain of φ but only

at the set of voxels close to the contour φ = 0. SNAP uses the highly efficient

Extreme Narrow Banding Method by Whitaker (1998) to solve (5).

10



3.2 Software Architecture

This section describes SNAP functionality and highlights some of the more

innovative elements of its user interface architecture. SNAP was designed to

provide a tight but complete set of features that focus on active contour seg-

mentation. It includes tools for viewing and navigating 3D images, manual

labeling of regions of interest, combining multiple segmentation results, and

post-processing them in 2D and 3D. Built on the ITK backbone, SNAP can

read and write many image formats, and new features can be added easily.

3.2.1 Image Navigation and Manual Segmentation

SNAP’s user interface emphasizes the 3D nature of medical images. As shown

in Fig. 5a, the main window is divided into four panels, three displaying or-

thogonal cross-sections of the input image and the fourth displaying a 3D view

of the segmented structures. Navigation is aided by a linked 3D cursor whose

logical location is at the point where the three orthogonal planes intersect. The

cursor can be repositioned in each slice view by mouse motion, causing differ-

ent slices to be shown in the remaining two slice views. The cursor can also be

moved out of the slice plane using the mouse wheel. This design ensures that

the user is always presented with the maximum amount of detail about the

voxel under the cursor and its neighborhood, while minimizing the amount of

mouse motion needed to navigate through the image. Users can change the

zoom in each slice view, and each of the slice views can be expanded to occupy

the entire program window, as illustrated in Fig. 5b.

SNAP provides tools for manual tracing of regions of interest. Internally,
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SNAP represents labeled regions using an integer-valued 3D mask image of

the same dimensions as the input image. Each voxel in the input image can be

assigned a single label, or no label at all. This approach has the disadvantage

that partial volume segmentations can not be represented, but it allows users

to view and edit regions simultaneously in the three slice views and in the 3D

view. To define a region, the user makes a series of clicks, forming a closed

contour, which can then be edited by moving, inserting and removing vertices.

When integrating the contour with the 3D mask, the user assigns a label to

the contour, and can choose to apply the update only to a subset of the labels

that are already present in the mask, e.g., applying only to unlabeled voxels

or to voxels with another label. The manual delineation mode can be used

both to initialize automatic segmentation and to postprocess the results.

The 3D view is used to render the boundaries of segmented structures that are

computed using the contour extraction, decimation and fairing algorithms in

the Visualization Toolkit (VTK) (Lorensen and Cline, 1987; Schroeder et al.,

1996). The user can reposition the 3D cursor by clicking on one of these sur-

faces. An arbitrary cut-plane can be defined in the 3D window, and labels on

one side of the cut-plane can be replaced with another label. The cut-plane

tool makes it easy to divide a segmentation into regions and to cut away ex-

traneous tissue from a result that includes voxels outside of the structure of

interest. A sequence of cut-plane operations can be used to perform complex

editing operations in 3D, as illustrated in Fig. 6, where an automatic segmen-

tation result is partitioned into the lateral ventricles and the third ventricle.

Other notable features of SNAP include the image input wizard, which allows

users to read a number of recognized image file formats, includes specialized

dialogs for DICOM series and raw data, and provides a graphical user interface
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for specifying the mapping between image and anatomical coordinate systems.

Once an image has been loaded using this wizard, the settings associated with

the image are stored so that in the future it can be loaded without user interac-

tion. SNAP offers linear and spline-based intensity windowing. SNAP is highly

customizable, allowing users to reconfigure the arrangement and orientation

of the slice views, choosing between radiological and neurological conventions;

the users can change the appearance of various display elements in order to

make them more or less prominent for presentation purposes.

3.2.2 Automatic Segmentation Workflow

The outcome of active contour segmentation depends on a number of para-

meters, including the choice of method, the way in which the input image is

converted into a probability map or speed function, the initial contour, and

the weights assigned to various internal and external forces that drive con-

tour evolution. Even for users familiar with level sets, finding the right set of

parameters can be difficult. To simplify this task, SNAP organizes parameter

specification into a wizard-like workflow and relies extensively on live feedback

mechanisms. The workflow is divided into three logical stages.

In the first stage, the user chooses between Zhu and Yuille (1996) and Caselles

et al. (1997) methods and, depending on the method chosen, computes the

probability map Pobj − Pbg or the speed function gI . Probability maps are

computed, as shown in Fig. 7a, by applying a smooth threshold, which can be

one-sided or two-sided, depending on whether the intensity range of the struc-

ture of interest lies at one of the ends or in the middle of the histogram. Taking

advantage of the flexible ITK architecture that can apply image processing fil-
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ters to arbitrary image subregions, the orthogonal slice views in SNAP provide

immediate feedback in response to changes in parameter values. Alternatively,

the user may import an external image, such as a tissue class segmentation,

as the probability map or speed image.

In the second stage, the user initializes the segmentation by placing one or

more spherical ‘seeds’ in the image (Fig. 7b). The user can also initialize the

active contour with a result of an earlier manual or automatic segmentation.

Level set methods allow contours to change topology, and it is common to place

several seeds within one structure, letting them merge into a single contour

over the course of evolution.

The last stage of the segmentation workflow is devoted to specifying the

weights of the various terms in the active contour evolution PDE and run-

ning the evolution interactively. In order to accommodate a wider range of

users, SNAP provides two separate modes for choosing weights. In the ca-

sual user mode, weights α, β and γ from the active contour equations are

described verbally in terms of their impact on the behavior of the evolving

contour, accompanied by an interactive, dynamically updated 2D curve evo-

lution illustration that shows the effect of each of the parameters on the total

force acting on the interface (Fig. 8). The other mode is for users familiar with

the mathematics of active contours, and allows them to specify the weights in

a generic evolution formulation that incorporates both (2) and (4):

F = αha − βhbκ− γhc
(
∇h · ~N

)
. (6)

By setting h = gI , a = 1, b = 1, c = 0, the user arrives at the Caselles et al.

(1997) formulation, and with h = Pobj − Pbg, a = 1, b = 0, c = 0, the Zhu and

Yuille (1996) formulation is obtained. Formulation (6) corresponds to SNAP’s
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internal representation of the evolution equation.

The actual contour evolution is controlled by a VCR-like interface. When the

user clicks the ‘play’ button, the contour begins to evolve, and the slice views

and, optionally, the 3D view are updated after each iteration. The user can

use ‘stop’, ‘rewind’ and ‘single step’ buttons to control and terminate contour

evolution. Fig. 9 shows SNAP before and and after contour evolution.

Before entering the automatic segmentation mode, the user may choose to re-

strict segmentation to a 3D region of interest in order to reduce computational

cost and memory use. An option to resample the region of interest using near-

est neighbor, linear, cubic, or windowed sinc interpolation is provided; this is

recommended for images with anisotropic voxels. When returning from auto-

matic mode to the manual mode, SNAP converts the level set segmentation

result to a binary mask and merges it with the 3D mask image. In the process,

the sub-voxel accuracy of the segmentation is compromised. Before merging,

the user has the option to export the segmentation as a real-valued image.

4 Results

The new SNAP tool, with its combination of user-guided 3D active contour

segmentation and post-processing via manual tracing in orthogonal slices or

using the 3D cut-plane tool, is increasingly replacing conventional 2D slice

editing for a variety of image segmentation tasks. SNAP is used in several large

neuroimaging studies at UNC Chapel Hill, Duke University and the University

of Pennsylvania. Segmentation either uses the soft threshold option for the de-

finition of foreground and background, e.g. for the segmentation of the caudate
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nucleus in head MRI, or employs existing tissue probability maps that define

object to background probabilities. This option is used for the segmentation

of ventricles based on cerebrospinal fluid probabilistic segmentations.

An ongoing child neuroimaging autism study serves as a testbed for validation

of the new tool as a prerequisite to its use in a large clinical study. In particular,

we chose the segmentation of the caudate nucleus to establish intrarater and

interrater reliability of applying SNAP and also to test validity in comparison

to manual rater segmentation. The following sections describe validation of

SNAP versus manual rater contour drawing in more details. In addition, we

provide reliability results for the lateral ventricle segmentation in SNAP, but

without a comparison to manual segmentation.

4.1 Validation of SNAP: Caudate Segmentation

From our partnership with the UNC Psychiatry department, we have access to

a morphologic MRI study with a large set of autistic children (N=56), devel-

opmentally delayed subjects (N=11) and control subjects (N=17), scanned at

age two. SNAP was chosen as an efficient and reliable tool to segment the cau-

date nucleus from high-resolution MRI. Before replacing conventional manual

outlining by this new tool, we designed a validation study to test the differ-

ence between methods, the difference between operators, and the variability

for each user.
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4.1.1 Gray-level MRI data

Caudate segmentation uses high-resolution T1-weighted MRI with voxel size

0.78 × 0.78 × 1.5 mm3. The protocol established by the UNC autism image

analysis group rigidly aligns these images to the Talairach coordinate space

by specifying anterior and posterior commissure (AC-PC) and the interhemi-

spheric plane. The transformation also interpolates the images to the isotropic

voxel size of 1mm3. Automatic atlas-based tissue segmentation using EMS

(Van Leemput et al., 1999a,b) results in a hard segmentation and separate

probability maps for white matter, gray matter and cerebrospinal fluid. These

three-tissue maps are used for SNAP ventricle segmentation, but not for the

caudate nucleus, because in some subjects, the intensity distribution of the

subcortical gray matter is different from the cortex.

4.1.2 Reliability series and validation

Five MRI datasets were arbitrarily chosen from the whole set of 100+ images.

Data were replicated three times and blinded to form a validation database

of 15 images. Three highly trained raters participated in the validation study;

rater A segmented each image manually and in SNAP, while rater B only used

SNAP and rater C only performed manual segmentation. Segmentation results

between pairs of raters or methods were analyzed using common intraclass

correlation statistics (ICC) as well as using overlap statistics.

4.1.3 Caudate nucleus segmentation

At first sight, the caudate seems easy to segment since the largest fraction of

its boundary is adjacent to the lateral ventricles and white matter. Portions of
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the caudate boundary can be localized with standard edge detection. However,

the caudate is also adjacent to the nucleus accumbens and the putamen where

there are no visible boundaries in MRI (see Fig. 10). The caudate, nucleus

accumbens and putamen are distinguishable on histological slides, but not on

T1-weighted MRI of this resolution. Another “trouble-spot” for the caudate

is where it borders the putamen; there are “fingers” of cell bridges adjacent

to blood vessels which span the gap between the two.

4.1.4 Manual boundary drawing

Using the drawing tools in SNAP, we have developed a highly reliable protocol

for manual caudate segmentation using slice-by-slice boundary drawing in all

three orthogonal views. In addition to boundary overlays, the segmentation is

supported by a 3D display of the segmented structure. The coupling of cursors

between 2D slices and the 3D display help significantly reduce slice-by-slice

jitter that is often seen in this type of segmentations. Segmentation time for

left and right caudate is approximately 1.5 hours for experienced experts.

4.1.5 3D Active Contour Segmentation

We developed a new segmentation protocol for caudate segmentation based

on the T1 gray level images with emphasis on efficiency and optimal reliabil-

ity. The caudate nucleus is a sub-cortical gray matter structure. T1 intensity

values of the caudate regions in the infant MRI showed significant differences

among subjects and required individual adjustment. We place sample regions

in four axial slices of the caudate, measure the intensity and standard deviation

of the sample regions, then use those values to guide the setting of the upper
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and lower thresholds in the pre-processing step of SNAP. This results in fore-

ground/background maps which guide the level set evolution. Parameters for

smoothness and speed were trained in a pilot study and were kept constant for

the whole study. The same regions were used as initialization regions. Evolu-

tion was stopped after the caudate started to bleed into the adjacent putamen.

Optimal intensity window selection and active contour evolution takes only

about 5 minutes for the left and right caudate. In some caudate segmenta-

tion protocols, the inferior boundary is cut off by the selection of an axial cut

plane, which only takes a few additional seconds using the cut-plane feature

in SNAP. In our autism project, we decided to add a precise separation from

the putamen and a masking of the left and right nucleus accumbens. This

is a purely manual operation since there are no visible boundaries between

caudate and nucleus accumbens in the MR image. This step added another 30

minutes to the whole process. The total segmentation time was reduced from

originally 1.5 hours for slice-by-slice contour drawing to 35 minutes, with the

option to be reduced to only 5 minutes if simple cut-planes for inferior bound-

aries would be sufficient for the given task, which is similar to the protocol

applied by Levitt et al. (2002). The raters also reported that they felt much

more comfortable with the SNAP tool since they could focus their effort on a

small part of the boundary that is most difficult to trace.

4.1.6 Volumetric Analysis

Table 1 lists the left and right caudate volumes for manual segmentation

(slice by slice contouring) and user-assisted 3D active contour segmentation

(SNAP). Results of the reliability analysis using one-way random effects in-

traclass correlation statistics (Shrout and Fleiss, 1979) are shown in Table 2.
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The table shows not only the excellent reliability of SNAP segmentation but

also reflects the excellent reliability of the manual experts trained over several

months. Therefore, reliability between methods is not significantly different.

On the basis of volume comparisons, the SNAP segmentation, which requires

much less training and is significantly more efficient, is shown equivalent to the

manual expert, both with respect to intra-method reliability and inter-method

validity. However, this is to be compared with the significantly reduced seg-

mentation time and short rater training time of SNAP.

4.1.7 Overlap Analysis

In addition to volume-based reliability analysis, we compare SNAP and man-

ual methods in terms of overlap between different segmentations of each in-

stance of the caudate. Overlap is a more accurate measure of agreement be-

tween two segmentations than volume difference because the latter may be

zero for two completely different segmentations. For every subject-caudate

combination, we measure the overlap between all ordered pairs of available

segmentations. There are 10 structures (5 subjects, left and right) and for

each structure there are 12 different segmentations (2 raters, 2 methods, 3

repetitions) and
(

12
2

)
= 66 ordered pairs. For each pair, we count the number

of voxels in the input image that belong to both segmentations. Following

the statistical approach described in (Zou et al., 2004), we define the overlap

between segmentations S1 and S2 as the Dice Similarity Coefficient (DSC):

DSC(S1, S1) =
2 Vol(S1 ∩ S2)

Vol(S1) + Vol(S2)
. (7)

This symmetric measure of segmentation agreement lies in the range [0, 1],

with larger values indicating greater overlap.
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Table 3 lists means and standard deviations of the overlaps for the left and

right caudate within 13 different categories of comparisons. These categories

fall into three larger classes: SNAP-to-SNAP comparisons, (i.e., pairs where

both segmentations were generated with SNAP), manual-to-manual compar-

isons, and mixed SNAP-to-manual comparisons. Within each class, categories

include (1) all pairs where both segmentations were performed by a given rater,

(2) all pairs where both segmentations were performed by the same rater, and

(3) all pairs where segmentations were performed by different raters. Fig. 11

displays box and whisker plots of the same 13 categories. It is immediately no-

ticeable that the comparisons in the SNAP-to-SNAP group yield significantly

better overlaps than other types of comparisons; in fact, the worst overlap

between any pair of SNAP segmentations is still better than the best overlap

between any pair of manual segmentations or any pair where both methods are

used. This indicates that SNAP caudate segmentation exhibits significantly

better repeatability than manual segmentation.

To confirm this finding quantitatively, we perform an ANOVA experiment

adopted from Zou et al. (2004), who studied repeatability in the context of

pre- and post-operative prostate segmentation. Variance components in the

ANOVA model include the method (M ∈ {SNAP, Manual}), case (i.e., sub-

ject; C ∈ {1, 2, 3, 4, 5}), anatomy A ∈ {l. caudate, r. caudate} and repetition

pair P ∈ {(a, b), (b, c), (a, c)}, i.e., one of the three possible ordered pairs of

segmentations performed by a given rater in a given case on a given struc-

ture (symbols a, b, c correspond to the order in which the rater performed the

segmentations). Zou et al. (2004) pools the model over all raters, but in our

case, since only rater A performed segmentation using both methods, we just

include segmentations by rater A in the model. Following Zou et al. (2004),
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the model includes two interaction terms: M ×S and C×S, and the outcome

variable is derived by standardizing the DSC using the logit transform:

LDSC(S1, S2) = ln

(
DSC(S1, S2)

1−DSC(S1, S2)

)
. (8)

Our ANOVA results are listed in Table 4. We conclude that SNAP seg-

mentations are significantly more reproducible than manual segmentation

(F = 1066, p � 0.001). We observe a significant effect of case on repeata-

bility (F = 5.176, p = 0.001), implying that reproducibility varies by subject.

There is no evidence to support the hypothesis that repeatability improves

with training, as the choice of repetition pair has no significant effect on the

overlap (p = 0.287). We also do not find a significant difference in repeatabil-

ity between left and right caudates. A limitation of the above analysis is that

segmentations from only one rater are included in the ANOVA. The other

two raters could not be included because rater B used SNAP for all caudate

segmentations, and all segmentations by rater C were manual. A stronger case

could have been made if each of these raters had used both methods, allowing

us to treat rater as a random effect. However, visual analysis of box plots in

Fig. 11 suggests that while repeatability varies by rater within each method,

this difference is smaller than the overall difference in repeatability between

the methods.

4.2 Lateral Ventricle Segmentation

Unlike the caudate, which has a simple shape but lacks clearly defined MRI

intensity boundaries, the lateral ventricles are complex geometrically yet have

an easily identifiable boundary. To demonstrate the breadth of SNAP segmen-
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tation, we present the results of a repeatability experiment for lateral ventri-

cle segmentation. As for the caudate, we randomly selected five MRI images

from the child autism database and applied our standard image processing

pipeline, including tissue class segmentation using EMS. Our ventricle seg-

mentation protocol involves placing three initialization seeds in each ventricle

and running the active contour segmentation until there is no more expansion

into the horns. Afterwards, the 3D cut-plane tool is used to separate the left

ventricle from the right. In some cases, active contour segmentation will bleed

into the third ventricle, which can be corrected using the cut-plane tool or by

slice-by-slice editing. If the ventricles are very narrow, the evolving interface

may not reach the inferior horns, and there also are rare cases where parts

of the ventricles are so narrow that they are misclassified by EMS. These

problems are corrected by post-processing, which involves reapplying active

contour segmentation to the trouble regions or correcting the segmentation

manually. Nevertheless, the approximate average time to segment a pair of

lateral ventricles is 15 minutes, including initialization, running the automatic

pipeline, reviewing and editing.

Using SNAP, each of the five selected images was segmented three times by two

blinded raters; in contrast to caudate validation, manual segmentation was not

performed. The volumes of the ventricle segmentations are listed in Table 5 and

the volume-based reliability statistics are given in Table 6. SNAP interrater

reliability coefficients exceed 0.99 for both ventricles, matching the reliability

of manual segmentation, as reported by Blatter et al. (1995). Overlap statistics

are summarized in Table 7 and Fig. 12. Despite the ventricles’ complex shape,

the average DSC values (0.989 for the left ventricle and 0.983 for the right)

are higher than for caudate segmentation.
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5 Discussion

The caudate segmentation validation, which compares the SNAP tool to man-

ual segmentation by highly trained raters, demonstrates the excellent reliabil-

ity of the tool for efficient three-dimensional segmentation. While the volume-

based reliability analysis shows a similar range of intra-method reliability for

both segmentation approaches, overlap analysis reveals that SNAP segmenta-

tion exhibits significantly improved repeatability. SNAP cut the segmentation

time by a factor of three and also significantly reduced the training time to

establish expert reliability. Besides repeatability and efficiency, our experts

preferred using SNAP over slice contouring due to the tool’s capability to dis-

play 3D segmentations in real time and due to the simple option to postprocess

the automated segmentation using 3D tools.

In addition to brain structure extraction in MRI, SNAP has found a variety

of uses in other imaging modalities and anatomical regions. For example, in

radiation oncology applications, SNAP has proven useful for segmenting the

liver, kidneys, bony structures and tumors in thin-slice computer tomography

(CT) images. In emphysema research involving humans and mice, SNAP has

been used to extract lung cavities in CT, as well as pulmonary vasculature in

MRI. SNAP has also proven invaluable as a supporting tool for developing and

validating medical image analysis methodology. It has found countless uses in

our own labs, such as to postprocess the results of automatic brain extraction,

to identify landmarks that guide image registration and to build anatomical

atlases for template deformation morphology (Yushkevich et al., 2005).

Despite SNAP’s versatility, its automatic segmentation pipeline is limited to
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a specific subset of segmentation problems where the structure of interest has

a different intensity distribution from most of the surrounding tissues. Future

development of SNAP will focus on simplifying the segmentation of structures

whose intensity distribution is indistinguishable from some of its neighbors.

This will be accomplished by (1) preventing the evolving interface from enter-

ing certain regions via special seeds placed by the user, which push back on

the interface, similar to the “volcanoes” in the seminal paper by Kass et al.

(1988); and (2) providing additional 3D postprocessing tools that will make it

easier to cut away parts of the interface that has leaked. These postprocessing

tools will be based on graph-theoretic algorithms. One such tool will allow

the user to trace a closed path on the surface of the segmentation result, after

which the minimal surface bounded by that path will be computed and used

to partition the segmentation in two. Another future feature of SNAP will be

an expanded user interface for defining object and background probabilities

in the Zhu and Yuille (1996) method, where the user will be able to place

a number of sensors inside and outside of the structure in order to estimate

the intensity distribution within the structure. In order to account for inten-

sity inhomogeneity in MRI, SNAP will include an option to let the estimated

distribution vary spatially. Finally, we plan to tightly integrate SNAP will ex-

ternal tools for brain extraction, tissue class segmentation and inhomogeneity

field correction.

6 Conclusion

ITK-SNAP is an open source medical image processing application that ful-

fills a specific and pressing need of biomedical imaging research by providing
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a combination of manual and semiautomatic tools for extracting structures in

3D image data of different modalities and from different anatomical regions.

Designed to maximize user efficiency and to provide a smooth learning curve,

the user interface is focused entirely on segmentation, parameter selection is

simplified using live feedback, and the number of features unrelated to segmen-

tation kept to a minimum. Validation in the context of caudate nucleus and

lateral ventricle segmentation in child MRI demonstrates excellent reliability

and high efficiency of 3D SNAP segmentation, and provides strong motiva-

tion for adopting SNAP as the segmentation solution for clinical research in

neuroimaging and beyond.
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G. Burdea, and R. Mösges, editors, Computer Integrated Surgery , pages

175–190. MIT Press, 1995.

Schroeder, W. J., Martin, K. M., and Lorensen, W. E. The design and imple-

mentation of an object-oriented toolkit for 3D graphics and visualization. In

R. Yagel and G. M. Nielson, editors, IEEE Visualization ’96 , pages 93–100.

1996.

Sethian, J. A. Level set methods and fast marching methods . Cambridge

University Press, 1999.

Shrout, P. and Fleiss, J. Intraclass correlations: uses in assessing rater relia-

bility. Psychol Bull , 86:420–428, 1979.

Thirion, J.-P. Non-rigid matching using demons. In CVPR ’96: Proceedings of

the 1996 Conference on Computer Vision and Pattern Recognition (CVPR

’96), page 245. IEEE Computer Society, 1996. ISBN 0-8186-7258-7.

Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. Automated

model-based bias field correction of MR images of the brain. IEEE Trans-

actions on Medical Imaging , 18:885–896, 1999a.

Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P. Automated

model-based tissue classification of MR images of the brain. IEEE Trans-

30



actions on Medical Imaging , 18:897–908, 1999b.

Wells III, W. M., Grimson, W. E. L., Kikinis, R., and Jolesz, F. A. Adaptive

segmentation of MRI data. In N. Ayache, editor, Computer Vision, Virtual

Reality and Robotics in Medicine. Springer-Verlag, 1995.

Whitaker, R. T. A level-set approach to 3d reconstruction from range data.

Int. J. Comput. Vision, 29(3):203–231, 1998. ISSN 0920-5691.

Yushkevich, P. A., Dubb, A., Xie, Z., Gur, R., Gur, R., and Gee, J. C. Regional

structural characterization of the brain of schizophrenia patients. Academic

Radiology , 12(10):1250–1261, 2005.

Zhu, S. C. and Yuille, A. Region competition: Unifying snakes, region growing,

and bayes/mdl for multiband image segmentation. IEEE Trans. Pattern

Anal. Mach. Intell., 18(9):884–900, 1996. ISSN 0162-8828.

Zou, K. H., Warfield, S. K., Bharatha, A., Tempany, C. M. C., Kaus, M. R.,

Haker, S. J., III, W. M. W., Jolesz, F. A., and Kikinis, R. Statistical val-

idation of image segmentation quality based on a spatial overlap index.

Academic Radiology , 11(2):178–189, 2004.

31



Table 1: Caudate volumes (in mm3) from the validation study comparing

SNAP reliability to manual segmentation. Five test cases, replicated three

times (column one) have been segmented by three raters who were blind to

the cases.

Right Caudate Volumes Left Caudate Volumes

SNAP Manual SNAP Manual

HHH
HHH

HHHH
case

rater
A B A C A B A C

gr1a 3720 3738 3690 3724 3734 3781 3621 3529

gr1b 3713 3780 3631 3551 3715 3826 3552 3482

gr1c 3790 3786 3735 3749 3758 3790 3521 3510

mean(gr1) 3741 3768 3685 3675 3735 3799 3565 3507

gr2a 4290 4353 4267 4120 4087 4141 4137 4262

gr2b 4229 4247 4254 4164 4083 4103 4189 4179

gr2c 4233 4232 4303 4253 4025 4143 4168 4149

mean(gr2) 4251 4277 4275 4179 4065 4129 4165 4196

Continued on the next page ...
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Continued from the last page ...

Right Caudate Volumes Left Caudate Volumes

SNAP Manual SNAP Manual

H
HHH

HHH
HHH

case

rater
A B A C A B A C

gr3a 4211 4250 4263 4397 4590 4495 4416 4482

gr3b 4289 4155 4221 4149 4562 4506 4444 4417

gr3c 4264 4257 4354 4174 4416 4583 4323 4332

mean(gr3) 4255 4221 4279 4240 4523 4528 4394 4410

gr4a 4091 4105 4063 4122 3967 4129 4006 4066

gr4b 4151 4150 4144 4116 4058 4135 3934 4029

gr4c 4081 4149 4103 4037 4081 4141 4001 3995

mean(gr4) 4108 4134 4103 4092 4036 4135 3980 4030

gr5a 4112 4197 4167 4125 4355 4295 4278 4321

gr5b 4165 4226 4143 4039 4326 4273 4253 4317

gr5c 4191 4237 4089 4226 4311 4288 4127 4087

mean(gr5) 4156 4220 4133 4130 4330 4285 4219 4242
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Table 2: Intrarater and interrater reliability of caudate segmentation. Relia-

bility was measured based on 3 replications of 5 test datasets by two raters.

Reliability values for (1) manual segmentation by two experts; (2) manual

vs. SNAP segmentation by the same expert; and (3) SNAP segmentation by

two experts show the excellent reliability of both methods and the excellent

agreement between manual expert’s segmentation and SNAP. SNAP reduced

segmentation time from 1.5 hours to 30 minutes, while the training period

to establish reliability was several months for the manual method and signifi-

cantly shorter for SNAP.

Validation type Side Intra A Intra B Intra AB Inter AB

Intra/interrater Manual Right 0.963 0.845 0.902 0.916

(A Manual, B Manual) Left 0.970 0.954 0.961 0.967

Manual vs. SNAP Right 0.963 0.967 0.964 0.967

(A Manual, B SNAP) Left 0.970 0.969 0.969 0.907

Intra/interrater SNAP Right 0.967 0.958 0.962 0.958

(A SNAP, B SNAP) Left 0.969 0.990 0.978 0.961
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Table 3: Overlap statistics between pairs of caudate segmentations, categorized

by different methods and raters. Letters A, B and C refer to individual raters.

Overlap values are given in percent, i.e., overlap(S1, S2) = 100%∗DSC(S1, S2).

The number of pairs in each category is given in the last column (n).

Category µLeft σLeft µRight σRight n

1. SNAP A vs. SNAP A 97.5 0.836 97.7 0.598 15

2. SNAP B vs. SNAP B 98.8 0.291 98.7 0.679 15

3. SNAP intrarater average 98.1 0.931 98.2 0.823 30

4. SNAP A vs. SNAP B 97.3 0.810 97.5 0.686 45

5. Manual A vs. Manual A 94.0 0.802 94.2 0.617 15

6. Manual C vs. Manual C 93.4 0.568 93.1 0.504 15

7. Manual intrarater average 93.7 0.752 93.6 0.783 30

8. Manual A vs. Manual C 92.5 0.913 91.9 0.697 45

Continued on the next page ...

40



Continued from the last page ...

Category µLeft σLeft µRight σRight n

9. SNAP A vs. Manual A 92.2 0.991 92.6 0.515 45

10. SNAP A vs. Manual C 91.3 0.602 91.0 0.893 45

11. SNAP B vs. Manual A 91.9 1.11 92.5 0.421 45

12. SNAP B vs. Manual C 91.2 0.635 91.1 0.733 45

13. SNAP vs. Manual interrater average 91.5 0.860 91.5 0.999 135
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Table 4: Results of ANOVA experiment to determine whether segmentation

repeatability measured in terms of overlap varies according to method (M),

rater (R), case (C), anatomical structure (A) or the pair of segmentations

involved in the overlap computation (P ).

Variance Comp. D.o.F. Sum Sq. Mean Sq. F -Stat. P -Value

Method (M) 1 13.886 13.886 220.639 0.

Segmentation pair (P ) 2 0.027 0.013 0.214 0.808

Case (C) 4 0.759 0.190 3.015 0.029

Anat. structure (A) 1 0.033 0.033 0.520 0.475

M × P 2 0.117 0.059 0.931 0.402

C × P 8 0.167 0.021 0.337 0.947

Residuals 41 2.580 0.063 - -
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Table 5: Ventricle volumes (in mm3) from the SNAP reliability experiment.

Five test cases, replicated three times (column one) have been segmented by

two raters (A, B), who were blinded to the cases.

Left Right Left Right

Case A B A B Case A B A B

gr1a 2935 2942 3375 3389 gr4a 1605 1581 1719 1752

gr1b 2954 2953 3363 3404 gr4b 1578 1605 1719 1725

gr1c 2955 2936 3380 3386 gr4c 1606 1607 1719 1725

mean(gr1) 2948 2944 3373 3393 mean(gr4) 1596 1598 1719 1734

gr2a 5565 5572 6833 6824 gr5a 3687 3562 7776 7436

gr2b 5561 5579 6825 6830 gr5b 4178 3511 7725 7541

gr2c 5564 5577 6830 6824 gr5c 3871 3561 7758 7389

mean(gr2) 5563 5576 6829 6826 mean(gr5) 3912 3544 7753 7455

gr3a 2775 2781 6778 6963

gr3b 2682 2780 7307 6971

gr3c 2734 2772 7217 6982

mean(gr3) 2730 2778 7101 6972
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Table 6: Intrarater and interrater reliability of lateral ventricle segmentation

in SNAP. Reliability was measured based on 3 replications of 5 test datasets

by two raters.

Validation type Side Intra A Intra B Intra AB Inter AB

Intra/interrater SNAP Right 0.9942 0.9999 0.9970 0.9917

(A SNAP, B SNAP) Left 0.9977 0.9998 0.9987 0.9976
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Table 7: Overlap statistics for left and right lateral ventricle segmenta-

tions. Overlap values are given as percentages, i.e., overlap(S1, S2) = 100% ∗

DSC(S1, S2).

Category µLeft σLeft µRight σRight n

1. SNAP A vs. SNAP A 99.5 0.481 99.5 0.482 15

2. SNAP B vs. SNAP B 99.0 1.16 98.6 1.69 15

3. SNAP intrarater average 99.3 0.898 99.1 1.31 30

4. SNAP A vs. SNAP B 98.9 0.914 98.3 2.20 45
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Figure Captions

Fig. 1. An illustration of the parameters κ and λ that determine the shape of

the function g that inversely maps the values of image gradient magnitude to

the range (0, 1]. The top row shows the shapes of the mapping function under

different values of the parameters, and the bottom row shows the resulting

feature images.

Fig. 2. Examples of edge-based contour evolution before (top) and after (bot-

tom) adding the advection term. Without advection, the contour leaks past the

boundaries of the caudate nucleus because the external force is non-negative.

Fig. 3. The plot on the left gives an example of three smooth threshold func-

tions with different values of the smoothness parameter κ. To the right of the

plot are the input grayscale image and the feature images corresponding to

the three thresholds.

Fig. 4. Active contour evolution using the feature image based on region com-

petition. The propagation force acts outwards over the ‘foreground’ region

(red) and inwards over the ‘background’ region (blue), causing the active con-

tour to reach equilibrium at the boundary of the regions.

Fig. 5. a. SNAP user interface shows three orthogonal views of a volumetric

image, linked by a common cursor (light blue crosshairs). A fourth panel is

used to view the segmented structures in three dimensions. b. Alternatively,

SNAP can be focused on a single slice, and zoom facilities are provided for
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segmenting high resolution images.

Fig. 6. An example of using cut-plane operations to relabel a segmentation

into three components (left lateral ventricle, right lateral ventricle and third

ventricle.)

Fig. 7. a. User interface for feature image specification: the user is setting the

values of the smooth threshold parameters, and the feature image is displayed

in the orthogonal slice views using a color map.b. User interface for active

contour initialization: the user has placed two spherical bubbles in the caudate

nucleus.

Fig. 8. User interface for specifying contour evolution parameters, including

the relative weights of the forces acting on the contour. The intuitive inter-

face is shown on the left and the mathematical interface on the right. The

parameter specification window also shows how the forces interrelate in a two-

dimensional example.

Fig. 9. The user interface for contour evolution. The image on the left shows

SNAP before evolution is run, and the image on the right is taken after the

contour runs for a few seconds. In this example, an edge based feature image

is used.

Fig. 10. Two and three-dimensional views of the caudate nucleus. Coronal slice

of the caudate: Original T1-weighted MRI (left), and overlay of segmented

structures (middle). Right and left caudate are shown shaded in green and

red; left and right putamen are sketched in yellow, laterally exterior to the
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caudates. The nucleus accumbens is sketched in red outline. Note the lack of

contrast at the boundary between the caudate and the nucleus accumbens,

and the fine-scale cell bridges between the caudate and the putamen. At right

is a 3D view of the caudate and putamen relative to the lateral ventricles.

Fig. 11. Box and whisker plots showing order statistics (minimum, 25% quan-

tile, median, 75% quantile, maximum) of overlaps between pairs of segmenta-

tions of the caudate nucleus. The horizontal axis represents 13 different cate-

gories of pairwise comparisons that are listed in Table 3, and the vertical axis

plots the Dice Similarity Coefficient (DCS). Columns 1-4 are SNAP-to-SNAP

comparisons, columns 5-8 are manual-to-manual comparisons, and columns

9-13 are mixed-method comparisons. Orange boxes represent intrarater com-

parisons for specific raters; red boxes stand for intrarater comparisons pooled

over available raters; light blue boxes are interrater comparisons for specific

pairs of raters; and dark blue boxes are interrater comparisons pooled over

available rater pairs.

Fig. 12. Box and whisker plots of overlaps between pairs of segmentations of

the lateral ventricles nucleus. All columns represent SNAP-to-SNAP compar-

isons; columns 1 and 2 represent intrarater comparisons for specific raters;

column 3 plots intrarater comparisons pooled over the two raters; and column

4 shows interrater comparisons.
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Fig. 1. An illustration of the parameters κ and λ that determine the shape of the

function g that inversely maps the values of image gradient magnitude to the range

(0, 1]. The top row shows the shapes of the mapping function under different values

of the parameters, and the bottom row shows the resulting feature images.

t=0 t=5 t=10 t=15 t=20 t=25

t=0 t=5 t=10 t=15 t=30 t=60

Fig. 2. Examples of edge-based contour evolution before (top) and after (bottom)

adding the advection term. Without advection, the contour leaks past the bound-

aries of the caudate nucleus because the external force is non-negative.
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Fig. 3. The plot on the left gives an example of three smooth threshold functions

with different values of the smoothness parameter κ. To the right of the plot are the

input grayscale image and the feature images corresponding to the three thresholds.

t=0 t=5 t=10 t=15 t=30 t=60

Fig. 4. Active contour evolution using the feature image based on region competi-

tion. The propagation force acts outwards over the ‘foreground’ region (red) and

inwards over the ‘background’ region (blue), causing the active contour to reach

equilibrium at the boundary of the regions.
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a. b.

Fig. 5. a. SNAP user interface shows three orthogonal views of a volumetric image,

linked by a common cursor (light blue crosshairs). A fourth panel is used to view the

segmented structures in three dimensions. b. Alternatively, SNAP can be focused

on a single slice, and zoom facilities are provided for segmenting high resolution

images.

Fig. 6. An example of using cut-plane operations to relabel a segmentation into

three components (left lateral ventricle, right lateral ventricle and third ventricle.)
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a. b.

Fig. 7. a. User interface for feature image specification: the user is setting the

values of the smooth threshold parameters, and the feature image is displayed in

the orthogonal slice views using a color map.b. User interface for active contour

initialization: the user has placed two spherical bubbles in the caudate nucleus.

Fig. 8. User interface for specifying contour evolution parameters, including the

relative weights of the forces acting on the contour. The intuitive interface is shown

on the left and the mathematical interface on the right. The parameter specification

window also shows how the forces interrelate in a two-dimensional example.
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Fig. 9. The user interface for contour evolution. The image on the left shows SNAP

before evolution is run, and the image on the right is taken after the contour runs

for a few seconds. In this example, an edge based feature image is used.

Fig. 10. Two and three-dimensional views of the caudate nucleus. Coronal slice of

the caudate: Original T1-weighted MRI (left), and overlay of segmented structures

(middle). Right and left caudate are shown shaded in green and red; left and right

putamen are sketched in yellow, laterally exterior to the caudates. The nucleus

accumbens is sketched in red outline. Note the lack of contrast at the boundary

between the caudate and the nucleus accumbens, and the fine-scale cell bridges

between the caudate and the putamen. At right is a 3D view of the caudate and

putamen relative to the lateral ventricles.
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Fig. 11. Box and whisker plots showing order statistics (minimum, 25% quantile,

median, 75% quantile, maximum) of overlaps between pairs of segmentations of the

caudate nucleus. The horizontal axis represents 13 different categories of pairwise

comparisons that are listed in Table 3, and the vertical axis plots the Dice Similarity

Coefficient (DCS). Columns 1-4 are SNAP-to-SNAP comparisons, columns 5-8 are

manual-to-manual comparisons, and columns 9-13 are mixed-method comparisons.

Orange boxes represent intrarater comparisons for specific raters; red boxes stand

for intrarater comparisons pooled over available raters; light blue boxes are inter-

rater comparisons for specific pairs of raters; and dark blue boxes are interrater

comparisons pooled over available rater pairs.
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Fig. 12. Box and whisker plots of overlaps between pairs of segmentations of the lat-

eral ventricles nucleus. All columns represent SNAP-to-SNAP comparisons; columns

1 and 2 represent intrarater comparisons for specific raters; column 3 plots intrarater

comparisons pooled over the two raters; and column 4 shows interrater comparisons.
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